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Abstract—Image segmentation is the task of assigning a label
to each image pixel. When the number of labels is greater
than two (multi-label) the segmentation can be modelled as a
multi-cut problem in graphs. In the general case, finding the
minimum cut in a graph is an NP-hard problem, in which
improving the results concerning time and quality is a major
challenge. This paper addresses the multi-label problem applied
in interactive image segmentation. The proposed approach makes
use of dynamic programming to initialize an α-expansion, thus
reducing its runtime, while keeping the Dice-score measure in an
interactive segmentation task. Over BSDS data set, the proposed
algorithm was approximately 51.2% faster than its standard
counterpart, 36.2% faster than Fast Primal-Dual (FastPD) and
10.5 times faster than quadratic pseudo-boolean optimization
(QBPO) optimizers, while preserving the same segmentation
quality.

Index Terms—α-expansion, dynamic programming, multi-
label, image segmentation.

I. INTRODUCTION

In a nutshell, the goal of multi-labeling is to determine
a label for each pixel in the image, which is encoded in a
graph node. Multi-label assignment in graphs is commonly
applied in computer vision tasks such as image restoration [1–
3] and segmentation [3–8]. Assigning multi-labels to images
is usually an NP-hard problem [9], where the runtime may
increase regarding the number of image pixels.

One of the main algorithms for multi-labeling problems is
the so-called α-expansion [9], which presents linear complex-
ity with respect to the number of pixels, and has shown to
be very efficient in practical applications [2]. α-expansion
algorithm works iteratively, performing an expansion move
for each label, i.e., expansion goes toward a local optimum
by employing a maximum-flow strategy that takes O(n2)
operations, where n is the number of pixels.

For α-expansion-based algorithms, the closeness to the
optimal solution is given by the distance 2kE(f∗), where
f∗ is the global minimum, k is a constant that depends
on pixel values, and E(f∗) is the minimum energy of the
graph [9]. From this rule, α-expansion strongly depends on the
initial conditions, which allows for improving the algorithm by
changing its initialization. For instance, Lempitsky et al. [10]
consider different ways to initialize the α-expansion. The goal

is to generate suboptimal solutions, which are later combined
through fusion moves in order to obtain a labeling procedure
with lower energy. Felzenszwalb and Veksler [11] use an
expansion algorithm to optimize a specific energy function.
Depending on the strategy adopted for initialization (if starting
from a constant or a random labeling), the expansion algorithm
eventually falls into a local minima.

Other extensions of α-expansion algorithm have been pro-
posed [12–14]. Veksler [12] applies dynamic programming as
part of an α-expansion strategy, thus replacing the very used
maximum flow algorithm. Dynamic programming is used to
solve multi-label problems through geometric constraints as an
optimization algorithm. Khatab et al. [13] modify the GrabCut
[15] algorithm in order to initialize segmentation without
human intervention for multi-label problems. Similarly to α-
expansion, the method addresses multi-label segmentation as
a set of binary problems by iteratively minimizing an energy
function. Isack et al. [14] tackle a multi-label segmentation
problem by using hedgehog shapes to constraint an interactive
segmentation. Final optimization is done by a modified α-
expansion algorithm based on the shape prior.

A. Contributions

Here we propose an approximate algorithm by exploiting
dynamic programming and partitioned images. The goal is to
define the granularity of label assignment in each iteration
of the algorithm. Differently from [11] and [12], our work
proposes to initialize α-expansion via dynamic programming,
rather than replacing its standard optimization algorithm. To
make the runtime execution of dynamic programming viable,
we adopt an image partitioning strategy. By doing so, we
introduce an extension of the α-expansion algorithm that
improves the runtime of iterative multi-label segmentation,
while a close approximate solution is provided. To achieve
this goal, we exploit a new way to initialize an α-expansion
via dynamic programming and local clustering of pixels to
reduce the runtime of α-expansion moves. Our method, called
iterative dynamic programming expansion (IDP-Expansion),
was evaluated for the task of interactive image segmentation,
which consists of labeling each pixel of an image, starting from
hand-crafted annotations (seeds) of a dataset. IDP-Expansion
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(a) Array of pixels. (b) (c)

Figure 1. Representation of a pixel array (a) in a graph, where the energy function is minimized to obtain each label (b). Each terminal tn represents a label
after a cut in the graph, where the image is segmented (c).

was 51.2% faster than the standard α-expansion, 36.2% faster
than Fast Primal-Dual (FastPD) [16] and 10.5 times faster than
quadratic pseudo-boolean optimization (QBPO) [17], over
BSDS data set [18].

II. BACKGROUND

Greig et al [1] demonstrated that a cut on a graph could be
used for binary image restoration, thus introducing the graph-
cut for image processing. This problem was modelled by using
the maximum estimate a posteriori of a Markov Random Field
(MRF) to minimize an energy function, defined as

E (I) = −λ
∑
p∈P

lnPr (Ip|Io) +
∑
p,q∈N

f(p, q) , (1)

where P is set of pixels,N is the set of neighboring pixels, and
λ is a real-valued constant. The function Pr(Ip|Io) represents
the conditional probability given a pixel intensity value, Ip
belongs to one of the classes in the binary image segmentation
problem, Io denotes label intensity, and the function, f(., .),
is given by

f(p, q) =

{
1 if Ip 6= Iq

0 if Ip = Iq
, (2)

and represents a relation of the neighborhood between the
pixels p and q in the image grid.

The pixels clustering problem can be modelled as a minimal
cut problem, whereas a minimum cut problem with two labels
can be modelled, in turn, as a maximum flow [19]. The
solution to this problem can be obtained in polynomial time
by maximum flow algorithms, e.g., the algorithms proposed
in [19], [4], and the push-relabel algorithm [20].

A. Image multi-labeling

Image multi-labeling consists in defining labels for each
pixel in such a way that minimizes an energy function. There
are a set of P image pixels and a set of L labels, where each

pixel p ∈ P is assigned to a label l ∈ L. If |L| = k, for k = 2,
we have a binary problem. An energy function can be defined
as

E(f) =
∑
p∈P

Dp(fp) +
∑

(r,q)∈N

Vrq(fr, fq) , (3)

where fp denotes the relation between a label and each
image pixel. Dp(fp) is the data function that depends on the
difference between Ip (pixel value p) and Il (label pixel value).
Vrq(fr, fq) is the attenuation function that depends on the
relationship between neighbors in N , and must satisfy the
constraints:

Vrq(0, 0) + Vrq(1, 1) ≤ Vrq(0, 1) + Vrq(1, 0) . (4)

From Dp(fp) and Vrq(fr, fq), Potts Models [2] are used
following [1]. Boykov et al. [9] show that it is possible to
transform a multi-label problem into a multiple-cut problem
(NP-hard) [21], so that approximate algorithms are required
to solve this task.

B. Graph representation

Let be G = (V, E) a graph, where V defines the set of
vertices and E the set of edges. The vertices are divided into
two groups: Type-n that represents each pixel p ∈ P , and type-
t that represents each label l ∈ L. Each edge is comprised of
two sets – t-links and n-links. t-links are the set of edges
that defines the connection of each type-n vertex for each
type-t vertex. n-links represent the relationship between the
neighbors of vertices type-n. The neighborhood N , in case of
2D images, may have 4 or 8 neighbors. Regarding the energy
function E, n-links depict the attenuation function, while t-
links represent the data function. Figure 1(a) shows an example
of a 3×3 array of RGB pixels, considering three segmentation
classes, and Figure 1(b) depicts its graph representation. In
Figure 1(b), the n-links are the strong lines between unmarked
vertices (type-n), and the t-links are edges with edges leaving
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Figure 2. Ablation of the partitioning method to be used in IDP-Expansion.

Algorithm 1 α-expansion
1: Set m arbitrary labels for each l ∈ L
2: repeat
3: mp = E(m) . Calculate the energy for the current

state
4: for all α ∈ L do
5: Calculate a minimum α-expansion m̂ via Graph-

cut
6: αm = E(m̂)
7: if αm < mp then
8: mp = αm
9: end if

10: end for
11: until αm > mp

in t1, t2 and t3 (type-t) and arriving in the type-n vertices.
Figure 1(c) depicts how the nodes are labeled as segments
after optimization.

III. INTERACTIVE SEGMENTATION WITH IDP-EXPANSION

A. α-expansion

The original α-expansion algorithm solves sub-problems
with k = 2, by successively using a maximum-flow optimizer.
The algorithm converges, when the energy of the current
iteration is higher than the one in the previous iteration. For
each iteration, the algorithm divides the set of pixels into α and
non-α, labeling several vertices in each iteration (Alg. 1). A
remarkable characteristic of this algorithm is its sensitivity to
initialization [2]. Different ways of assigning arbitrary labels
before the iterations are prone to change the final result, i.e.,
the obtained energy and consequently the runtime. We exploit
such a condition as a pathway to reduce the overall runtime
of an α-expansion-based segmentation. For that, we apply
dynamic programming as a way to initialize the α-expansion
algorithm.

Algorithm 2 IDP-Expansion
1: Get superpixels S of the image I
2: DP-TopDown(|S|, S, 0, 0) . See Alg. 3
3: Calculate an α-expansion move

Algorithm 3 DP-TopDown
1: function DP-TOPDOWN(ns,S, v, level)
2: if Solution r∃t for the sub-problem v, level then
3: return r . r is a sub-solution in the table t
4: else
5: for all l ∈ L do
6: u Label S[ns] as the label l
7: Calculate e = D(u) + DP-TopDown(|S| − 1,
S, level + 1)

8: if e is the minimum energy then
9: min = e

10: minl = l
11: end if
12: end for
13: Label S[ns] with the label minl
14: Save in t: ns, level, and e
15: end if
16: end function

B. IDP-expansion

Our IDP-expansion method modifies the original α-
expansion in order to make viable the initialization via dy-
namic programming (see Alg. 2). From the experiments, we
observed that application of dynamic programming to label the
pixels directly is impractical in terms of runtime. We solved
this issue by labeling image partitions instead of pixels, i.e., the
vertices of the graph are assigned to groups of pixels instead
of each pixel individually.

a) Image partitioning: In principle, there are no con-
straints about which strategy could be adopted to provide
image partitioning. This is because the final result of the
segmentation via IDP-expansion is not affected by the initial
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Figure 3. Examples of image partitioning: (a) grid, (b) over-segmentation
(ISEC [22]) and (c) superpixel (LSC [23]).

conditions, but only the time spent by the algorithm to
converge. Bare that in mind, we evaluated different strategies
of image partitioning in order to identify the one that pro-
vides the best gain regarding computational efficiency. Tests
included three main strategies for image partitioning: Over-
segmentation methods divide the image into segments that are
quite variable in both size and shape, depending on the image
content. Usually, the generated segments present boundaries
with high correspondence to the contours of the objects in the
image, and the number of segments is highly variable. The

following methods were evaluated: EAMS [24], ISEC [22] and
FH [25]. On the other hand, superpixel methods provide strict
control over the number of generated segments. The results
generally pursue a compromise between correspondence to
the object contours and uniformity in shape and size of the
segments. The evaluated methods in this partitioning class
were: SLIC [26] and LSC [23]. Lastly, an image content-
agnostic, grid partition strategy was included. The goal was to
verify if the additional computational effort required by image
content-aware partitioning methods, like over-segmentation
and superpixel, justify their usage, or if just using the simplest
possible partitioning method would be more beneficial.

Figure 2 shows an ablation study over the overall runtime
spent by IDP-expansion, when using the different methods for
image partitioning (including tests for different hyperparame-
ters, when available). As can be seen, although at first glance it
could be expected that using content-aware methods would be
favorable, the results reveal that the grid-like partitioning with
50 partitions (grid 50, in Fig. 2) is the best option. Hence
we followed with this solution in IDP-expansion. Figure 3
illustrates examples of each one of the aforementioned image
partitioning strategies.

b) Dynamic programming for vertice labeling optimiza-
tion: IDP-expansion uses only the data function to get an
initial definition of the labels and to initialize the α-expansion.
Once the image partitioning is generated, the minimum energy
is computed by means of a dynamic programming algorithm
that we call DP-TopDown (see Alg. 3). This algorithm works
by assigning a label to each image partition and checking the
new energy function value for that solution. If the value of the
energy function is less than the lowest one found so far, the
value of the energy function is updated, and the assignment
move performed is stored in a table. The algorithm ends,
when it identifies that a new move will not lead to an energy
reduction. The purpose of DP-TopDown is to construct a
search tree with possible solutions to the multi-label problem.
This way, we avoid recalculations of the energy at each move.

c) Complexity: The complexity of the function in line 2
of Alg. 2 is O(nl), where n is the number of pixels and l is
the number of labels. DP-TopDown is performed by evaluating
all possibilities of label assignments for each image partition.
Next a move of α-expansion is performed. IDP-Expansion
maintains linear complexity, depending on the number of
pixels. Since IDP-Expansion changes the initialization of an
α-expansion move, the obtained solution, f , and at most 2f∗
are optimal solutions.

d) Energy function: To define the t-link weights, a
function, D, proposed by Nieuwenhuis2013 et al. [2] is used.
The function considers both the location of the pixels and the
color value of each pixel, achieving a tradeoff between the
distance for scribbles and the similarity in color. D is given
by

Dp(fp) = −logP (I(x), x|u(x) = p) , (5)

where the joint probability distribution P is defined as
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Figure 4. IDP-Expansion on each iteration.
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Figure 5. IDP-Expansion work on each iteration: the amount of energy (E×
106) per iteration.

P (I(x), x|u(x) = p) =
1

mp

mp∑
j=1

kσ(I − Ipj)kip(x− xpj) ,

(6)
where kσ(I−Ipj) is a function, which represents the probabil-
ity of a pixel to be similar to scribble-selected colors, defining
how much the colors contribute to the overall likelihood. The
term kip(x−xpj) represents the probability that a pixel belongs
to a class in relation to the location, weighing the contribution
of the location in function P .
V(r,q) can now be defined as a Gaussian kernel used as an

attenuation function:

V(r,q) =

exp

(
−‖Ir − Iq‖2

2σ2

)
if Ir 6= Iq

0 if Ir = Iq

. (7)

Figure 6. Example of available images in the data set [18].

IV. EXPERIMENTS AND RESULTS

To evaluate IDP-Expansion performance, we used the BSDS
data set [18] in an interactive segmentation task. Over that
data set, the runtime and the segmentation quality provided by
the Dice-score metric of IDP-Expansion were compared with
the methods: A randomly initialized α-expansion, the Fast-PD
[16] and the QPBO [17].



Original images
and seeds

Ground truths

DP-TopDown

IDP-Expansion

Figure 7. Top-down view: considering seeds provided on the original images (first line) and ground truths (second line), some intermediary results of the
function DP-TopDown (third line; also see Alg. 3) and IDP-Expansion (last line).

Table I
LABEL DISTRIBUTION IN THE DATA SET FOUND IN [18]

Labels 2 3 4 5 6 7 8 9 10
Frequency 66 104 58 18 11 2 2 1 1

The benchmark also includes our method and α-expansion,
both set to stop the segmentation with one iteration. In fact,
this choice is based on the results found in Figs. 4 and
5. Figure 4 illustrates a resulting image in each iteration
over an image sample from BSDS data set. Figure 5 shows
the relationship between IDP-Expansion energy function and
number of iterations to converge. The quality evaluation of
IDP-Expansion on each iteration, as well as the plot reveal
that just after one iteration most of the energy is minimized,
making the remaining iterations negligible.

A. Data set

The BSDS data set used for the experiments was introduced
in [18]. The provided images and annotations were used
in order to evaluate an interactive segmentation. Figure 6
illustrates one example from the data set, where the first
line shows an original image, and the second one depicts
the hand-crafted ground truth annotation: seeds (yellow lines)
and semantic segmentation masks (one color for each defined

label). The data set contains 158 images with 262 annotations.
Table I summarizes the distribution of the labels in the data
set.

B. Evaluation metric

Dice-score was used as a metric to evaluate the segmen-
tation quality of the images in the BSDS data set. Dice-
score, Dice(., .), determines the overlap of the area between
the automatic segmentation, Ω, performed by the evaluated
algorithm and its ground truth annotation, Ω̄i.

Dice(Ω, Ω̄) =
1

n

i=1∑
n

2|Ω ∩ Ω̄|
|Ωi|+ Ω̄i|

, (8)

where n as the number of segments.
Additionally, we also calculated the average runtime of each

algorithm over the BSDS data set.

C. Result analysis

Table II summarizes the results of the benchmarked meth-
ods, considering the average Dice-score and runtime for all
images on BSDS data set. According to the results, IDP-
Expansion achieved the same segmentation quality as the
original α-expansion and FASTPD [16], and is only 0.02
lower than QBPO [17]. Considering the computational time,



Table II
BENCHMARK CONSIDERING PIXEL-WISE SEGMENTATION AND RUNTIME.

Algorithms Dice-score Runtime (s)
α-expansion 0.88 1.62
α-expansion (one iteration) 0.88 0.82
QBPO 0.90 9.11
FastPD 0.88 1.24
IDP-Expansion 0.88 0.79
IDP-Expansion (one iteration) 0.88 0.74

our method was 51.2% faster compared to the original α-
expansion, and 3.7% faster than one iteration of the original α-
expansion. Considering IDP-Expansion with just one iteration,
our method achieved still faster results (6% faster than the
full version of IDP-Expansion), while maintaining the very
same segmentation quality. This is can be explained due to the
fact that the initialization provided by IDP-expansion reduces
the amount of pixel labeling in comparison with a random
initialization of the original α-expansion.

Figure 7 depicts some examples of segmentation results of
IDP-Expansion. From a top-down view, the last two lines
shows the intermediary segmentation of the DP-TopDown
function and the final result of the IDP-Expansion segmen-
tation, respectively. It is noteworthy that the DP-TopDown
function makes the coarser work in the segmentation, while the
rest of the IDP-Expansion method refines the previous results
until reaching the final image segmentation.

V. CONCLUSIONS

IDP-Expansion achieves comparable results with the orig-
inal α-expansion algorithm, while speeding up the time of
convergence in 50.6%. In fact, the definition of a function
that adequately initialize the α-expansion substantially reduced
the original algorithm. Particularly considering our proposed
method, the use of a dynamic programming strategy decreased
the search to minimize the term D in the energy function E.
The remarkable runtime reduction was mainly obtained by
exploiting the sub-problems redundancy in the search space,
as well as by doing image partitioning.

Differently from α-expansion, IDP-Expansion can be only
applied in 2D images and is not expansible to problems
described by other types of graphs. This way, exploring the
adequate initialization for α-expansion in other contexts, such
as 3D image segmentation, should be the straightforward
way to future works. The development of other initialization
strategies that exploit GPU to reduce computational time is
another alternative for investigation.
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