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Abstract—Stochastic separation theorems play important role
in high-dimensional data analysis and machine learning. It turns
out that in high dimension any point of a random set of
points can be separated from other points by a hyperplane with
high probability even if the number of points is exponential
in terms of dimension. This and similar facts can be used
for constructing correctors for artificial intelligent systems, for
determining an intrinsic dimension of data and for explaining
various natural intelligence phenomena. In this paper, we refine
the estimations for the number of points and for the probability
in stochastic separation theorems, thereby strengthening some
results obtained earlier. We propose the boundaries for linear
and Fisher separability, when the points are drawn randomly,
independently and uniformly from a d-dimensional spherical
layer. These results allow us to better outline the applicability
limits of the stochastic separation theorems in applications.

Index Terms—stochastic separation theorems, random points,
1-convex set, linear separability, Fisher separability, Fisher linear
discriminant

I. INTRODUCTION

Recently, stochastic separation theorems [1] have been
widely used in machine learning for constructing correctors
and ensembles of correctors of artificial intelligence systems
[2], [3], for determining the intrinsic dimension of data sets
[4] and for explaining various natural intelligence phenomena,
such as grandmother’s neuron [5] etc.

If the dimension of the data is high, then any sample of
the data set can be separated from all other samples by a
hyperplane (or even Fisher discriminant – as a special case)
with a probability close to 1 even the number of samples
is exponential in terms of dimension. So, high-dimensional
datasets exhibit fairly simple geometric properties. Due to the
applications mentioned above the theorems of such kind can
be considered as a manifestation of so called the blessing of
dimensionality phenomenon [1], [6].

In its usual form a stochastic separation theorem is formu-
lated as follows. A random n-element set in Rd is linearly
separable with probability p > 1− ϑ, if n < aebd. The exact
form of the exponential function depends on the probability
distribution that determines how the random set is drawn,
and on the constant ϑ (0 < ϑ < 1). In particular, uniform
distributions with different support are considered in [1], [7],
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[8]. Wider classes of distributions (including non-i.i.d.) are
considered in [3]. Roughly speaking, these classes consist of
distributions without sharp peaks in sets with exponentially
small volume. Estimates for product distributions in the cube
and the standard normal distribution is obtained in [9].

We note that there are many algorithms for constructing a
functional separating a point from all other points in a data
set (Fisher linear discriminant, linear programming algorithm,
support vector machine, Rosenblatt perceptron etc.). Among
all these methods the computationally cheapest is Fisher
discriminant [2]. Other advantages of the Fisher discriminant
are its simplicity and the robustness.

The papers [1]–[3], [7] deal with only Fisher separability,
whereas [8] considered a (more general) linear separability.
A comparison of the estimations for linear and Fisher separa-
bility allows us to clarify the applicability boundary of these
methods, namely, to answer the question, for what d and n it
suffices to use only Fisher separability and there is no need to
search a more sophisticated linear discriminant.

In [8] there were obtained estimations for the cardinality
of the set of points that guarantee its linear separability when
the points are drawn randomly, independently and uniformly
from a d-dimensional spherical layer and from the unit cube.
These results give more accurate estimates than the bounds
obtained in [1], [7] for Fisher separability. Here we give
even more precise estimations for the number of points in
the spherical layer to guarantee their linear separability. Also,
we report the results of computational experiments comparing
the theoretical estimations for the probability of the linear
and Fisher separabilities with the corresponding experimental
frequencies and discuss them.

II. DEFINITIONS

A point X ∈ Rd is linearly separable from the set M ⊂ Rd
if there exists a hyperplane separated X from M , i.e. there
exists AX ∈ Rd such that (AX , X) > (AX , Y ) for all Y ∈M .

A point X ∈ Rd is Fisher separable from the set M ⊂ Rd
if the inequality (X,Y ) < (X,X) holds for all Y ∈ M [2],
[3].

A set of points {X1, . . . , Xn} ⊂ Rd is called 1-convex [10]
or linearly separable [1] if any point Xi is linearly separable
from all other points in the set, or, in other words, the set
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of vertices of their convex hull, conv(X1, . . . , Xn), coincides
with {X1, . . . , Xn}.

The set {X1, . . . , Xn} is called Fisher separable if
(Xi, Xj) < (Xi, Xi) for all i, j, such that i 6= j [2], [3].

Fisher separability implies linear separability but not vice
versa (even if the set is centered and normalized to unit
variance). Thus, if M ⊂ Rd is a random set of points from
a certain probability distribution, then the probability that M
is linearly separable is not less than the probability that M is
Fisher separable.

Let Bd = {X ∈ Rd : ‖X‖ ≤ 1} be the d-dimensional
unit ball centered at the origin (‖X‖ means Euclidean norm),
rBd is the d-dimensional ball of radius r < 1 centered at the
origin.

Let Mn = {X1, . . . , Xn} be the set of points chosen
randomly, independently, according to the uniform distribution
on the spherical layer Bd \ rBd. Denote by P (d, r, n) the
probability that Mn is linearly separable, and by PF (d, r, n)
the probability that Mn is Fisher separable.

Denote by P1(d, r, n) the probability that a random point
chosen according to the uniform distribution on Bd \ rBd is
separable from Mn, and by PF1 (d, r, n) the probability that a
random point is Fisher separable from Mn.

III. PREVIOUS WORKS

In [1] it was shown (among other results) that for all r, ϑ,
n, d, where 0 < r < 1, 0 < ϑ < 1, d ∈ N, if

n <

(
r√

1− r2

)d(√
1 +

2ϑ(1− r2)d/2
r2d

− 1

)
, (1)

then Mn is Fisher separable with a probability greater than
1− ϑ, i.e. PF (d, r, n) > 1− ϑ.

The following statements are proved in [7].
• For all r, where 0 < r < 1, and for any d ∈ N

PF1 (d, r, n) > (1− rd)
(
1− (1− r2)d/2

2

)n
. (2)

• For all r, ϑ, where 0 < r < 1, 0 < ϑ < 1, and for
sufficiently large d, if

n <
ϑ

(1− r2)d/2
(3)

then PF1 (d, r, n) > 1− ϑ.
• For all r, where 0 < r < 1, and for any d ∈ N

PF (d, r, n) >

[
(1− rd)

(
1− (n− 1)

(1− r2)d/2

2

)]n
.

(4)
• For all r, ϑ, where 0 < r < 1, 0 < ϑ < 1 and for

sufficiently large d, if

n <

√
ϑ

(1− r2)d/4
(5)

then PF (d, r, n) > 1− ϑ.

The authors of [1], [7] formulate their results for linearly
separable sets of points, but in fact in the proofs they used
that the sets are only Fisher separable.

Note that all estimates (1)–(5) require 0 < r < 1 with strong
inequality. This means that they are inapplicable for (maybe
the most interesting) case r = 0.

The both estimates (1), (5) are exponentially dependent on
d for fixed r, ϑ and the estimate (1) is weaker than (5) (see
Section V).

In [8] it was proved that if 0 ≤ r < 1, 0 < ϑ < 1,

n <
√
ϑ2d(1− rd),

then P (d, r, n) > 1 − ϑ. Here we improve this bound (see
Corollary 2) and also give the estimates for P1(d, r, n) and
P (d, r, n) and compare them with known estimates (2), (4)
for PF1 (d, r, n) and PF (d, r, n).

IV. NEW RESULTS

The following theorem gives a probability of the linear
separability of a random point from a random n-element set
Mn = {X1, . . . , Xn} in Bd\rBd. The proof uses an approach
borrowed from [10], [11].

Theorem 1. Let 0 ≤ r < 1, d ∈ N. Then

P1(d, r, n) > 1− n

2d
. (6)

Proof. A random point Y is linearly separable from Mn =
{X1, . . . , Xn} if and only if Y /∈ conv(Mn). Denote this
event by C. Thus P1(d, r, n) = P(C). Let us find the upper
bound for the probability of the event C. This event means that
the point Y belongs to the convex hull of Mn. Since the points
in Mn have the uniform distribution, then the probability of
C is

P (C) =
Vol
(
conv(Mn) \

(
conv(Mn) ∩ rBd

))
Vol(Bd)−Vol(rBd)

.

Let us estimate the numerator of this fraction. We denote
by Si the ball with center at the origin and with the diameter
OXi. We denote by Ti the ball with center at the origin and
with the diameter r inside the ball Si. Then

conv(Mn) \ (conv(Mn) ∩ rBd) ⊆
n⋃
i=1

(Si \ Ti)

and

Vol
(
conv(Mn) \

(
conv(Mn) ∩ rBd

))
≤

n∑
i=1

Vol(Si \ Ti) =

=

n∑
i=1

(Vol(Si)−Vol(Ti)) =

n∑
i=1

(
Vol(Si)− γd

(r
2

)d)
≤

≤
n∑
i=1

(
γd

(
1

2

)d
− γd

(r
2

)d)
=
nγd(1− rd)

2d
,

where γd is the volume of a ball of radius 1.



Fig. 1. The probability (frequency) that a random point is linearly (or Fisher) separable from a set of n = 10000 random points in the layer Bd \ rBd.
The blue solid line corresponds to the theoretical bound (6) for the linear separability. The red dash-dotted line represents the theoretical bound (2) for the
Fisher separability. The crosses (circles) correspond to the empirical frequencies for linear (and, respectively, Fisher) separability obtained in 60 trials for each
dimension d.

Hence

P(C) ≤
nγd(1−rd)

2d

γd(1− rd)
=

n

2d

and
P(C) = 1− P(C) ≥ 1− n

2d
.

Note that the bound (6) obtained in Theorem 1 doesn’t
depend on r. Nevertheless the bound is quite accurate (in the
sense that 1 shows behaviour close to empirical values.) as
is illustrated with Figure 1. The results of the experiment
show that the probabilities P1(d, r, n) and PF1 (d, r, n) are
quite close and the theoretical bound (6) compared with (2)
approximates well the both probabilities.

It is clear that the probabilities must increase monotonously
when d increases, but in the real experiment the frequency
can not coincide precisely with the probability and it can have
non-monotonic behaviour. In our experiment (with 60 trials
for each d) it is non-monotonous.

The following corollary gives an improved estimate for the
number of points n guaranteeing the linear separability of a
random point from a random n-element set Mn in Bd \ rBd
with probability at least 1− ϑ.

Corollary 1. Let 0 ≤ r < 1, 0 < ϑ < 1,

n < ϑ2d. (7)

Then P1(d, r, n) > 1− ϑ.

Proof. If n satisfies the condition n < ϑ2d, then the inequality
P1(d, r, n) > 1− ϑ holds by the previous theorem.

The following theorem gives the probability of the linear
separability of a random n-element set Mn in Bd \ rBd.

Theorem 2. Let 0 ≤ r < 1, d ∈ N. Then

P (d, r, n) > 1− n(n− 1)

2d
. (8)

Proof. Denote by An the event that Mn is linearly separable
and denote by Ci the event that Xi /∈ conv(Mn \ {Xi}) (i =
1, . . . , n). Thus P (d, r, n) = P(An). Clearly An = C1 ∩ . . .∩
Cn and P(An) = P(C1 ∩ . . . ∩ Cn) = 1 − P(C1 ∪ . . . ∪
Cn) ≥ 1 −

n∑
i=1

P(Ci). Let us find the upper bound for the

probability of the event Ci. This event means that the point
Xi belongs to the convex hull of the remaining points, i.e.
Xi ∈ conv(Mn \{Xi}). In the proof of the previous theorem,
it was shown that

P(Ci) ≤
n− 1

2d
(i = 1, . . . , n).

Hence

P(An) ≥ 1−
n∑
i=1

P(Ci) ≥ 1− n(n− 1)

2d
.

Note that the bound (8) obtained in Theorem 2 doesn’t
depend on r, although P (d, r, n) seems to increase monotoni-
cally with increasing r (for a big enough n). Nevertheless the
bound is quite accurate as is illustrated with Figures 2, 3. The
results of the experiment show that the probabilities P1(d, r, n)
and PF1 (d, r, n) are quite close and the theoretical bound (8)
compared with (4) approximates well the both probabilities.



Fig. 2. The probability (frequency) that the set of n = 1000 random points in the layer Bd \ rBd is linearly or Fisher separable. The blue solid line
corresponds to the theoretical bound (8) for the linear separability obtained in Theorem 2. The dash-dotted lines represent the theoretical bound (4) for the
Fisher separability. The crosses (circles) correspond to the empirical frequencies for linear (and, respectively, Fisher) separability obtained in 60 trials for each
dimension d.

Fig. 3. The probability (frequency) that the set of n = 10000 random points in the layer Bd \ rBd is linearly or Fisher separable. The notations are the
same as on Figure 2

Another important conclusion from the experiment is as
follows. Despite the fact that both probabilities PF (d, r, n)
P (d, r, n) are close to 1 for sufficiently big d, the “threshold
values” for such a sufficiently big d differ greatly. In other
words, the blessing of dimensionality when using linear dis-
criminants comes noticeably earlier than if we only use Fisher
discriminants. This is achieved at the cost of constructing the
usual linear discriminant in comparison with the Fisher one.

The following corollary gives an improved estimate for the
number of points n guaranteeing the linear separability of a
random n-element set Mn in Bd\rBd with probability at least
1− ϑ. This result strengthens the result obtained in [8].

Corollary 2. Let 0 ≤ r < 1, 0 < ϑ < 1,

n <
√
ϑ2d. (9)

Then P (d, r, n) > 1− ϑ.



Proof. If n satisfies the condition n <
√
ϑ2d, then by the

previous theorem

P (d, r, n) > 1− n(n− 1)

2d
> 1− n2

2d
> 1− ϑ.

V. COMPARISON OF THE RESULTS

The following statement establishes the asymptotics of the
bound (1).

Statement 1. Let g =
(

r√
1−r2

)d(√
1 + 2ϑ(1−r2)d/2

r2d
− 1

)
,

0 < r < 1, 0 < ϑ < 1, d ∈ N. If r and ϑ are fixed then the
following asymptotic estimates hold:

1. g ∼ ϑ
rd
, if
√√

5−1
2 < r < 1.

2. g = 2ϑ
rd(
√
1+2ϑ+1)

=
√
1+2ϑ−1
rd

= (
√
1 + 2ϑ −

1)(
√
5+1
2 )d/2, if r =

√√
5−1
2 .

3. g ∼
√
2ϑ

(1−r2)d/4 , if 0 < r <

√√
5−1
2 .

Proof. We have

g =

(
r√

1−r2

)d
2ϑ(1−r2)d/2

r2d√
1 + 2ϑ(1−r2)d/2

r2d
+ 1

=
2ϑ

rd

(√
1 + 2ϑ

(√
1−r2
r2

)d
+ 1

) .
If 0 <

√
1−r2
r2 < 1 then g ∼ ϑ

rd
.

If
√
1−r2
r2 = 1 then g = 2ϑ

rd(
√
1+2ϑ+1)

=
√
1+2ϑ−1
rd

.

If
√
1−r2
r2 > 1 then g ∼ 2ϑ

rd

√
2ϑ

(√
1−r2

r2

)d
=

√
2ϑ

(1−r2)d/4 .

The equality
√
1−r2
r2 = 1 holds if r4 + r2 − 1 = 0, that is

r2 =
√
5−1
2 , r =

√√
5−1
2 . The inequality 0 <

√
1−r2
r2 < 1

holds if r4 + r2 − 1 > 0, that is for
√√

5−1
2 < r < 1. The

inequality
√
1−r2
r2 > 1 holds if r4 + r2 − 1 < 0, that is for

0 < r <

√√
5−1
2 .

Let us compare the bound (5) with the bound (1) proposed
in [1], [7].

Corollary 3. Let f =
√
ϑ

(1−r2)d/4 , g =(
r√

1−r2

)d(√
1 + 2ϑ(1−r2)d/2

r2d
− 1

)
, 0 < r < 1, 0 < ϑ < 1,

d ∈ N. If r and ϑ are fixed then the following asymptotic
estimates of the quotient f

g hold:

1. f
g ∼

1√
ϑ

(
r2√
1−r2

)d/2
→∞, if

√√
5−1
2 < r < 1.

2. f
g =

√
1+2ϑ+1

2
√
ϑ

> 1, if r =
√√

5−1
2 .

3. f
g ∼

1√
2
, if 0 < r <

√√
5−1
2 .

Proof. If
√√

5−1
2 < r < 1, then f

g ∼
√
ϑ

(1−r2)d/4
rd

ϑ =

1√
ϑ

(
r2√
1−r2

)d/2
→ ∞ for d → ∞, since r2√

1−r2 > 1 for

r >

√√
5−1
2 .

If r =

√√
5−1
2 , then f

g =
√
ϑ

(1−r2)d/4
rd(
√
1+2ϑ+1)
2ϑ =

√
1+2ϑ+1

2
√
ϑ

(
r2√
1−r2

)d/2
=
√
1+2ϑ+1

2
√
ϑ

> 1.

If 0 < r <

√√
5−1
2 , then f

g ∼
√
ϑ

(1−r2)d/4
(1−r2)d/4√

2ϑ
= 1√

2
.

The following statement compares estimates of the number
of points that guarantee linear separability of a random points
in the spherical layer obtained in [7] and in Corollary 2.

Statement 2. Let f =
√
ϑ2d, g =

√
ϑ

(1−r2)d/4 , 0 < r < 1,

0 < ϑ < 1, d ∈ N. If r and ϑ are fixed then

f

g
∼ (2

√
1− r2)d/2.

If 0 < r <
√
3
2 then f

g →∞.
If r =

√
3
2 then f

g → 1.

If
√
3
2 < r < 1 then f

g → 0.

Proof. f
g =

√
ϑ2d(1−r2)d/4√

ϑ
= (2

√
1− r2)d/2 for 0 ≤ r < 1.

For 0 < r <
√
3
2 inequality 2

√
1− r2 > 1 holds so f

g → ∞.
For

√
3
2 < r < 1 inequality 2

√
1− r2 < 1 holds so f

g → 0.

For r =
√
3
2 equality 2

√
1− r2 = 1 holds so f

g → 1.

Let us compare the rate of convergence to 1 of estimates
(4) and (8).

Statement 3. Let g = 1 −[
(1− rd)

(
1− (n− 1) (1−r

2)d/2

2

)]n
, 0 < r < 1, d, n ∈ N.

If r and n are fixed then the following asymptotic estimates
hold:

1. g ∼ nrd, if
√
2
2 < r < 1.

2. g ∼ n(n−1)
2 (1− r2)d/2, if 0 < r <

√
2
2 .

3. g ∼ n(n+1)
2

1
2d/2

, if r =
√
2
2 .

Proof. Let y =
√
1− r2, a = n−1

2 . Then g = 1 − (1 −
rd)n(1−ayd)n = 1−(1−nrd+ n(n−1)

2 x2d− . . .)(1−nayd+
n(n−1)

2 a2y2d − . . .) = 1− (1− nrd − nayd + n(n−1)
2 a2y2d +

n2ardyd + n(n−1)
2 r2d + . . .) = nrd + nayd − n(n−1)

2 a2y2d −
n2ardyd − n(n−1)

2 r2d + . . . .

If
√
2
2 < r < 1, then r > y so g =

nrd
(
1 + a(yr )

d − a3yd(yr )
d − nayd − ard + . . .

)
∼ nrd.

If 0 < r <
√
2
2 , then r < y so g =

nyd
(
( ry )

d + a− a3yd − nard − a( ry )
drd + . . .

)
∼ nayd.

If r =
√
2
2 , then r = y so g = nrd(1 + a) − na3r2d −

n2ar2d−nar2d+. . . ∼ nrd(1+a) = n(n+1)
2 rd = n(n+1)

2
1

2d/2
.

The following statement compares estimates (4) and (8).

Statement 4. Let f = n(n−1)
2d

, g = 1 −[
(1− rd)

(
1− (n− 1) (1−r

2)d/2

2

)]n
, 0 < r < 1, d, n ∈ N. If

r and n are fixed then



1. g
f ∼

(2r)d

n−1 →∞, if
√
2
2 < r < 1.

2. g
f ∼

(4(1−r2))d/2
2 →∞, if 0 < r <

√
2
2 .

3. g
f ∼

2d/2(n+1)
2(n−1) →∞, if r =

√
2
2 .

Proof. If
√
2
2 < r < 1, then g ∼ nrd so g

f ∼
nrd

n(n−1)

2d

=

(2r)d

n−1 →∞ as 2r >
√
2.

If 0 < r <
√
2
2 , then g ∼ n(n−1)

2 (1 − r2)d/2 so g
f ∼

n(n−1)
2 (1−r2)d/2

n(n−1)

2d

= (4(1−r2))d/2
2 →∞ as 4(1− r2) > 2.

If r =
√
2
2 , then g ∼ n(n+1)

2
1

2d/2
so g

f ∼
n(n+1)

2
1

2d/2

n(n−1)

2d

=

2d/2(n+1)
2(n−1) →∞.

Thus, the estimate (8) tends to 1 faster than the estimate (4)
for all 0 < r < 1.

VI. CONCLUSION

In this paper we refined the bounds for the number of
points and for the probability in stochastic separation the-
orems. We gave new bounds for linear separability, when
the points are drawn randomly, independently and uniformly
from a d-dimensional spherical layer or ball. These results
refine some results obtained in [1], [7], [8] and allow us
to better understand the applicability limits of the stochastic
separation theorems for high-dimensional data mining and
machine learning problems.

One of the main results of the experiment comparing
linear and Fisher separabilities is as follows. The blessing
of dimensionality when using linear discriminants can come
noticeably earlier (for smaller values of d) than if we only use

Fisher discriminants. This is achieved at the cost of construct-
ing the usual linear discriminant in comparison with the Fisher
one.
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