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Abstract—Accurate detection of early-stage cataract is essential
for preventing blindness, but clinical cataract diagnosis requires
the professional knowledge of experienced ophthalmologists,
which may present difficulties for cataract patients in poverty-
stricken areas. Deep learning method has been successful in many
image classification tasks, but there are still huge challenges in
the field of automatic cataract detection due to two characteristics
of cataract and its B-scan eye ultrasound images. First, cataract
is a disease that occurs in the lens of the eyeball, but the
eyeball occupies only a small part of the eye B-ultrasound
image. Second, lens lesions in eye B-ultrasound images are
diverse, resulting in small difference and high similarity between
positive and negative samples. In this paper, we propose a multi-
model ensemble method based on residual attention for cataract
classification. The proposed model consists of an object detection
network, three pre-trained classification networks: DenseNet-161,
ResNet-152 and ResNet-101, and a model ensemble module. Each
classification network incorporates a residual attention module.
Experimental results on the benchmark B-scan eye ultrasound
dataset show that our method can adaptively focus on the
discriminative areas of cataract in the eyeball and achieves an
accuracy of 97.5%, which is markedly superior to the five baseline
methods.

Index Terms—cataract classification, deep learning, attention
mechanism, ensemble learning, B-scan eye ultrasound images

I. INTRODUCTION

Cataract is a common eye disease as well as the leading
cause of blindness in the world. Early diagnosis and treatment
of cataract is the best way to prevent blindness. The disorder
of lens metabolism leads to the degeneration of lens protein,
which makes the original transparent lens become opaque
or milky white. The light is blocked by the turbid lens and
cannot be projected onto the retina, resulting in blurred vision
of the patient, which is exactly cataract. The diagnosis of
cataract requires extensive expertise and clinical experience
of ophthalmologists, which is time consuming and expensive.

Accordingly, computer-aided automatic cataract detection is of
great significance.

Eye B-ultrasound has the advantages of no damage, no
pain, simple, convenient operation, high repeatability and
good accuracy. It has been used as a routine examination
in fundus examination before cataract surgery [1], [2]. For
some cataracts with turbid lens, it is very difficult to clearly
observe the fundus, while ultrasound is a kind of examination
method that can clearly observe the posterior segment of
the eyeball without being affected by lens turbidity [3]. The
normal lens in the eye B-ultrasound image is a double-curved
light band with thin and smooth periphery, good internal
sound transmission and lack of echo [4]. However, cataract
has different manifestations in the eye B-ultrasound image.
The anterior and posterior capsules and the cortical area of
the lens are banded with relatively strong echo. The center of
the lens has relatively strong echo light spots or facula with
different sizes and shapes [5].

Deep learning method has achieved great success in the field
of computer vision. Deep learning method can automatically
learn the critical features and integrate the feature learning
into the process of building the model, which can reduce the
incompleteness caused by the manual design features. CNN
(Convolutional Neural Network) [6]–[9] is a representative
method. In the field of medical imaging, CNN has also
been successfully used for the diagnosis of diseases such as
pulmonary nodules [10] and skin cancer [11]. In the classifi-
cation task of cataract, Gao, Lin and Wong [12] proposed a
CRNN (Convolutional-Recursive Neural Network), which feds
extracted ROIs (nucleus, anterior cortex and posterior cortex)
within detected lens structures and learned local filters into a
CNN, and then into RNNs to automatically learn the features
for nuclear cataract classification from slit lamp images. Kim,
Jun, Kim and Eom [13] introduced tournament-based rank
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CNN. It consists of tournament structures and binary CNN
models, so as to balance the biased number of images among
classes. Zhang, Li, Han, Liu, Yang, Wang et al. [14] used
eight layers of CNN to automatically detect and classify retinal
fundus images.

The design of the above detection models does not fully
consider the characteristics of the input data, and only uses a
few layers of CNN. In addition, although the above methods
have achieved good results in slit lamp and fundus images
respectively, these two images can only see the fundus surface,
cannot detect deep lesions, and the corresponding equipment
is difficult to operate, which is not conducive to promotion.
Therefore, we focus on B-ultrasound images that can detect
deep tissue structure and do not require much expertise during
operation. We study the characteristics of eye B-ultrasound
images, select deep networks with richer feature expressions,
better performance and higher accuracy, then carefully design
a powerful model for cataract detection.

Fig. 1. B-Scan eye ultrasound images. Left two images are original images.
Right is the eyeball and the lens in an original image.

For two reasons, it is difficult to classify cataracts in B-
ultrasound images. First, the eyeball occupies only a small
part of the B-ultrasound image, and the lens occupies only
a small part of the eyeball (Fig. 1). There are many methods
[15]–[18] to prove that object detection can separate the object
of interest from the background and obtain the category and
location of this object. In order to avoid most of the irrelevant
background interference classification, we use the object de-
tection method to cut out the eyeball. Second, the complexity
and diversity of B-ultrasound images lead to high similarity
between positive and negative samples, which means that the
detection model needs good generalization ability. Ensemble
learning can achieve better generalization performance than
a single model. In [19], the ensemble method is used to
integrate support vector machine and back propagation neural
network for final fundus image classification. Furthermore,
the abnormal areas of cataract are mainly in the posterior
capsule and the center of the lens. It is necessary to focus
on the lesions of cataract in the eyeball to further improve
overall generalization, so as to better distinguish positive and
negative samples. There are many attempts [20], [21] to show
that attention mechanism can select more critical information
related to the current task from the whole image. In particular,
the cost of obtaining clinical samples is high. To solve the
problem of small samples of training data, we use transfer
learning to apply pre-trained models for cataract classification.

In this paper, we propose an attention-based multi-model

ensemble method. First, cut out the eyeball in the eye
B-ultrasound image through the object detection network.
Then, ensemble three classification networks: DenseNet-161,
ResNet-152 and ResNet-101, for the sake of obtaining the
final classification result. Besides, each classification network
is based on residual attention, which makes the network pay
more attention to the lens. In our clinical B-scan eye ultrasound
dataset, experimental results show that our ensemble attention
model is more efficient than a single classification model. The
contributions of this paper can be summarized as follows:

• An ensemble attention model for cataract detection is
proposed, which integrates three best-performing general
classification models by hard voting;

• According to the characteristics of cataract and eye B-
ultrasound images, most of the irrelevant background
outside the eyeball is reduced by the object detection
network and the weights of the lens are increased by the
residual attention module;

• Actual experimental results show that the classification
accuracy of our ensemble attention model can arrive to
97.5%. We believe that our experimental research can be
used as an important reference for the diagnosis of eye
diseases based on the eye B-ultrasound image analysis.

II. RELATED WORK

Object Detection The purpose of object detection is to
find all objects of interest in the image, including two sub-
tasks: object location and object classification. At present, the
mainstream object detection algorithms can be divided into
two categories: (1) Two-Stage method, is also called region-
based method. The first stage generates region proposals
containing the approximate location information of the objects.
The second stage then classifies and refines region proposals.
The R-CNN series work [22]–[24] is the representative of
this category. (2) One-Stage method, which does not need
the region proposal stage but obtains both location and clas-
sification results at the same time by processing the image
only once, also known as region-free method. YOLO [25]–
[27] is the pioneering work of one-stage method. Compared
with two-stage method, one-stage method has the advantage in
speed. We choose YOLOv3 as our object detection network.
YOLOv3 adopts the network structure of Darknet-53 and uses
multi-scale feature maps with the advantage of the detection
effect of small objects.

Image Classification Since the advent of the ImageNet
dataset [28] and AlexNet [6], deep learning method has
developed rapidly. Many classic CNNs have been born,
which greatly improves the accuracy of image classification.
Krizhevsky, Sutskever and Hinton proposed AlexNet, consist-
ing of five convolution layers and three fully connected layers.
For the first time, tricks such as relu activation function and
dropout are used in CNN. In 2014, Simonyan and Zisser-
man [7] proposed VGGNet, including 16 layer and 19 layer
versions. The network is deepened by repeatedly stacking 3×3
convolution layers and gradually doubling the number of con-
volution kernels. In the same year, Szegedy, Liu, Jia, Sermanet,
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Reed, Anguelov et al. [8] proposed GoogLeNet, with a total
of 22 layers, formed by stacking inception blocks. Inceptionv1
consists of four parts: 1×1 convolution, 3×3 convolution, 5×5
convolution and 3×3 maximum pooling. Inceptionv2 uses two
3 × 3 convolutions instead of a large 5 × 5 convolution, and
also uses batch normalization. In 2015, He, Zhang, Ren and
Sun [9] proposed ResNet, a 152 layer network trained by using
residual blocks. It is worth mentioning that ResNet solves the
degradation problem through skip connection, which provides
the possibility for thousands of layers of network training. On
the basis of ResNet, Huang, Liu, Van and Weinberger [29]
proposed DenseNet using dense connection, where each layer
of the network is connected with all the previous layers.
Another difference is that DenseNet concats the feature maps
of different layers in the channel dimension, so as to achieve
feature reuse. Hu, Shen and Sun [30] proposed SeNet to obtain
the importance of each channel through learning and perform
feature recalibration.

Attention Mechanism Attention mechanism was first used
in machine translation tasks [31] and later widely used in
natural language processing, computer vision and other fields.
Visual attention can quickly scan the global image to locate
the target area that needs to be focused on, then pay more
attention to the target area to obtain the required details.
At present, CNN based visual attention methods are widely
used in image classification tasks. Xiao, Xu, Yang, Zhang,
Peng and Zhang [32] used two levels of attention for fine-
grained classification. First, classifying birds at object-level
and part-level respectively. Then, adding the obtained scores
to output the final classification result. Zhao, Wu, Feng, Peng
and Yan [33] proposed DVAN (Diversified Visual Attention
Network) to improve the diversity of visual attention, thereby
extracting the most discriminative features. Wang, Jiang, Qian,
Yang, Li, Zhang et al. [34] added a new branch called soft
mask branch to obtain attention weights beside the trunk
branch. The trunk branch and the soft mask branch together
form the residual attention module, which makes the network
pay more attention to the main features. Hu, Shen and Sun [30]
performed squeeze and excitation operations in the channel
dimension to automatically learned the importance of each
channel. Woo, Park, Lee, So and In [35] put forward CBAM
(Convolutional Block Attention Module), which applies atten-
tion to both channel and spatial dimensions.

Ensemble Learning Ensemble learning is roughly divided
into three categories: bagging [36], boosting [37] and stack-
ing [38]. Bagging uses bootstrap to sample different random
subsets of the entire dataset for training each model, and the
final prediction result is obtained by voting on multiple mod-
els. There are two kinds of voting: hard voting and soft voting.
Hard voting is also called majority voting, when the prediction
labels of each model are different, the prediction label with
the most occurrences is taken as the final classification result.
Soft voting calculates the weighted average probability, and
selects the label with the largest weighted average probability
value as the final prediction result. Boosting iteratively trains
each model. At each iteration, the next model is trained by
modifying the dataset weights according to the prediction
errors in the previous iteration. Stacking trains one model to
combine other models. First, training the entire dataset using
several different base models. Then, training a new meta model
using the outputs of each base model as the input to obtain the
final prediction. Hard voting is the most common algorithm
in classification tasks. We use it as the ensemble method of
our deep learning model.

III. OUR APPROACH

In this section, we will focus on our ensemble attention
model, or EAM for short. EAM consists of four parts: object
detection network, residual attention module, classification
networks and model ensemble module (Fig. 2). The object
detection network performs eyeball detection on the original
ultrasound image, in order to solve the problem that the eyeball
occupies only a small part of the original image and eliminate
the strong echo interference in irrelevant backgrounds. The
classification network extracts the features of the eyeball and
outputs the preliminary prediction result. In each classification
network, the attention module is added to make the network
follow with interest the lens. The model ensemble module
integrates multiply classification networks and outputs the final
classification result. We now delve into each of the four parts.

A. Input and Detector

Original B-scan eye ultrasound images are saved in DCM
format. DCM is the suffix name of DICOM file. DICOM
(Digital Imaging and Communications in Medicine) is the
standard format for medical image data storage and exchange.
We use Python’s pydicom package to convert the original
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DICOM image into PNG format with the size of 720 × 576.
We then fed these PNG images into YOLOv3.

YOLOv3 is one of the representative methods of object
detection. During training, the input of YOLOv3 is the image
and the original label (class, xmin, ymin, xmax, ymax) of the
image. The label consists of the class of the object to be
detected and the coordinates of the upper left and lower right
corners of the region of interest containing the object. We
only have one class eyeball. YOLOv3 first performs feature
extraction on the image through the new backbone network
darknet-53. Darknet-53 uses the structure of the residual
network, but it is deeper, faster and better. YOLOv3 uses
three different scale feature maps to predict, with the sizes
of 13 × 13, 26 × 26 and 52 × 52. The small-size feature
map detects large-scale objects and the large-size feature map
detects small-scale objects, thereby improving the effect of
small object detection. A N ×N feature map is divided into
N ×N grid cells. If the central coordinate of the ground truth
is located in a grid, the probability of this grid containing the
object is 1, i.e., the confidence is 1, and the confidence of other
grids is 0. Each grid cell predicts 3 anchor boxes. The size of
anchor boxes are obtained by K-means clustering. Different
scale feature maps correspond to different size anchor boxes.
There are 9 anchor boxes in total.

N ×N ×Nanchor × (Nposition +Nscore +Nclass),

where N ∈ {13, 26, 52}, Nanchor = 3
(1)

The output of each anchor box is bounding box posi-
tion, confidence score and conditional class probability. The
bounding box position (bx, by, bw, bh) is the central coordinate
(bx, by), width bw and height bh of the bounding box. The

confidence score reflects whether the object is contained or
not and the accuracy of the bounding box position when the
object is contained. The conditional class probability is the
probability of the object class. The output of YOLOv3 (Eq.
(1)) consists of three parts, so the loss is the weighted sum
of these three parts, where the bounding box position uses
MSE (Mean Squared Error) loss and the latter two use cross
entropy loss. Since eyeball detection has only one class, the
detection is less difficult. Eyeball detection by YOLOv3 is
not only fast, but also effective. We detect the eyeball through
YOLOv3, then use eyeball images as the input of classification
networks.

B. Residual Attention

Wang, Jiang, Qian, Yang, Li, Zhang et al. [34] proposed
RAN (Residual Attention Network) for image classification.
RAN is composed of stacked residual attention modules that
enhance features of important areas and suppress meaningless
information in other areas. The residual attention module
consists of two branches: trunk branch and mask branch.

Trunk branch is a common CNN that is responsible for
feature extraction and can be any state of the art. The output of
the input x of trunk branch is denoted as T (x). Mask branch
generates attention weights by using a bottom-up top-down
structure. It is first down sample the input through a series of
convolution and pooling operations, then the extracted global
high-level feature map with attention is up sampled to generate
a soft weighted mask M(x). M(x) and T (x) are the same size.
Skip connections are also added to capture information from
different scales.



Residual
Block (x3)

Residual
Block (x4)

Residual
Block 
(x23)

Layer1 Layer2 Layer3 Layer4

Residual 
Attention 
Module

Residual
Block (x3)

0

1

Residual
Block

1x1 Conv 3x3 Conv

Global Average PoolMax PoolFC

7x7 Conv

ResNet-101

Residual
Block (x3)

Residual
Block (x8)

Residual
Block 
(x36)

Layer1 Layer2 Layer3 Layer4

Residual 
Attention 
Module

Residual
Block (x3)

0

1
ResNet-152

(a) Attention-Based ResNet

Residual 
Attention 
Module

Dense
Block (x6)

Transition
Layer

Dense
Block (x12)

Transition
Layer

Dense
Block (x36)

Transition
Layer

Dense
Block (x24)

Transition
Layer

Denseblock1 Denseblock2 Denseblock3

Denseblock4

1x1 Conv 3x3 Conv

Global Average Pool3x3 Max PoolFC

7x7 Conv

2x2 Average Pool Concatenate

Transition
Layer

Dense
Block (x6)

DenseNet-161

0

1

(b) Attention-Based DenseNet

Fig. 4. Classification Networks

The output feature map of trunk branch T (x) and the soft
weighted mask M(x) is element-wise multiplied to obtain a
weighted attention map. Then, attention residual learning is
put forward: after obtaining the weighted attention map, it
performs an element-wise addition with T (x), which makes
the distinctive features of the original trunk branch feature map
more distinctive. The final output of the attention module is
as follows:

H(x) = (1 +M(x))× T (x), where M(x) ∈ [0, 1] (2)

C. Transferable Models

In order to solve the problem that there are few training
samples of our eye B-ultrasound images, we use models pre-

trained on the ImageNet dataset which includs more than 1,000
classes of objects and 10 million pictures. If we do not use
transfer learning, but directly start training from scratch with
our small samples, the effect is poor and it is easy to overfit.
And ImageNet pre-trained models can learn more generalized
feature expressions, thus we transfer them to the cataract
detection task.

Because deep networks can learn more abstract semantic
features, the effect is better. ResNet solves the degradation
problem, so it can train deeper networks. DenseNet is based on
ResNet but can obtain better performance with fewer param-
eters. Among DenseNet and ResNet models of all layers pre-
trained on ImageNet, DenseNet-161, ResNet-152 and ResNet-



101 have the highest accuracy on the verification set, so we
select these three best-performing models as our classification
networks. In order to adapt DenseNet-161, ResNet-152 and
ResNet-101 to cataract classification, we replace the last 1000d
fully connected layer with a 2d fully connected layer. Then,
start from the last layer, fine-tune layer by layer. The input
size of each network is 224× 224× 3.

ResNet-101 and ResNet-152 both consist of five convo-
lutional blocks, a global average pooling layer and a fully
connected layer. The first convolutional block just has one
convolution layer of 7 × 7 kernel size. The second convolu-
tional block does a 3 × 3 maximum pooling, then stacks the
residual blocks, and the subsequent convolutional blocks are
all simply stacked with the residual blocks. The difference is
that the number of the residual blocks stacked by ResNet-101
in the second, third, fourth and fifth convolutional block is 3,
4, 23 and 3, while ResNet-152 is 3, 8, 36 and 3. The residual
block is composed of three convolution layers of 1× 1, 3× 3,
1×1 kernel size, and performs identity mapping between input
and output. The first 1 × 1 convolution is used to reduce the
dimension, and the second 1×1 convolution is used to increase
the dimension, which greatly saves computing time. DenseNet-
161 has 161 learnable layers: one convolution layer of 7 × 7
kernel size, a 3×3 maximum pooling layer, four denseblocks,
three transition layers, a 7 × 7 global average pooling layer
and a 1000d fully connected layer. Four denseblocks are
composed of 1 × 1 convolution and 3 × 3 convolution with
6, 12, 36 and 24 layers each. In denseblock, each layer
has the same feature map size, and takes the output of all
previous layers as input. The feature map of each layer is
also transmitted to all subsequent layers in a cascade manner.
Transition layer connects two adjacent denseblocks for down
sampling, consists of a 1× 1 convolution and a 2× 2 avgrage
pooling.

ResNet is connected through element-wise addition, while
DenseNet is connected through concat with all previous layers
in the channel dimension. The outputs of layer i of ResNet
and DenseNet are shown in Eq. (3) and Eq. (4), where
x0, x1, · · · , xi−1 are the outputs of layer 0, 1, · · · , i− 1.

ResNet: xi = Hi(xi−1) + xi−1 (3)

DenseNet: xi = Hi([x0, x1, · · · , xi−1]) (4)

Because the diagnosis of cataract is based on B-scan ultra-
sound results of the lens, the ophthalmologist determines if
a patient has cataract by identifying whether there is strong
echo near the posterior capsule of the lens or within the
lens. The classification network itself has a certain degree
of attention. However, for cataract classification, additional
attention is needed to make the classification network be more
attentive to the characteristics of abnormal areas of the lens.

Thus we use classification networks that add the additional
attention module. The attention module is residual attention
mentioned in the previous section. The specific structure is
shown in Fig. 5. We use the output of layer 3 in ResNet as
the input of the attention module, then use the output of the

attention module as the input of next layer 4 (Fig. 4(a)). The
output of denseblock 3 in DenseNet is used as the input of
the attention module and the output of the attention module is
used as the input of transition 3 (Fig. 4(b)). The input size of
the residual attention module is both 14× 14.
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D. Ensemble Network
Compared with a single model, model ensemble can in-

tegrate the advantages of several different models to get
better feature representation and higher accuracy. We simply
integrate our attention-based DenseNet-161, ResNet-152 and
ResNet-101 together by hard voting. Since we use three
classification networks, it is only possible to become the final
prediction result when one class gets two or three votes. c0 and
c1 represent two classes with label 0 and 1, i.e., c0 = 0, c1 =
1. Suppose p1, p2 and p3 are the prediction results of these
three networks respectively, where p1, p2, p3 ∈ {0, 1}, then
the final classification result P is as follows:

aij =

{
1, pj = ci
0, pj 6= ci

, i ∈ {0, 1}, j ∈ {1, 2, 3} (5)

ai =
∑

j=1,2,3

aij , i ∈ {0, 1} (6)

P =

{
0, a0 > a1
1, a0 < a1

(7)

In order to train the proposed ensemble attention model,
we adjust the size of eyeball ultrasound images cut out
by YOLOv3 to 224 × 224, as the input of our pre-trained
attention-based DenseNet-161, ResNet-152 and ResNet-101.
Data augmentation is performed on input images, including
padding according to the longest edge, random horizontal flip,
random rotation, color jitter and normalization. We divide 80%
of the training data as training set and 20% as validation set,
then fine-tune the whole network end-to-end. The loss function
is cross-entropy loss. After a lengthy parameter search, we
use a mini-batch stochastic gradient descent with batch size
of 8, momentum of 0.9, weight decay value of 0.0001. We set
learning rate to 0.001. The maximum epoch is 150. Learning
rate decay rate is 0.1, decaying occurs when the step is 30%,
60%, or 90% of the total epoch.



IV. EXPERIMENTS

We first introduce our eye B-ultrasound image dataset and
list the evaluation metrics. We then perform ablation exper-
iments on EAM to verify the necessity of object detection,
residual attention and ensemble learning. We also visualize
certain layers of EAM during the training process to prove
the rationality of residual attention as well as the accuracy of
feature extraction and experimental results. At last we compare
EAM with the baseline methods to demonstrate the superiority
of our model.

A. Dataset and Metrics

Our B-scan eye ultrasound image dataset consists of normal
eyes and cataract eyes. The B-ultrasound images of these two
kinds of eyes are shown in Fig. 6. There are 1,894 ultrasound
images of normal eyes and 3,615 of cataract eyes. Due to the
reality of clinical ophthalmic ultrasound diagnosis in hospitals,
images of cataract eyes account for the majority, while there
are fewer images of normal eyes. In order to balance the data
between positive and negative samples, we use all valid images
in normal eyes after data cleaning as positive samples, a total
of 1,877, and randomly select 1,896 valid images from cataract
eyes as negative samples.

Cataract eye

Normal eye

Fig. 6. Normal and cataract eye images

For the purpose of data augmentation, we process 1,877
normal eye and 1,896 cataract eye B-ultrasound images in
two ways, one is to manually cut out the eyeball, the other is
to automatic detect the eyeball through YOLOv3. A total of
3,747 normal eyeball images with label 0 and 3,787 cataract
eyeball images with label 1 are obtained by these two ways.
We randomly select 3,413 of 0 as training set and 334 as test
set, 3,441 of 1 as training set and 346 as test set (TABLE I).

TABLE I
TRAINING AND TEST SETS

Label Train Test Total
Normal eye 0 3,413(1,877+1,870) 334 3,747
Cataract eye 1 3,441(1,896+1,891) 346 3,787

We evaluate based on five metrics: accuracy, precision, re-
call, F1-measure and ROC (Receiver Operating Characteristic)
curve. F1-measure is a comprehensive evaluation index given
by precision and recall. ROC curve is often used to evaluate
the quality of binary classification model. AUC is the area
under ROC curve. The larger the AUC area, the better the
model.

B. Ablation Study
We train EAM without OD (object detection), RA (resid-

ual attention) and EL (ensemble learning) respectively. In
EAM without EL, there are three cases: only using a single
DenseNet-161 (w/o EL-1), only using a single ResNet-152
(w/o EL-2) and only using a single ResNet-101 (w/o EL-
3). The results are shown below (TABLE II). It can be seen
that full EAM has the highest accuracy, precision, recall
and F1-measure, thus proving the usefulness and necessity
of OD, RA and EL. We also draw the ROC curve of each
model and compare their AUC area (Fig. 7). The ROC curve
of full EAM is above the other five curves. It shows that
YOLOv3, the attention module, hard voting respectively elim-
inate redundant irrelevant backgrounds in eye B-ultrasound
images, make the classification network pay more attention
to the lens lesion area, combine the advantages of multiple
classification networks, and finally make EAM achieve the
optimal classification effect.

TABLE II
RESULTS OF ABLATION EXPERIMENT

EAM Accuracy(%) Precision(%) Recall(%) F1(%)
w/o OD 82.7381 80.1075 87.6471 83.7079
w/o RA 97.0588 97.3837 96.8208 97.1014
w/o EL-1 96.7647 97.3684 96.2428 96.8023
w/o EL-2 96.4706 97.0760 95.9538 96.5116
w/o EL-3 96.3235 96.2536 96.5318 96.3925
full 97.5 97.9592 97.1098 97.5327

Fig. 7. ROC curve
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Fig. 8. Visualization. First two lines are Grad-CAMs before and after adding the attention module. Last line is guided backpropagation activation maps.

C. Attention Visualization

In order to further verify the validity of the attention module,
we visualize certain layers during the training process. For
ResNet-101 and ResNet-152, we visualize the output of layer
3 before adding the attention module and the output of layer 4
after adding the attention module. For DenseNet-161, we also
visualize the feature maps of denseblock 3 and denseblock
4 before and after adding the attention module. We use
two visualization methods: Grad-CAM [39], [40] and guided

backpropagation. The visualization results are shown in Fig.
8. It can be seen that after adding the attention module, the
model highlights the discriminative areas that can be used to
diagnose cataract. Take ResNet-101 as an example (Fig. 8(a)).
In the first column, before adding the attention module, the
lens did not receive significant attention. After adding, the
lens attention weight increases. The lens area turns red. In the
second, third and fourth columns, after adding the attention
module, the anterior and posterior capsules and the central



area of the lens receive more attention. The red area expands
to the entire lens. In the fifth and sixth columns, after adding,
the irrelevant background attracts less attention. The noise near
the lens is eliminated, the green area turns blue.

D. Comoarison to Baseline Methods
TABLE III shows the results of five baseline methods

training from scratch. The accuracy of EAM is 97.5%, which is
much higher than that of each baseline model. The precision,
recall and F1-measure of EAM are also much higher than
those of the other five baseline models. It can be known
that the baseline model shows poor generalization ability
and is not suitable for specific tasks in the field of medical
imaging. Different models need to be designed according to
the characteristics of diseases and medical images for different
tasks. EAM is specially designed for the cataract detection task
of eye B- ultrasound images, which is obviously superior in
cataract classification.

TABLE III
RESULTS OF BASELINE MODELS

Baseline Accuracy(%) Precision(%) Recall(%) F1(%)
VGG-16 50.8824 50.8824 1 67.4464
VGG-19 50.8824 50.8824 1 67.4464
ResNet-18 85.4412 83.4688 89.0173 86.1538
ResNet-34 87.9412 87.9310 88.4393 88.1844
ResNet-50 85.2941 87.5 82.948 85.1632
EAM 97.5 97.9592 97.1098 97.5327

V. CONCLUSION

Compared with slit lamp and fundus images, B-scan eye
ultrasound images have a larger range and contain a great
deal of information that interferes with cataract detection. For
professional ophthalmologists, the lens is the most important
diagnostic indicator for determining whether a patient has
cataract. Based on the above reality, we propose the ensemble
attention model. EAM is composed of an object detection
network, three classification networks that incorporate residual
attention modules, and a model ensemble module. The atten-
tion module makes EAM be more attentive to lens lesions.
The model ensemble module is equivalent to synthesizing
the diagnosis of multiple professional ophthalmologists for
more reliable classification results. We evaluate EAM on our
B-scan eye ultrasound image dataset. The results show that
EAM focuses on the abnormal areas of cataract in the eyeball
and achieves better generalization performance than a single
classification model. In the future, we will extend the model
to three classes for cataract grading: no cataract, mild cataract
and severe cataract. In addition, we will try more effective
data preprocessing and model ensemble methods to achieve
further improvements in accuracy.
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