
Generating Compact Tree Ensembles via Annealing
Gitesh Dawer
CoreML Group

Apple Inc.
Cupertino, California, USA

dawergitesh@gmail.com

Yangzi Guo
Department of Mathematics

Florida State University
Tallahassee, Florida, USA

yguo@math.fsu.edu

Adrian Barbu
Department of Statistics
Florida State University

Tallahassee, Florida, USA
abarbu@stat.fsu.edu

Abstract—Tree ensembles are flexible predictive models that
can capture relevant variables and to some extent their interac-
tions in a compact and interpretable manner. Most algorithms
for obtaining tree ensembles are based on versions of boosting or
Random Forest. Previous work showed that boosting algorithms
exhibit a cyclic behavior of selecting the same tree again and
again due to the way the loss is optimized. At the same time,
Random Forest is not based on loss optimization and obtains
a more complex and less interpretable model. In this paper we
present a novel method for obtaining compact tree ensembles by
growing a large pool of trees in parallel with many independent
boosting threads and then selecting a small subset and updating
their leaf weights by loss optimization. We allow for the trees
in the initial pool to have different depths which further helps
with generalization. Experiments on real datasets show that the
obtained model has usually a smaller loss than boosting, which
is also reflected in a lower misclassification error on the test set.

I. INTRODUCTION

In this work we are interested in finding parsimonious tree
ensembles that minimize a loss function constrained to contain
a small number of trees (tree sparsity) of any depth in a
prescribed range. As the space of decision trees is combi-
natorially complex, we are limited to suboptimal methods for
loss minimization with tree sparsity constraints.

One such method is provided by boosting, which adds
one tree at each iteration to minimize a loss function in a
greedy fashion. Different versions of boosting are aimed at
minimizing different loss functions, but Gradient Boost [1]
is a generic boosting algorithm that can be used for any
differentiable loss function.

However, boosting algorithms have shown some difficulties
in loss minimization when many boosting iterations are used.
In such cases, a cyclic behavior has been observed [2] where
the same or a very similar weak learner is selected again and
again at later boosting iterations.

One possible explanation for this behavior when the learners
are decision trees comes from the correlation between the
newly introduced tree and the already existing ones, which
is reflected in the need to change their leaf weights for loss
minimization. Since the leaf weights for the already existing
trees are not updated, the only way to change them is to add
another similar tree that makes up for the weight changes.

In this work, we propose to find the trees and update
their leaf weights simultaneously. Instead of using a forward-
selection type of approach that is taken by boosting, where

the “best” tree is added conditional on the already selected
trees, we will use a stepwise approach that obtains a large
pool of trees by boosting, then simultaneously selects a
small number of them and updates their weights using the
recently introduced Feature Selection with Annealing (FSA)
[3] algorithm.

The contributions of the paper are the following.

1) It presents a novel way to obtain compact tree ensem-
bles by generating a larger pool by GradientBoost and
selecting a small number of trees by FSA, which also
updates their leaf weights by loss minimization. A L2

regularization term is added to the loss function for
improved generalization. This is in contrast to boosting
where L2 regularization is hard to use and is often
expressed in terms of a learning rate.

2) It introduces a method to obtain more diverse trees
in the initial pool by initializing many GradientBoost
threads with random vectors instead of a constant bias.
Even though these trees cannot be used as they are
for prediction, they can be used after their leaf weights
have been updated by loss minimization. In addition, we
prescribe different tree depths for the different threads,
since our proposed formulation can naturally handle
trees of different depths.

3) It also presents a modification of FSA that obtains a
large number of models with different sparsity levels in
the same run, with minimal extra computation.

A. Related Work

Trees based ensembles are regarded as one of the best
off-the-shelf procedures for both classification and regression
tasks. Applied naively, such ensembles often require a large
of number of trees for modern big data sets. In addition, the
complexity of each tree further increases with the size of the
dataset. This jeopardizes their usability in large scale practical
problems where memory is limited.

There has been a large amount of work on different versions
of boosting, which can be used for generating tree ensem-
bles. Different versions of boosting minimize different loss
functions, starting from Adaboost [4] for the exponential loss,
Logitboost [5] for the logistic loss, and Gradientboost [1] for
any differentiable loss. Other examples include Floatboost [6]
and Robust Logitboost [7].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. Diagram of the Relevant Ensemble of Trees algorithm.

To facilitate enhanced interpretability and overcome mem-
ory based limitations, the problem of obtaining compact tree
ensembles has received much attention in the recent years.
An improved interpretability was aimed in [8] by selecting
optimal rule subsets from tree-ensembles. The classical cost-
complexity pruning of individual trees was extended in [9]
to combined pruning of ensembles. The tree-ensemble based
model was reformulated in [10] as a linear model in terms of
node indicator functions and a L1-norm regularization based
approach (LASSO) was used to select a minimal subset of
these indicator functions. All of these works focused on the
simultaneous pruning of individual trees and large ensembles.

Another line of work focuses on lossless compression of tree
ensembles. In [11] a probabilistic model was used for the tree
ensemble and was combined with a clustering algorithm to find
a minimal set of models that provides a perfect reconstruction
of the original ensemble. Methods in [9], [10], [11] were
developed for ensembles based on bagging or Random Forests
only and exploit the fact that each of the individual trees is
independent and identically distributed random entity for a
given training data set. However, our method uses several
threads of randomly initialized boosted ensembles. And it
is well known that the trees generated with boosting are
more diverse and much less complex compared to trees from
bagging or Random Forests based models.

Boosting was also used in [12] to first train an entire tree
ensemble. For prediction on a new example, the original tree
ensemble was subsampled using a distribution induced by the
tree weights. Since sampling of hypotheses needs to be done
for every test example, besides being slow, one needs to store
the entire original ensemble. The methods in [11] and [12]
aim only to provide an accurate description of the original
trees using fewer models while our goal is to even improve
upon the prediction accuracy of the original ensemble.

Recently, there has been some work on updating the leaf
weights of already trained trees. The leaf weights of an already
trained Random Forest [13] have been updated using an
Artificial Prediction Market in [14], which performs maximum
likelihood learning in some cases [14]. However, the Artificial
Prediction Market did not obtain a compact tree ensemble by
selecting a smaller set of trees, and was limited in the types
of loss functions that can be optimized.

In [15] the leaf weights of an already trained Random
Forest were updated to minimize a loss similar to equation

(1). The trees leaves are also pruned by merging adjacent
leaves according to a L2 significance criterion. This achieved
a similar goal with our paper in obtaining diverse trees of
different depths, however no effort was done to obtain a
compact set of trees that is smaller than the original set.

II. RELEVANT ENSEMBLE OF TREES (RET)
We will work on regression and binary classification prob-

lems, where we are given training examples {(xi, yi) ∈
Rp×R, i = 1, ..., N} and we need to find a prediction function
fβ : Rp → R parameterized by a parameter vector β, such
that fβ(xi) agrees with yi as much as possible. For example,
for linear models, the prediction function is fβ(x) = βTx and
β ∈ Rp.

The agreement between fβ(x) and y on the training exam-
ples is measured by a loss function.

L(β) =

N∑
i=1

`(fβ(xi), yi) + s(β) (1)

that should be minimized, where s(β) is a penalty such as the
shrinkage s(β) = ρ‖β‖2 which helps with generalization.

The loss `(u, y) depends on the problem. For regression,
it could be the square loss `(u, y) = (u − y)2. For binary
classification (when y ∈ {−1, 1}), it could be the logistic
loss `(u, y) = log(1 + exp(−uy)), the hinge loss `(u, y) =
max(1− uy, 0), or other loss functions.

A. Representation as Tree Ensemble

One needs a formal language to represent the prediction
function fβ(x) in a computer. The set of all functions that
could be obtained by the chosen prediction function represen-
tation is called the hypothesis space. Our hypothesis space is
the space of all tree ensembles, described below.

Decision tree representation. The basic building block of
our representation is a decision tree. A decision tree is a
function T : Rp → R associated with a tree representation
that partitions the input domain Rp into a number of disjoint
regions. Each region corresponds to a tree leaf and is charac-
terized by the unique sequence of decisions that were made
at the tree nodes to reach that leaf starting from the root.
We will assume that each decision is based on one variable
xj , j ∈ {1, ..., p} of the input vector x ∈ Rp and a threshold
τj , but this assumption is only related to the algorithm we
use for building the trees and can be easily relaxed to other
algorithms.

Following [15], we decompose the decision tree into a leaf
weight vector β = (β1, ..., βl)

T , βi ∈ R and an index function
iT (x) : Rp → {0, 1}l, which is a column vector of all zeros
except a single 1 at the index of the leaf reached by the
observation x ∈ Rp. Here l = 2d is the maximum number
of leaf nodes of a tree of maximum depth d. Thus, we can
write the decision tree as a dot product T (x) = βT iT (x).
We will overload the notation by calling a decision tree as
both the function T (x) : Rp → R and its decomposition
T = (β, iT (x)).

Tree ensembles. We will work with prediction functions
that are the sum of a number of decision trees k, which are
represented by their leaf weight vectors βj and index functions
ij(x). Then, for a given feature vector x ∈ Rp, the prediction
function has the form

f(x) =

k∑
j=1

βT
j ij(x).

Such models are usually called tree ensembles.

B. Training
We are interested in parsimonious tree ensembles that

minimize the loss function (1) constrained to contain at most
k trees (tree sparsity) of any depth in a prescribed set S. The
parameters k and S are problem specific and can be obtained
by cross-validation or using an information criterion such as
AIC/BIC.

To select better trees and concurrently update their leaf
weights to work best together, we will generate a large number
of trees M by boosting and then use the Feature Selection
with Annealing (FSA) algorithm [3] to minimize the loss (1)
constrained to be based on k trees, as illustrated in Figure 1.
This way in the end, we will have k trees selected and their
leaf weights optimized to minimize the loss function (1).

The steps of generating trees by boosting and then selecting
them by FSA will be described in the next three subsections.

C. Generating a pool of trees by GradientBoost
The initial pool of M trees will be constructed by Gradi-

entBoost. In our applications, M will be usually on the order
of M = 3000. We will explore three approaches to generating
these M trees:
• Single Chain Single Depth (SCSD) generation where

the M trees of the same depth are obtained in a single
GradientBoost run with M boosting iterations.

• Multi Chain Single Depth (MCSD) generation where
the M trees of the same depth are obtained (in parallel)
by m separate GradientBoost runs with different random
initializations, each run with M/m boosting iterations.

• Multi Chain Multi Depth (MCMD) generation where
the M trees of |S| different possible maximum depths
are obtained (in parallel) by m separate GradientBoost
runs with different initializations, each run with M/m
boosting iterations.

Conventionally, GradientBoost is initialized with a constant
prediction function, obtained by minimizing the loss function
in terms of this constant value, which is referred to as the bias.

Random initialization. Since we are primarily interested
in the structure of decision trees, in the multi chain approach
we initialize the GradientBoost procedure with a random
prediction vector. This allows us to invoke several versions of
GradientBoost with different random initializations, resulting
into a richer and more diverse collection of trees related to the
underlying problem.

Observe that the trees obtained from random initializations
cannot be directly used for prediction without modifying their
leaf weights, since they were started from random values
(predictions) on the training examples, which make no sense
on the test set. Through this random initialization we are
only interested in obtaining the structure or mathematically
speaking, index function i(x) for each tree since our algorithm
will update the leaf weights by loss minimization.

What is a random prediction vector? It refers to a
vector containing the initial score or bias for every training
instance. This base margin/score corresponding to every train-
ing instance is independently and identically sampled from
N(0,1). This randomization is performed only once and from
there on, conventional GradientBoost is employed to obtain an
ensemble of trees. Since bias is different for different training
examples, one does not know what value of base score to
use on a new, unseen test instance. As such, there is a need
to establish a constant global bias for every example, which
further necessitates the modification of leaf weights for all the
trees in an ensemble. Our proposed algorithm “FSA on leaves”
remedies all these issues while reducing tree redundancy and
greediness to some extent. We consider it to be a novel
extension to FSA algorithm, which was primarily developed
for linear models.

Why use a randomized base margin? Let us talk about
the first boosting iteration only. For a given loss function, the
base margin of a training instance completely determines the
gradient and Hessian entries corresponding to that instance.
For example, using binomial deviance loss, positive instances
(true label of 1) with base margins ln(1/9) (< 0) and ln(9)
(> 0) have negative gradients as 0.9 and 0.1 respectively.
For the first boosting iteration, in the case of a constant base
margin for all the examples, all the positive instances have
one and the same value for the gradient and such is the case
for all the negative instances. However, for a randomized
base margin, all the instances, positive or negative, have
different gradient and Hessian values. Tree construction at
every iteration depends only on the gradient and Hessian
statistics. Instances with larger negative gradients have higher
contribution in selecting best splitting variable and the best
split point for a node. Roughly speaking, thus randomized base
margin establishes a ranking among the examples in the order
of their relevance towards tree building, unlike in constant
base margin where all the positive instances are treated alike
and so are all the negative instances. Different randomizations
correspond to different rankings of the training examples,
which results in a different tree at the first iteration. Since
successive trees build on the previous trees, we expect the
effects of randomization to percolate further deep down the

iteration process. The motivation behind all this is to diversify
the pool of trees as much as possible and have FSA on leaves
pick up the best ones for the task. Observe that this is different
from the compressed Random Forest [10] where all the trees
are independently generated. In contrast, our trees in each
chain are dependent on each other because they are obtained
by boosting.

Besides being faster, we will see empirically in Section III-C
that the multi chain tree generation results in lower loss values
and a more robust algorithm compared to the single chain tree
generation.

Multiple depths. In the case of Multi Chain Multi Depth
(MCMD), we generate trees of different maximum depths
given by the set S, obtaining a tree ensemble where the
trees have a large range of depths. This is important because
different features have different levels of interactions, which
can be best captured with the correct tree depth. A smaller
tree depth might not be sufficient for fitting the interaction
properly, while a larger depth might be overfitting. Empirical
evidences in Section III-C validates the superiority of MCMD
over the other tree generation approaches.

D. Overview of the FSA algorithm

We will use the Feature Selection with Annealing (FSA)
algorithm [3] to select the most relevant trees and update their
weights.

FSA is an algorithm for simultaneous feature selection and
model learning on the selected features, aimed at minimizing
a differentiable loss function L(β) with constraints on the
number k of non-zero coefficients:

β = argmin
|β|0≤k

L(β) (2)

The FSA algorithm proceeds in a backward elimination
manner, starting with β = 0 and alternating one stochastic
gradient update step with a step that removes some variables
according to a deterministic schedule that specifies the number
Me of variables that should be left after iteration e. The FSA
method is summarized in Algorithm 1.

Algorithm 1 Feature Selection with Annealing (FSA)
Input: Normalized training set {(xi, yi) ∈ Rp × R}Ni=1

Output: Trained model fβ(x) = βTx with parameter
vector β.

1: Initialize β = 0.
2: for e = 1 to N iter do
3: Update β ← β − η ∂L(β)

∂β
4: Keep only the Me variables corresponding to the high-

est |βj |.
5: end for

The schedule Me, e = 1, ..., N iter is quickly decreasing as

Me = k + (p− k)max(0,
N iter − 2e

2eµ+N iter
),

specified by a parameter µ, where p is the dimension of the
feature vectors xi ∈ Rp.

Because most of the variables are removed in the first few
iterations, the algorithm becomes increasingly fast after each
iteration and can be hundreds of times faster than boosting
when selecting thousands of variables. It is also thousands of
times faster than the L1, SCAD and MCP penalized methods
[16], [17], [18].

Besides being fast, another exciting fact about FSA is that it
enjoys theoretical guarantees of consistency and convergence
[3]. If the learning rate is sufficiently small and the variable
removal schedule is sufficiently slow, the FSA algorithm will
find all the k∗ true variables (k∗ ≤ k) with high probability.

E. Tree selection and leaf weight update by FSA

In this section, we describe how to select a small number
of trees k from the pool of M trees generated as described in
Section II-C. Following the notation of Section II-A, let these
M trees be (βj , ij), j = 1,M , where βj is the leaf weight
vector and ij(x) is the index function of tree j.

We present two ways to select k trees from the M generated
trees:
In FSA on trees, the M tree responses Tj(x) = βT

j ij(x) are
used by FSA as an M -dimensional feature vector to select k
features, thus the k corresponding trees. If the sparse vector
obtained by FSA training is w = (w1, ..., wM) ∈ RM , then
the obtained prediction function is

fw(x) =

M∑
j=1

wjβ
T
j ij(x)

which has only at most k non-zero coefficients wj , thus
depends on at most k trees.

Observe that FSA on trees can only be used for single chain
tree generation since it doesn’t update the leaf weights and the
multi chain tree generation obtains randomly initialized trees
that are not useful for prediction unless their leaf weights are
updated.
In FSA on leaves, we modify the FSA algorithm to update
the tree leaf weights and select trees using a group criterion.
For that, all the tree leaf weights are collected in a l × M
matrix B = (β1,β2, ...,βM) of parameters for the prediction
function

fB(x) =

M∑
j=1

βT
j ij(x),

where l is the maximum number of leaf nodes of the trees
from our pool.

A variant of the FSA algorithm is run to minimize the loss
function L(B) from (1) with the matrix B taking the place of
β. For that, the criterion for selecting the variables in step 4
of FSA is changed to a group criterion such as ‖βj‖2 which
ensures that only at most k vectors βj will be non-zero in the
end. To correct for the bias towards selecting trees of larger
depths, we further modify the group criterion for tree j as
‖βj‖2
nj

, where nj is the number of leaves of tree j.

F. FSA with Many Sparsity Levels

For computational efficiency, we modify the FSA algorithm
to obtain parameters for multiple sparsity levels by memo-
rizing the obtained parameters at each iteration after a given
starting iteration N0 and optimizing them in separate routine.
The details are given in Algorithm 2 below.

Algorithm 2 FSA with multiple sparsity levels
Input: Normalized training examples {(xi, yi)}Ni=1, learn-
ing rate η, sparsity levels {k1, ..., kq}, k1 > k2 > ... > kq ,
number of iterations N iter, annealing schedule Me, e =
1, ..., N iter.
Output: Trained classifier parameter vectors β1, ...,βq with
‖βi‖0 = ki, i = 1, ..., q.

1: Compute E = {e1, ...eq} with ei = max{e,Me ≥ ki}.
2: Initialize β = 0.
3: for e = 1 to N iter do
4: Update β ← β − η ∂L(β)

∂β

5: Keep only the Me variables with highest |βj | and
renumber them 1, ...,Me.

6: if e ∈ E then
7: for i ∈ {1, ..., q} such that ei = e do
8: Set βi = β
9: Keep only the ki variables j with highest |βij | and

renumber them 1, ..., ki.
10: Update βi ← βi − η ∂L(βi)

∂β for N iter times
11: end for
12: end if
13: end for

The annealing parameter µ in the interval [10, 20] works
well in practice and FSA parameters are chosen in accordance
with it.

In this paper we will use a modified version of this algorithm
that has a matrix of leaf weights for β and a group criterion
for selection, as described in Section II-E.

III. EXPERIMENTS

We will perform three types of experiments. Our first
experiment would ascertain the effectiveness of FSA in se-
lecting relevant trees from a larger pool. The second set
of experiments will compare the loss minimization obtained
by GradientBoost with the ones obtained using RET with
the three tree generation approaches, for the same model
complexity. A smaller loss means a smaller training error
which for the same model complexity would in general reflect
in a lower test error unless the model overfits. The third set
of experiments will compare the test error of the proposed
method with GradientBoost (GB), XGBoost (XGB) and some
linear methods such as L1 penalized logistic regression and
Elastic Net on six real datasets.

A. Simulation

In this section, we use a classical example, the XOR data,
to support our claim on the effectiveness of RET in obtaining
compact tree ensembles. Since XOR, a non-linearly separable

dataset, can perfectly be represented using a single decision
tree of depth 2 as illustrated in Figure 2, right, we restrict
the maximum tree depth to 2 for this experiment. Both the
training and the test set consist of 100 randomly sampled data
points.

Fig. 2. An instance of the XOR dataset (left) and the decision tree that was
used to generate the XOR data (right).

The setup of the experiment is as follows:
• RET : We use Single Chain Single Depth (SCSD) pool

generation approach as described in II-C to obtain an
initial pool of M = 400 trees of depth 2. We then invoke
FSA on leaves as detailed in II-E to select just one tree.

• GradientBoost : We run GradientBoost procedure for the
least number of iterations required to achieve about the
same Test AUC as one given by RET.

TABLE I
SIMULATED EXPERIMENT ON XOR DATASET, AVERAGED OVER 100 RUNS.

XOR dataset, N = 100, p = 2, d = 2

Method # trees k Train AUC Test AUC

GradientBoost 26 0.991 0.967
RET 1 0.985 0.968

In Table I are shown the area under an ROC curve for both
training and the test sets, averaged over 100 independent runs.
It takes GradientBoost, on an average, about 26 trees to match
the generalization performance of a single tree given by RET.
From Table I, it is also apparent that the tree picked up by
RET closely resembles the actual tree representation that was
used for generating the XOR data. This provides an empirical
justification in support of the proposed Relevant Ensemble
of Trees method using FSA for obtaining parsimonious tree
ensembles.

B. Datasets

The experiments will be performed on six public datasets
from the UCI machine learning repository [20], of which 2
have been part of the 2003 Feature Selection Challenge [19].
Since the FS challenge submission website is down, for the FS
challenge datasets we have used the validation sets as test sets.
The datasets are summarized in Table II. From the datasets,
we have removed any observations that had missing data.

TABLE II
DATASET SUMMARY AND RET/FSA PARAMETER SETTINGS USED IN THE EXPERIMENTS.

Dataset obs train/test features classes µ η N iter kmax S(depth set)

gisette [19] 6,000/1,000 5,000 2 10 10−3 300 600 {2, .., 7}
miniboone 130,065 50 2 10 10−3 300 600 {2, .., 7}
madelon [19] 2,000/600 500 2 10 10−3 150 100 {9, .., 14}
wilt 4,889 6 2 10 10−3 150 100 {2, .., 7}
abalone 4,177 8 regression 10 10−5 150 100 {2, .., 7}
online news 39,797 61 regression 10 10−5 150 100 {2, .., 7}

Fig. 3. Comparison of loss minimization for selecting different numbers of trees from pools generated using three different approaches and GradeintBoost.

C. Loss Minimization Evaluation

In this section, we will compare the loss minimization
capabilities of the RET with GradientBoost in selecting the
same number of trees. We will use pools of trees generated as
follows:

• Single Chain Single Depth (SCSD) pool generation: We
use 3000 boosting iterations to obtain M=3000 trees of
one single depth, which is obtained using the parameter
tuning method described in detail in Section III-D.

• Multi Chain Single Depth (MCSD) pool generation: We
use 100 boosting iterations for each of the 30 chains to
obtain M=3000 trees of the same depth as SCSD.

• Multi Chain Multi Depth (MCMD) pool generation:
There are 30 chains, 5 chains for each depth in the depth
set S, and 100 boosting iterations in each chain, for a
total of M=3000 trees.

Other relevant parameters are given in Table II. For a fair
comparison, the L2 regularization parameter for RET was set

to ρ = 0.
The loss functions on the six datasets for the Gradient Boost

and RET with the three pool generation methods (SCSD,
MCSD, MCMD) are shown in Figure 3. We see that the RET
with the three pool generation methods generally overfit less
than GradientBoost. Indeed, for all the six datasets, given
a fixed number of trees, the RET methods usually have a
lower test loss compared to GradientBoost resulting in a
more compact or relevant ensemble of trees. Among different
pool generation approaches, MCMD dominates on all but one
(madelon) datasets as evidenced by test loss curves in Figure
3, making it a natural choice for the desired task.
Histograms. For Multi Chain Multi Depth (MCMD) tree
generation, the initial pool contains equal number of trees
from each chain and equal number of trees for each depth.
FSA is adept at automatically selecting trees corresponding
to different tree depths using the group criterion specified in
Section II-E. Figure 4 shows the proportion of trees selected
by FSA from every depth type for six real datasets.

Fig. 4. Distribution of the fraction of trees selected by FSA with tree depth.

TABLE III
REAL DATA RESULTS, AVERAGED OVER 20 RUNS. STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES.

Classification datasets, test errors in %.

Dataset FSA L1 EL GB XGB RET

gisette 2.00 (0.14) 3.80 (0.00) 3.77 (0.05) 4.78 (0.56) 3.88 (0.39) 1.95 (0.19)
madelon 50.00 (0.00) 49.58 (0.43) 49.37 (1.70) 23.3 (0.84) 21.9 (1.13) 17.6 (1.42)
miniboone 12.22 (1.23) 9.84 (0.16) 9.83 (0.19) 6.70 (0.13) 6.37 (0.06) 5.64 (0.25)
wilt 37.4 (0.00) 37.4 (0.00) 37.4 (0.00) 26.09 (5.60) 18.79 (1.60) 17.14 (0.95)

Regression datasets, test R2 in %.

abalone 49.79 (2.98) 50.26 (3.10) 50.27 (3.12) 50.14 (5.28) 51.98 (4.83) 57.73(4.49)
online news 11.94 (0.68) 10.61 (3.80) 9.49 (5.17) 15.24 (0.24) 14.43 (0.84) 16.94 (0.80)

We see that most of the tree depths are used in most datasets
and that the distribution of tree depths differs from dataset to
dataset.

D. Test Error Evaluation

In this section, we compare RET with GradientBoost (GB),
XGBoost (XGB), some generalized linear models with the L1

[21], [16], [22] and Elastic Net [23] penalties, as well as linear
FSA to see if we really need tree-based models. For a more
accurate comparison, we will use the logistic loss `(u, y) =
log(1 + exp(−uy)) for linear FSA and RET.

Parameter tuning. The parameters for the methods being
evaluated have been obtained by five-fold cross-validation on
the training set as follows:

1) For each parameter combination, the cross-validated loss
was computed as the average of the validation loss over
the five cross-validation folds of the training set.

2) The parameter combination corresponding to the small-
est cross-validated loss was selected and the final model
was obtained for that parameter combination by training
on the entire training set. This model was then used to
obtain the predictions on the test set.

The parameters involved in parameter tuning are the fol-
lowing:
• The number of selected trees k ∈ [1, kmax] for RET and

for GradientBoost/XGBoost (as k boosting iterations).
We used 50 sparsity levels k on an exponential grid
between 1 and kmax.

• The tree depth d for GradientBoost. It has the range
d ∈ {2, ..., 7} for most datasets and d ∈ {9, ..., 14} for
madelon.

• The shrinkage parameter ρ for FSA, Elastic Net and RET,
ρ ∈ {10−1, 10−2, ..., 10−4, 10−5}

Other parameters for FSA and RET were fixed to values

given in Table II. The test errors for the datasets without a
test set are obtained using a random 80 − 20 train-test split.
All results are shown as averages over 20 independent runs.

In Table III are shown the test errors using the parameter
tuning described above. We see that RET obtains the lowest
test errors on all of the four binary classification tasks and the
highest test R2 on both regression datasets.

TABLE IV
AVERAGE TRAINING TIMES IN MINUTES.

Dataset FSA L1 EL GB XGB RET

gisette 16.7 42 257 112 16.9 535
madelon 6.4 1.7 8.3 3.7 0.6 225
miniboone 4.6 101 439 248 107 857
wilt 0.02 0.29 1.4 0.67 0.69 6.1
abalone 0.07 0.09 0.45 0.13 0.09 7.2
online news 16.2 46 208 23 0.42 85

One downside of RET is that it has higher training times
as shown in Table IV, which can partly be improved upon
exploiting the parallelization of MCMD pool generation pro-
cess. The FSA model building for the different parameter
combinations on the different cross-validation folds can also
be easily parallelized.

IV. CONCLUSION

This paper presents a novel method for obtaining a com-
pact tree ensemble based on loss minimization that involves
generating a large pool of trees followed by selecting a
desired number of trees while updating their leaf weights using
the FSA algorithm. The initial pool of trees is obtained by
Boosting, thus it is more compact and relevant than the trees
obtained by Random Forest, leading to a more parsimonious
tree ensemble. Experiments on six UCI datasets indicate that
the proposed approach usually obtains a smaller test loss for
the same model complexity than GradientBoost and smaller
test errors on large datasets.

One of the novel ideas of this paper is to generate the initial
pool of trees using many parallel GradientBoost (GB) threads
having random initializations and different tree depths. This
approach obtains more diverse trees than a single GB thread
or even compared to many GB threads trained on bootstrap
samples. The leaf weights of these trees cannot be used for
prediction and had to be retrained by loss minimization using
the FSA algorithm. The usage of L2 regularization in RET
makes it more robust to overfitting compared to GradientBoost.

Another contribution is the modification in FSA algorithm
that obtains a whole range of models corresponding to dif-
ferent sparsity levels in just a single run. The obtained sets
of weights have the property that each contains the next one,
thus forming a chain relative to the inclusion relation. This is
an FSA equivalent to using warm restarts in the Elastic Net.

REFERENCES

[1] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[2] C. Rudin, I. Daubechies, and R. E. Schapire, “The dynamics of adaboost:
Cyclic behavior and convergence of margins,” Journal of Machine
Learning Research, vol. 5, no. Dec, pp. 1557–1595, 2004.

[3] A. Barbu, Y. She, L. Ding, and G. Gramajo, “Feature selection with
annealing for computer vision and big data learning,” IEEE transactions
on pattern analysis and machine intelligence, vol. 39, no. 2, pp. 272–
286, 2016.

[4] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of
on-line learning and an application to boosting,” in European conference
on computational learning theory. Springer, 1995, pp. 23–37.

[5] J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the
authors),” The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[6] S. Z. Li and Z. Zhang, “Floatboost learning and statistical face detec-
tion,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 26, no. 9, pp. 1112–1123, 2004.

[7] P. Li, “Robust logitboost and adaptive base class (abc) logitboost,” arXiv
preprint arXiv:1203.3491, 2012.

[8] J. H. Friedman, B. E. Popescu et al., “Predictive learning via rule
ensembles,” The Annals of Applied Statistics, vol. 2, no. 3, pp. 916–
954, 2008.

[9] P. Geurts, “Some enhancements of decision tree bagging,” in European
Conference on Principles of Data Mining and Knowledge Discovery.
Springer, 2000, pp. 136–147.

[10] A. Joly, F. Schnitzler, P. Geurts, and L. Wehenkel, “L1-based com-
pression of random forest models,” in 20th European Symposium on
Artificial Neural Networks, 2012.

[11] A. Painsky and S. Rosset, “Compressing random forests,” in 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE, 2016,
pp. 1131–1136.

[12] L. Reyzin, “Boosting on a budget: Sampling for feature-efficient predic-
tion.” 01 2011, pp. 529–536.

[13] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[14] A. Barbu and N. Lay, “An introduction to artificial prediction markets
for classification,” Journal of Machine Learning Research, vol. 13, no.
Jul, pp. 2177–2204, 2012.

[15] S. Ren, X. Cao, Y. Wei, and J. Sun, “Global refinement of random
forest,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 723–730.

[16] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of
sparse overcomplete representations in the presence of noise,” IEEE
Transactions on information theory, vol. 52, no. 1, pp. 6–18, 2005.

[17] J. Fan and R. Li, “Variable selection via nonconcave penalized like-
lihood and its oracle properties,” Journal of the American statistical
Association, vol. 96, no. 456, pp. 1348–1360, 2001.

[18] C.-H. Zhang et al., “Nearly unbiased variable selection under minimax
concave penalty,” The Annals of statistics, vol. 38, no. 2, pp. 894–942,
2010.

[19] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the nips
2003 feature selection challenge,” in Advances in neural information
processing systems, 2005, pp. 545–552.

[20] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[21] F. Bunea, A. Tsybakov, and M. Wegkamp, “Sparsity oracle inequalities

for the lasso,” Electronic Journal of Statistics, vol. 1, 06 2007.
[22] P. Zhao and B. Yu, “On model selection consistency of lasso,” Journal

of Machine learning research, vol. 7, no. Nov, pp. 2541–2563, 2006.
[23] H. Zou and T. Hastie, “Regularization and variable selection via the

elastic net,” Journal of the royal statistical society: series B (statistical
methodology), vol. 67, no. 2, pp. 301–320, 2005.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

