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Abstract—Artificial Neural Networks form the basis of very
powerful learning methods. It has been observed that a naive
application of fully connected neural networks to data with many
irrelevant variables often leads to overfitting. In an attempt to
circumvent this issue, a prior knowledge pertaining to what
features are relevant and their possible feature interactions can
be encoded into these networks. In this work, we use decision
trees to capture such relevant features and their interactions
and define a mapping to encode extracted relationships into a
neural network. This addresses the initialization related concerns
of fully connected neural networks. At the same time through
feature selection it enables learning of compact representations
compared to state of the art tree-based approaches. Empirical
evaluations and simulation studies show the superiority of such
an approach over fully connected neural networks and tree-based
approaches.

I. INTRODUCTION

Tree based ensemble methods have emerged as being one
of the most powerful learning methods [1], [2] owing to the
simplicity and transparency of trees, combined with an ability
to explain complex data sets.

Predictive models based on rules have gained momentum
in the recent years [3], [4], [5], [6], [7]. One of the simplest
rule based approaches was proposed in [8] where a single
decision tree is decomposed into a set of rules. Each such
rule is pruned by removing nodes that improved its estimated
accuracy. This is followed by sorting the pruned rules in
the ascending order of their accuracy. Prediction at any new
example is obtained using a single activated rule that is highest
in the sorted list. RuleFit [9] is another popular rule based
predictive model. It involves generating a large pool of rules
using existing fast tree growing procedures. The coefficients
of these rules are fit through a regularized regression. [10]
replaces the hard rules in RuleFit with soft rules using a
logistic transformation. [11] employs gradient boosting using
rules as a base classifiers and rules are added iteratively to an
ensemble by greedily minimizing the negative log-likelihood
function. The major concern in all of these approaches is that
the activated region of rules is fixed and does not allow for any
training. Since the support is aligned along the feature axes,
a large number of rules would be required to approximate
oblique decision boundaries and therefore, would result in a
loose representation of the prediction function.

Another line of work focuses on restructuring decision tree
into multi-layered neural networks with sparse connections
and fewer restrictions on the inclination of decision bound-
aries. One such mapping was explored in the works of [12]
which was later used by [13] for every tree in a random
forest. The mapping in [12] replaces the Heaviside unit step
function with a hyperbolic tangent activation which is known
to suffer from the vanishing gradients problem. Also, it is not
clear how to choose the hyperparameters of the hyperbolic
tangent activation, which heavily dictate the initialization and
the magnitude of gradients.

Some works at the intersection of decision trees and neural
networks replace every decision node with a neural network.
One such study was explored by [14], who learns differentiable
split functions to guide inputs through a tree. The conditional
networks from [15] also use trainable routing functions to per-
form conditional transformations on the inputs which enables
them to transfer computational efficiency benefits of decision
trees into the domain of convolutional networks. This appears
like an ensembling of neural networks but structured in a
hierarchical fashion.

In this paper, we present a novel method called Neural
Rule Ensembles (NRE) for encoding the feature interactions
captured by a single decision tree into a neural network. We
discuss some training aspects of the algorithm and perform
empirical evaluations on 19 binary classification datasets from
the Penn Machine Learning Benchmark (PMLB) [16]. To
evaluate the statistical significance of the results, we use two
statistical tests: Wilcoxon signed-rank test and the sign test,
and individually compare NRE with Random Forests (RF),
Gradient Boosted Trees (GB) and Artificial Neural Networks
(ANN).

II. PRELIMINARIES AND NOTATIONS

We will work on regression and binary classification prob-
lems, where we are given training examples {(xi, yi) ∈
Rp×R, i = 1, ..., N} and we need to find a prediction function
fβ : Rp → R parameterized by a vector β, such that fβ(xi)
agrees with yi as much as possible. For example, for linear
models, the prediction function is fβ(x) = βTx and β ∈ Rp.
The agreement between fβ(x) and y on the training examples
is measured by a loss function.
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L(β) =

N∑
i=1

`(fβ(xi), yi) + s(β) (1)

that should be minimized, where s(β) is a penalty such as the
shrinkage s(β) = ρ‖β‖2 which helps with generalization.

The loss `(u, y) depends on the problem. For regression,
it could be the square loss `(u, y) = (u − y)2. For binary
classification (when y ∈ {−1, 1}), it could be the logistic
loss `(u, y) = log(1 + exp(−uy)), the hinge loss `(u, y) =
max(1− uy, 0), or other loss functions.

A. Rule Generation

For an input x ∈ Rp with real-valued continuous attributes
(x1, x2, ..., xp) , one can express a conjunctive rule in the
following mathematical form:

r(x) = c

p∏
j=1

I(xj ∈ Sj) (2)

where I(·) is an indicator function, c is the activation value
and Sj is some subset of possible values for an attribute xj .

A decision tree can be regarded as a collection of conjunc-
tive rules where each path from the root to a terminal node
defines one such rule. Specifically, a regression tree with m
terminal nodes can be represented as

T (x) =
m∑

k=1

rk(x) (3)

Non-zero values of rk(x) correspond to a hyper-rectangle
in the input feature space. These m hyper-rectangles are
non-overlapping with each other and collectively define a m
partitioning of the feature space.

In cases where all the features involved in a decision tree-
induced rule are continuous variables, the rule in (2) can be
reduced to a much simpler form. Let xR be a set of features
involved in a rule r(x), one can now rewrite the expression
for a conjunctive rule in (2) as follows.

r(x) = c
∏

xj ∈ xR

H(wjxj + aj) (4)

where H(·) is a Heaviside step function with H(0) = 0, c
is the value at an associated terminal node, wj is either +1
or −1 and aj is the split threshold for feature xj if wj = −1,
and is the negative of the split threshold otherwise.

In order to create an initial pool consisting of a large
number of rules, we first invoke existing fast algorithms such
as Random Forests and Gradient Boosted Trees to generate
tree ensembles. In the subsequent step, each of the tree thus
produced is decomposed into a set of conjunctive rules as
described above.

B. Margin Maximizing Rules

In order to perform either an implicit or explicit selection
of rules, we would need a metric to quantify their importance,
which can then be used to rank them in the order of their
relevance. One such metric that can be employed is the hinge
loss, also referred to as the maximum margin loss, where
rules with lower values of the loss function will have higher

relevance. Mathematically, the expression for this loss function
is given as

I

(
y,

rk
‖rk‖

)
=

N∑
i=1

max

(
0, 1− yi

rk(xi)

‖rk‖

)
(5)

where yi ∈ {−1,+1} ∀ i. The quantity y rk(x)
‖rk‖ , known as

the margin or confidence in the prediction, is positive for
the correct prediction and is negative in case of the wrong
one. Notice that, in the absence of rule scaling‖rk‖, the scale
of rk(x) could be artificially chosen to make the confidence
y rk(x) arbitrarily large which in that case would render the
definition of margin useless.

Let nk be the number of training examples that activate the
rule rk where n+k of them belong to the positive class and the
remaining n−k come from the negative class. Using (4), the
euclidean norm of the rule can thus be computed as

‖rk‖2 = |c|
√
nk

For any training input x, the activation value of a rule rk(x)
is either 0 or c. Consequently, the normalized value is either
0 or is given by

rk(x)
‖rk‖

=
c

|c|
1
√
nk

which implies that the margin is unconditionally bounded from
above by 1 or more precisely,

−1 ≤ y rk(x)
‖rk‖

≤ 1, so 0 ≤ 1− y rk(x)
‖rk‖

≤ 2.

This allows us to simplify the expression for the hinge loss
given in (5) to

I

(
y,

rk
‖rk‖

)
=

N∑
i=1

(
1− yi

rk(xi)

‖rk‖

)

= N −
N∑
i=1

yi
rk(xi)
‖rk‖

= N −
∑

{i:rk(xi)6=0}

yi
rk(xi)

‖rk‖

Since both rk(x) and −rk(x) are potentially valid rules, the
quantifying metric becomes

argmin
k

I

(
y,± rk
‖rk‖

)
= argmax

k
m2

k (6)

where

mk =
∑

{i:rk(xi)6=0}

yi
rk(xi)
‖rk‖

(7)

This means that the rules can simply be sorted in the de-
creasing order of the scores m2

k to obtain a ranking in the
order of their relevance. In other words, higher values of
m2

k correspond to higher relevance. Let us further simply the
expression given in (7) to

mk =
c

|c|
(n+k − n

−
k )√

nk
, thus m2

k =
(n+k − n

−
k )

2

nk
. (8)



III. RULE GENERATION LIMITATION OF CONVENTIONAL
DECISION TREE

The rule generation procedure conducted by conventional
decision tree uses only one feature per node for recursive
binary partitioning which corresponds to the fact that all the
slices or partitions in the feature space are now either per-
pendicular or (inclusive) parallel to the feature axes. In other
words, such models will have difficulties in approximating
oblique decision boundaries in the feature space.

Let us consider a linearly separable dataset as shown in
Figure 1(a), where the decision boundary is inclined at an
angle of 45◦ with either of the feature axes. Owing to the
aforementioned rigidity, it can be seen from Figures 1 (b) and
(c) that the only way to improve performance is to keep adding
more rules to the ensemble. The inability to evolve shapes of
the rules seems highly restrictive and challenges the goal of
achieving compact representations. Hence, we would not want
to restrict the activated region of a rule r(x) to just a hyper-
rectangle. This motivates the definition of a neural rule with
trainable support.

Linear Separable Ensemble 5 Rules Ensemble 20 Rules
Fig. 1. Limitations of Conventional Ensemble of Rules in approximating
linearly separable datasets

IV. NEURAL RULE ENSEMBLES

In this part, we introduce a new form of the conjunctive
rules (4) called Neural Rules. In order to see how a decision
tree based rule inspires the design of a neural rule, let us revisit
the expression of a conjunctive rule specifically for a decision
tree based rule given in (4).

r(x) = c
∏

xj ∈ xR

H(wjxj + aj)

where xR is a set of features involved in a rule r(x), H(·) is
a Heaviside step function with H(0) = 0, c is the value at an
associated terminal node, wj is either +1 or −1 and aj is the
split threshold for feature xj if wj = −1, and is the negative
of split threshold otherwise.

Rules extracted from a decision tree involve only one feature
for every node. In a neural rule, we modify (4) to now connect
each node of a given rule with all the features used in the
corresponding decision tree. Let xT be a vector of all features
used in the decision tree T (x) without repetitions. With this
modification, we can now have oblique decision boundaries in
the feature subspace spanned by xT . The updated expression
of the rule looks as follows.

r(x) = c
∏

{j:xj∈xR}

H(wT
j xT + aj) (9)

Denote the ReLU operation as σ(x) = max(0, x). Next, we
observe that a Heaviside step function with H(0) = 0 is invari-
ant to the ReLU transformation of an input H(x) = H(σ(x)).

Also note that the product of several Heaviside step functions
can be represented using a single Heaviside step function and
the minimum pooling operation.∏

k

H(xk) = H(min
k

xk)

Using these identities, the rule in (9) becomes,

r(x) = c
∏

{j:xj∈xR}

H(σ(wT
j xT + aj)) (10)

= c · H( min
{j:xj∈xR}

σ(wT
j xT + aj)) (11)

Since the derivative of a step function is zero, the gradients
of all the learnable parameters will stay zero unless some
modification is made. In order to be able to jointly train all
the weights and splitting thresholds of all the nodes in a rule,
we switch the Heaviside step function in previous equations
with an identity function. This gives us the neural rule in its
final form as

r(x) = c min
{j:xj∈xR}

σ(wT
j xT + aj) (12)

A. Initialization

We now discuss an initialization of a neural rule correspond-
ing to any given rule obtained from a decision tree.

First, we make a list of all the features involved in that tree.
All those features along with a bias unit are the input layer of
a neural rule. The number of hidden units in the first hidden
layer of a neural rule equals the number of decision nodes of
a tree-induced rule, with one-to-one correspondence between
them. The connection weight between the input feature and
the hidden unit is 0 if the corresponding decision node of that
hidden unit does not involve the feature under consideration.
It is −1 if the corresponding decision node utilizes that feature
and traverses its left child along the rule path and is +1
otherwise.

The magnitude of the bias for every hidden unit is given
by the absolute value of the splitting threshold utilized in the
corresponding decision node. The sign of the bias for a hidden
unit is positive if the corresponding decision node traverses its
left child along the rule path, otherwise it is negative.

We use Figure 2 to illustrate one such mapping. Figure 2
(a) shows a decision tree with four rules. Figure 2 (b) shows
a neural rule corresponding to the rule with terminal label 2
(red colored branch) of the decision tree. All the bold lines in
a neural rule represent trainable parameters with their initial
values displayed alongside in Figure 2 (b). The red bold lines
in a neural rule carry non-zero initial weights and have their
counterparts in the decision tree whereas black bold lines
represent new connections with zero initialization.

We observed that the support of a proposed neural rule
is a convex set. In order to allow for the rules to assume
complicated non-convex shapes in the feature space, we extend
the definition of a neural rule by stacking a new hidden layer
with the same number of hidden units as the previous one.
We refer to such a modification of the neural rule as a deep
neural rule. Since we need to preserve the support of a tree-
induced rule while mapping it into a corresponding deep neural



A Decision Tree A Neural Rule

Fig. 2. Mapping a Tree-induced Rule, with terminal label 2, into a Neural
Rule

rule, we use an identity transformation for initializing the
parameters of this new hidden layer as depicted in Figure 3.

B. Characteristics

Trainable Support. Each wT xT + a = 0 in the equation
(12) represents a hyperplane in the feature subspace with the
corresponding upper half space given by σ(wT xT + a) > 0.
The application of the min operation evaluates the intersection
of these upper half spaces and thus, defines the activated
region of a rule. For an input x that lies on the upper half
space of the plane given by wT xT + a = 0, σ(wT xT + a) is
proportional to the shortest euclidean distance of the input
to that hyperplane. This quantifies the margin or level of
confidence in the prediction and the further the input lies from
the hyperplane in its upper half space, the more confident
it becomes in its prediction of that input. During training
using backpropagation, the hyperplane is rotated, shifted and
scaled in order to maximize the expected margin of the
inputs. Because of the min pooling operation, each input
contributes in updating the parameters of only the hyperplane
that predicts the least margin for it at that training step among
all the hyperplanes involved in a rule. The rationale here is to
maximize the margin of an input only from the least confident
hyperplane.
Restricted Gradients. For an input x that does not belong
to the activated region of a rule, min

j
(wT

j xT + aj) would

be less than or equal to zero, which implies zero gradients
of all the trainable parameters as the derivative of a ReLU
activation for negative inputs is zero. This suggests that only
the training examples lying inside the activated region are
responsible for modifying the shape of this region. In order
to maximize their margins, activated examples try to push or
pull the rule boundaries depending on the sign of their class
membership and the sign of weight, c. If both of these signs
agree then the corresponding training examples push the rule
boundary outwards, which expands the region and as a result,
brings in more training examples. Otherwise, if the signs do
not match then those contradictory examples will pull in the
rule boundary to get themselves out of it and thereby, shrink
the region.

A Decision Tree A Deep Neural Rule

Fig. 3. Mapping a Tree-induced Rule, with terminal label 2, into a Deep
Neural Rule

Compact Convex Support. Let C denote the support of a neu-
ral rule given by equation (12) and defined as {x : r(x) 6= 0}.
We show that C is a compactly supported convex set.

Proposition 1. For any x, z ∈ C, the convex combination of
x and z satisfies

θx + (1− θ)z ∈ C

where θ ∈ R with 0 ≤ θ ≤ 1

Proof. Given any x ∈ C, we have from equation (12),

r(x) 6= 0 ⇐⇒ wT
j x + aj > 0 ∀j

By multiplying both sides by θ > 0, we get

wT
j θx + θaj > 0 ∀j (13)

Similarly, we have for any z ∈ C,

r(z) 6= 0 ⇐⇒ wT
j z + aj > 0 ∀j

Multiplying both sides with (1− θ) > 0,

wT
j (1− θ)z + (1− θ)aj > 0 ∀j (14)

Adding equations (13) and (14), we obtain

wT
j (θx + (1− θ)z) + aj > 0 ∀j

which implies

r(θx + (1− θ)z) 6= 0 ⇐⇒ θx + (1− θ)z ∈ C.

C. Training

Conventional procedures for generating decision tress on
binary classification tasks employ either the Gini index or the
cross entropy measure. We use a new splitting criterion for
invoking a decision tree based on margin maximizing rules
discussed in §II-B. Let n denote the number of examples. We
use subscript l to refer to the left child, r for the right child
and p for the parent node. Additionally, superscripts + and −
refer to positive and negative examples, respectively.



Assuming binary partitioning of a decision node, each split
defines two simple rules rl(x) and rr(x). Using the maximum
margin metric for a rule given in (8), the node splitting
criterion can be written as follows

I =
(n+l − n

−
l )

2

nl
+

(n+r − n−r )2

nr
−

(n+p − n−p )2

np
(15)

We decompose a single decision tree into a set of conjunc-
tive rules to obtain a pool of diverse feature interactions. Each
of these rules is used to initialize their neural counterparts
using mapping discussed in Section IV-A. Such an ensemble of
neural rules, collectively referred to as Neural Rule Ensembles
(NRE) is essentially a 2-layered artificial neural network with
min pooling operation and thus, a universal approximator
[17]. However, in the proposed approach, feature interactions
extracted from a decision tree are explicitly encoded into
the network through its initialization, thus performing feature
selection and leading to better generalization. Another charac-
teristic of such an initialization is that the activations of any
two pooled hidden units are orthogonal to each other.

After initializing the network, all the parameters are trained
using Backpropagation [18]. We use the Adam optimization
method [19] with learning rate α = 0.01 to calculate the
weight updates.

Algorithm 1 Neural Rule Ensemble (NRE) Training
Input: Training data {(xi, yi)}Ni=1

Parameters: Learning rate α = 0.01, number of training
epochs Nep

Output: Trained Neural Rules Ensemble
1: Standardize the training data {(xi, yi)}Ni=1: mean center-

ing and unit standard deviation
2: Build a decision tree using the splitting criterion from Eq.

(15)
3: Decompose the resulting tree into a set of conjunctive

rules
4: Map each tree-induced rule into a corresponding neural

rule based on Eq. (12)
5: Initialize each neural rule as detailed in Section (IV-A).
6: Train an ensemble of neural rules simultaneously using

backpropagation
7: return Ensemble of Neural Rules

V. EXPERIMENTS

A. Simulation Result

In this section, we perform a simulation to illustrate the
ability of a neural rule to evolve and expand its activated
region. We consider a rotated XOR dataset, which is a non-
linearly separable dataset since there does not exist any single
hyperplane that can separate the positive training examples
(shown in blue) from the negative ones (shown in red). Addi-
tionally, since we have rotated the XOR dataset by 45◦, tree-
based approaches such as Gradient boosted trees would have a
hard time approximating the oblique decision boundaries and
would require a large number of trees and/or rules.

Initialization After 150 Iterations After 3k Iterations
Fig. 4. Neural Rule: Evolution of the trainable support of a single rule with
time

Figure 4 (a) shows a single neural rule just after its initial-
ization from a corresponding tree-induced rule. Figure 4 (b)
shows an intermediary state after training for 150 iterations. It
can be seen that the rule evolves its activated region to include
more examples of the same type into its support. After training
for a long time, the neural rule settles into an equilibrium state
consisting of only positive examples as shown in Figure 4 (c).

It is evident from Figure 4 (c) that there are still many
positive training examples that do not belong to the support
of a neural rule. In order to include them, a neural rule would
have to assume a non-convex shape, which is not possible. This
limitation has motivated the extension to a deep neural rule.
Figure 5 shows the evolution of the activated region in the case
of a deep neural rule, which can now achieve a non-convex
shape and hence contain all the positive training examples into
its support as shown in Figure 5 (c).

Initialization After 150 Iterations After 3k Iterations
Fig. 5. Deep Neural Rule: Evolution of the trainable support of a single rule
with time

B. Real Data Analysis

Datasets. In order to compare the performance of the proposed
algorithm with state of the art approaches, we perform an
empirical evaluation on simulated and multiple real datasets,
which ensures a wide variety of different targets in terms of
their dependence on the input features.

For simulation, we use a highly non-linear and multivariate
artificial dataset, MADELON, featured in the NIPS 2003
feature selection challenge [20]. It is a generalization of
the classic XOR dataset to five dimensions. Each vertex
of a five dimensional hypercube contains a cluster of data
points randomly labeled as +1 or −1. The five dimensions
constitute 5 informative features and 15 linear combinations
of those features were added to form a set of 20 redundant
but informative features. Additionally, a number of distractor
features with no predictive power were added and the order
of the features was randomized.

For benchmarking on real datasets, we will use Penn
Machine Learning Benchmark (PMLB) [16] which includes
datasets from a wide range of sources such as UCI ML
repository [21], Kaggle, KEEL [22] and the meta-learning
benchmark [23]. Since we are limiting our focus to binary
classification tasks, we only consider datasets having two



GB NRE difference rank
wilt 18.60 10.40 8.20 19.0
madelon 14.50 10.30 4.20 18.0
adult 12.91 14.22 -1.31 17.0
phoneme 9.25 8.14 1.11 16.0
dis 0.71 1.77 -1.06 15.0
titanic 27.49 26.89 0.60 14.0
churn 3.60 4.13 -0.53 13.0
banana 9.31 8.93 0.38 12.0
ring 3.15 3.51 -0.36 11.0
spambase 4.34 4.63 -0.29 10.0
kr-vs-kp 0.42 0.20 0.22 9.0
chess 0.21 0.42 -0.21 7.5
coil2000 6.04 5.83 0.21 7.5
twonorm 2.34 2.25 0.09 6.0
clean2 0.00 0.00 0.00 3.0
hypothyroid 1.47 1.47 0.00 3.0
agaricus-lepiota 0.00 0.00 0.00 3.0
magic 11.67 11.67 0.00 3.0
mushroom 0.00 0.00 0.00 3.0
wins 6 8
ties 5 5

TABLE I
COMPARISON OF THE TEST ERROR PERFORMANCE OF NRE WITH

GRADIENT BOOSTED TREES (GB) ON BINARY CLASSIFICATION TASKS

classes. Additionally, we removed all the datasets with fewer
than 2000 training examples. This leaves us with a total of 19
datasets for our investigation.
Statistical Tests. We use a statistical framework for hypothesis
testing to investigate whether Neural Rule Ensembles (NRE)
is significantly better or not compared to state of the art clas-
sifiers, namely Random Forests (RF), Gradient boosted trees
(GB) and Artificial Neural Networks (ANN). A hypothesis
test is a decision between two complementary hypotheses, the
null hypothesis H0 and the alternate hypothesis H1. We are
trying to reject the null hypothesis, which states that there is no
difference in the classification performance of algorithms, that
is, both of them perform equally well. We use the following
statistical tests designed to compare two classifiers on multiple
data sets.
Wilcoxon Signed-Rank Test. For the Wilcoxon signed-rank
test [24], the results are sorted by the magnitude of absolute
difference in the performance scores of the two classifiers.
This is followed by assigning ranks from the lowest to the
highest absolute difference. In case of ties, average ranks are
assigned. Finally, a test statistic is formed based on the ranks
of the positive and negative differences.

Let di be the difference between the performance scores
of two classifiers on the ith data set. Let R+ be the sum of
ranks for the data sets on which NRE outperforms the other
classifier, and R− the sum of ranks on data sets where NRE
gets defeated. Ranks corresponding to zero difference are split
evenly between R+ and R−; if there is an odd number of them,
one is ignored. The test statistic, T is given by

T = min(R+, R−) (16)
where

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (17)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (18)

RF NRE difference rank
madelon 26.40 10.30 16.10 19.0
wilt 21.60 10.40 11.20 18.0
coil2000 7.06 5.83 1.23 17.0
phoneme 9.00 8.14 0.86 16.0
banana 9.56 8.93 0.63 15.0
titanic 27.49 26.89 0.60 14.0
spambase 4.92 4.63 0.29 13.0
twonorm 2.52 2.25 0.27 12.0
adult 14.47 14.22 0.25 11.0
kr-vs-kp 0.42 0.20 0.22 10.0
magic 11.88 11.67 0.21 9.0
hypothyroid 1.68 1.47 0.21 8.0
chess 0.62 0.42 0.20 7.0
ring 3.33 3.51 -0.18 6.0
agaricus-lepiota 0.00 0.00 0.00 3.0
mushroom 0.00 0.00 0.00 3.0
dis 1.77 1.77 0.00 3.0
clean2 0.00 0.00 0.00 3.0
churn 4.13 4.13 0.00 3.0
wins 1 13
ties 5 5

TABLE II
COMPARISON OF THE TEST ERROR PERFORMANCE OF NRE WITH

RANDOM FORESTS (RF) ON BINARY CLASSIFICATION TASKS

For a two-tailed test with α = 0.05 significance level, the
critical value of the test statistic corresponding to n = 19 data
sets is 46. In other words, if T is less than or equal to 46, NRE
can be considered significantly better than the other classifier
with p < 0.05 and we can reject the null-hypothesis in favor
of alternate one.
Sign Test: Wins, Losses & Ties Counts. The sign test [25],
[26] is much weaker than the Wilcoxon signed-rank test and
will not reject the null-hypothesis unless one algorithm almost
always outperforms the other. In the sign test, we compare
the generalization performance of classifiers by counting the
number of data sets on which a classifier outperforms others.

Under the assumption that null-hypothesis is correct, that is,
both classifiers perform equally well, one would expect each
one of them to win on approximately N/2 out of N data sets.
This tell us that the number of wins is distributed according
to the binomial distribution.

For 19 datasets, the critical number of wins needed to reject
the null-hypothesis for a two-tailed sign test at α = 0.05
significance is 14. This implies that NRE can be considered
significantly better than the other classifier with p < 0.05
if it is the overall winner on 14 out of 19 datasets. Since
null-hypothesis is true for ties, instead of throwing them, we
distribute them evenly between the two classifiers. And, we
ignore one of the ties if there is an odd number of them.
Test Error Evaluation. In this section, we compare NRE
with GradientBoost (GB), Random Forest (RF) and Artificial
Neural Networks (ANN) on 19 datasets. The test errors for the
datasets without a test set are obtained using five-fold cross-
validation.
For each classifier, the operating settings and the tuned hyper-
parameters are the following:
• Random Forests: The number of trees used in the forest

are tuned from the set k ∈ {32, 64, 128, 256, 512}.
• Gradient Boosted Trees: We use 100 boosting iterations

with the maximum tree depth d selected from the range



ANN NRE difference rank
madelon 45.50 10.30 35.20 19.0
phoneme 14.18 8.14 6.04 18.0

wilt 14.20 10.40 3.80 17.0
churn 6.27 4.13 2.14 16.0

coil2000 7.46 5.83 1.63 15.0
spambase 3.47 4.63 -1.16 14.0

ring 2.52 3.51 -0.99 13.0
magic 12.44 11.67 0.77 12.0
adult 14.79 14.22 0.57 11.0

hypothyroid 1.89 1.47 0.42 9.5
kr-vs-kp 0.62 0.20 0.42 9.5

banana 9.31 8.93 0.38 8.0
twonorm 2.43 2.25 0.18 7.0

dis 1.94 1.77 0.17 6.0
agaricus-lepiota 0.00 0.00 0.00 3.0

mushroom 0.00 0.00 0.00 3.0
clean2 0.00 0.00 0.00 3.0
chess 0.42 0.42 0.00 3.0

titanic 26.89 26.89 0.00 3.0
wins 2 12

ties 5 5

TABLE III
COMPARISON OF THE TEST ERROR PERFORMANCE OF NRE WITH

ARTIFICIAL NEURAL NETWORKS (ANN) ON BINARY CLASSIFICATION
TASKS

d ∈ {2, 4, 6, 8, 10}.
• Artificial Neural Networks: Fully connected networks

with a single hidden layer (since NRE contains one
hidden layer) and rectified linear (ReLU) activation. The
number of hidden units h ∈ {64, 128, 256, 512, 1024} is
selected for optimal performance.

• Neural Rule Ensembles: Maximum depth of the tree
used for initializing the network is searched over the set
d ∈ {2, 4, 6, 8, 10}.

The hyperparameters for the methods being evaluated have
been obtained by internal five-fold cross-validation on the
training set. We use the scikit-learn implementation for eval-
uating the existing algorithms.
NRE vs Gradient Boosted Trees. From Table I, it can be seen
that NRE wins on 8 data sets, GB wins on 6 data sets and
there are 5 ties. Ignoring one tie and splitting the remaining
ones evenly, we find that NRE is better on 10 out of 19
datasets. Since the critical number of wins needed under sign
test is 14, we fail to reject the null-hypothesis. Similarly, we
fail to reject the null-hypothesis under the Wilcoxon signed-
rank test because the test statistic T = min(R+, R−) =
min(109, 81) = 81 is greater than 46. This implies that we
don’t have enough statistical evidence to establish that NRE
outperforms GB. However, we realize that NRE initialized
from a single tree gives a tough competition to 100 boosted
trees and is a more compactly represented model.
NRE vs Random Forest. We find from Table II that NRE
outperforms RF on almost all the data sets except for the
ring data set and the 5 tied matches. Splitting the ties evenly,
NRE is better on 15 out of 19 data sets which is greater
than the critical number of wins needed, that is 14, under
the sign test. We can therefore reject the null hypothesis. For
Wilcoxon-signed ranks test, the statistic T = min(R+, R−) =
min(176.5, 13.5) = 13.5 is less than the critical value 46
which allows us to reject the null hypothesis as well. This

Dataset N p GB RF ANN NRE
wilt 4839 6 18.60 21.60 14.20 10.40
madelon 2600 500 14.50 26.40 45.50 10.30
phoneme 5404 6 9.25 9.00 14.18 8.14
kr-vs-kp 3197 37 0.42 0.42 0.62 0.20
coil2000 9822 86 6.04 7.06 7.46 5.83
banana 5300 3 9.31 9.56 9.31 8.93
twonorm 7400 21 2.34 2.52 2.43 2.25
adult 48842 15 12.91 14.47 14.79 14.22
dis 3772 30 0.71 1.77 1.94 1.77
churn 5000 21 3.60 4.13 6.27 4.13
ring 7400 21 3.15 3.33 2,52 3.51
spambase 4601 58 4.34 4.92 3.47 4.63
chess 3196 37 0.21 0.62 0.42 0.42
titanic 2201 4 27.49 27.49 26.89 26.89
hypothyroid 3163 26 1.47 1.68 1.89 1.47
magic 19020 11 11.67 11.88 12.44 11.67
mushroom 8124 23 0.00 0.00 0.00 0.00
clean2 6598 169 0.00 0.00 0.00 0.00
agaricus-lepiota 8145 23 0.00 0.00 0.00 0.00
wins 11 3 4 13

TABLE IV
COMPARISON OF THE TEST ERROR PERFORMANCE OF NRE WITH
GRADIENT BOOSTED TREES (GB), RANDOM FORESTS (RF) AND

ARTIFICIAL NEURAL NETWORKS (ANN) ON BINARY CLASSIFICATION
TASKS

NRE vs GB NRE vs RF NRE vs ANN
Wilcoxon T Statistic 81 13.5 34.5
Number of NRE wins 10 15 14

TABLE V
SUMMARY RESULTS COMPARING THE NRE WITH GB, RF AND ANN.

implies that NRE is significantly better than Random Forest
and given that it utilizes only one tree compared to the up to
500 trees in RF, it is more compact too.
NRE vs Artificial Neural Network. It is evident from Table
III that NRE outperforms ANN on 12 data sets, loses on 2
sets and there are 5 ties. NRE passes the sign test since it is
better on 14 data sets (splitting the ties evenly) which matches
the critical number of wins needed. Since, the test statistic
for the Wilcoxon signed-rank test T = min(R+, R−) =
min(155.5, 34.5) = 34.5 is less than the critical value 46,
we reject the null-hypothesis in favor of alternate one. Both
of the statistical tests agree that NRE is significantly better
than the Artificial Neural Networks.
Overall comparison. In Table V is shown a summary of the
Wilcoxon rank T statistics and the number of NRE wins vs
the other methods, with their significance in bold. In Table IV,
are shown all the classification test errors for all the methods
in a single table. Also shown are the number of observations
N and the number of features p of each dataset.

VI. CONCLUSION

In this work, we presented a novel method called Neural
Rule Ensembles (NRE) for encoding into a neural network
and refining the feature interactions captured by a decision
tree. This was achieved by defining a neural transformation
of a tree-induced rule using ReLU units and the min pool-
ing operation. Such a mapping addresses the initialization
related concerns of fully connected neural networks as well
as the feature selection problem, and enables learning of
compact representations compared to conventional tree-based
approaches.



Empirical evaluations on 19 binary classification datasets
from the Penn Machine Learning Benchmark (PMLB) [16]
were performed to compare the generalization performance of
Neural Rule Ensembles (NRE) with state of the art approaches
such as Random Forests (RF), Gradient Boosted Trees (GB)
and Artificial Neural Networks (ANN). We used two statistical
tests, the Wilcoxon signed-rank test and the sign test, to
evaluate the statistical significance of these results. Both of
these statistical tests found NRE to be significantly better
than Random Forests and the Artificial Neural Networks with
p < 0.05. When NRE was compared to Gradient Boosted
Trees, we could not find enough statistical evidence to reject
the null hypothesis stating that both of them perform equally
well. However, NRE only utilizes one tree, so it obtains a more
compact and interpretable representation.
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