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Abstract—Running neural network models on edge devices is
attracting much attention by neural network researchers since
edge computing technology is becoming more powerful than
ever. However, deploying large neural network models on edge
devices is challenging due to the limitation in available comput-
ing resources and storage space. Therefore, model compression
techniques have been recently studied to reduce the model size
and fit models on resource-limited edge devices. Compressing
neural network models reduces the size of a model, but also
degrades the accuracy of the model since it reduces the precision
of weights in the model. Consequently, a retraining method
is required to recover the accuracy of compressed models.
Most existing retraining methods require the original labeled
training datasets to retrain the models, but labeling is a time-
consuming process. In particular, we cannot always access the
original labeled datasets because of privacy policies and license
limitations. In this paper, we propose a method to retrain a
compressed neural network model with an unlabeled dataset that
is different from the original labeled dataset. We compress the
neural network model using quantization to decrease the size
of the model. Subsequently, the compressed model is retrained
by our proposed retraining method without using a labeled
dataset to recover the accuracy of the model. We compared the
proposed retraining method against the conventional retraining.
The proposed method reduced the size of VGG-16 and ResNet-50
by 81.10% and 52.45%, respectively without significant accuracy
loss. In addition, our proposed retraining method is clearly faster
than the conventional retraining method.

Index Terms—Deep Neural Network, Model Compression,
Model Quantization, Model Retraining

I. INTRODUCTION

Running neural network models on edge devices is at-
tracting much attention by neural network researchers since
edge computing technology has become more efficient of
computing power than ever. There are several advantages
of running neural network models on edge devices such as
better privacy, less network bandwidth, and low-latency. This
is because running models on edge devices does not require
transferring the training and inference datasets between the
edge devices and a centralized server. However, deploying
large neural network models on edge devices is challenging
due to the limitation in available computing resources and
storage space [1].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Therefore, model compression techniques have been re-
cently studied to reduce the model size and fit the model
in resource-limited edge devices [2]. Compressing neural net-
work models reduces the size of the model, but also degrades
the accuracy of the model since it reduces the precision of
weights in the models [3]. It is therefore important to minimize
the loss of accuracy while trying to maximize the reduction
of model size.

To recover the accuracy of compressed models, retraining
is a necessary. Most existing retraining methods require the
original labeled datasets to retrain the compressed models.
A labeled dataset is a collection of samples that have been
marked with labels identifying certain features of objects. La-
beling is a crucial step in training neural network models [4],
and is a time-consuming process [5]. In particular, we cannot
always access the original labeled datasets because of privacy
policies and license limitations. Using unlabeled datasets for
retraining is highly useful when the original labeled dataset is
unavailable.

In this paper, we propose a method to retrain a compressed
neural network model with an unlabeled dataset that is differ-
ent from the original labeled dataset. To retrain the compressed
neural network, we use the outputs from the original model
instead of using the original labeled dataset. The proposed
method is able to reduce the size of the model without
significant accuracy loss even when the original labeled data
is not publicly available. We first compress the model using
quantization to decrease the size of the model. Subsequently,
the compressed model is retrained by our proposed retraining
method to recover the accuracy of the model.

The rest of this paper is organized as follows. Section II
describes related work on compression and retraining of neural
network models. Section III explains our proposed methodol-
ogy to compress and retrain a model to reduce the model size
while retaining accuracy. Section IV shows the experimental
results when applying our proposed method to real-world neu-
ral network models. Section V show the comparison between
the proposed retraining method and the conventional retraining
method. Section VI concludes this paper and discusses future
work.



TABLE I: Comparison of model compression techniques

Model Uses Supports Reduces

compression pre-trained | fully connected | redundant Impacts
. accuracy
technique models layers parameters
Parameter pruning v v v X
and sharing
Low-rank
factorization v v X v
Transferred/compact
convolutional filters X X X
Knowledge
distillation X / v /

II. BACKGROUND

This section gives a brief overview of existing techniques
for compressing neural network models to reduce the size of
models and retraining compressed neural network models to
recover the accuracy of the models.

A. Compression of Neural Networks

Reducing storage space and computational cost of neural
network models is necessary to compute models with more
layers and nodes. Such expensive models are required to
enhance the performance of large-scale data processing in real-
time applications. Early works showed several techniques to
decrease the size of neural network models. The challenge in
model compression is understanding the structure of neural
network models, finding which parameters are unnecessary or
redundant, and reducing those parameters without sacrificing
model accuracy.

Cheng et al. investigated different approaches for com-
pressing neural network models and classified them into four
approaches [6]: (1) parameter pruning and sharing, which
reduce redundant parameters that are not critical for accu-
racy [7] (2) low-rank factorization, which uses matrix or tensor
decomposition to estimate the informative parameters [§]
(3) transferred/compact convolutional filters, which are special
structural convolutional filters to save parameters [9], and
(4) knowledge distillation, which trains a compact neural
network with knowledge distilled from a larger model [10].

Table I shows the comparison of model compression tech-
niques. Parameter pruning and low-rank factorization can
support training from both pre-trained and scratch models
while the transferred/compact filter and knowledge distillation
techniques can only support training models from scratch.
The main difference between parameter pruning and low-rank
factorization is the impact on model accuracy [11]. In this
paper, we focus on parameter pruning and sharing since we
aim to deploy pre-trained models on resource-limited edge
computing devices.

Network quantization is one method of parameter pruning
and sharing approach. It prunes and shares the parameter
in each layer of neural network models by quantizing the
parameters. It aims to reduce the number of bits required to
represent each weight parameter. Consequently, quantization
reduces the size of neural network models, but also degrades
the accuracy.

In a neural network, quantization means that parameters will
be stacked into clusters. As a result, the parameters in the same
cluster will share the same single value called centroid [12].
Vector quantization is applied to quantize multidimensional
parameters, whereas scalar quantization is applied to quantize
scalar values. Almost all of neural network models apply
vector quantization to quantize their model since the stored
parameters are multidimensional.

Zhao et al. improved quantization using outlier channel
splitting. Channel is the dimension of data in each layer of
neural network models. They proposed to quantize neural
network models by duplicating channels of outliers and di-
viding each layer into two channels. Afterward, the model
is still functionally identical, but the center of the parameter
distribution in each layer is changed [13]. The size of the
model was decreased because the center of the parameter
distribution in each layer was changed to a smaller value.
Outlier channel splitting takes time to compress models than
quantization because this method needs to process every
connection in a model.

Gong et al. found that vector quantization has a clear gain
over existing matrix factorization methods when compress-
ing densely connected layers, which are the most storage-
demanding type of layers. They achieved 16-24x compres-
sion ratio with only 1% loss of accuracy [14]. Therefore,
quantization is a promising compression technique due to its
compatibility with densely connected layers and its low impact
to the accuracy of models.

B. Retraining Compressed Neural Networks

To improve the accuracy of neural network models, it is
important to recover the accuracy of compressed models.
Retraining is a method to repeat the training process on an
already trained model to further improve its accuracy.

Sung et al. showed that highly complex models can absorb
the effects of severe weight quantization through retraining,
whereas networks with limited number of connections can-
not [15]. They confirmed effects on the resiliency of quantized
networks by retraining method. Quantization of floating-point
weights does not show efficient performance.

Lee et al. proposed layer-wise training, which is a technique
to train a neural network model layer-by-layer [16]. Chen et
al. introduced an algorithm to split the layers in a model to
analyzer the structure in each layer [17]. Then, the weights
in each layer are updated to minimize the final error of the
model. They formulated and solved quantization of parameters
as a discrete optimization problem. We also apply layer-wise
training to retrain compressed neural network models because
it reduces the number of trainable layers in the model to
decrease the training time.

III. METHODOLOGY

This section describes the proposed retraining method to
recover the accuracy of quantized neural network models.
Figure 1 shows the overview of the proposed method. We first
apply quantization to the model. Subsequently, the proposed
retraining method is applied to the compressed model.
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Fig. 1: Overview of proposed methodology
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Fig. 2: Compression using quantization

A. Quantization

Quantization is a lossy data compression technique where
a range of data is grouped or binned into a single value or
centroid. It is a nonlinear map that partitions the whole space
and represents the values in each subspace by their centroid.

Figure 2 shows an example of quantization when the number
of clusters is two. The parameter space is separated into
two clusters such that each cluster has the same number of
parameters. The centroid of each cluster is then calculated and
the values in each cluster is represented using their centroid.

Each layer in a neural network model has a different number
and distribution of parameters. Thus, different number of
centroids must be chosen for each individual layer. To find
the best number of centroids for each layer, we quantized each
layer separately and balance between the reduced model size
and the accuracy loss.

We varied the number of centroids using the powers of two
from 1 to 256 because the number of centroids is based on the
number of stored data bits. We defined the maximum number
of stored data bit is 8 then the maximum number of centroids
is 256.

The accuracy of a quantized model is an important indicator
for deciding which layer to quantize. If the accuracy of the
quantized model decreases significantly when quantizing a
layer, it suggests that the layer contains important information
that we should not eliminate. In many cases, deeper layers can
be quantized without causing severe loss of accuracy, while
the shallower layers cannot be quantized. We keep those non-
quantized layers for the later retraining method.

The quantized model is then compressed using the Hi-
erarchical Data Format 5 (HDFS5) with its transparent gzip
compression feature. Through the quantization process, the
parameter values are grouped into limited number of centroids.
Gzip compression finds those redundancies in the quantized
data and reduce storage usage.
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Fig. 3: Proposed retraining method
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B. Retraining

After the quantization and compression processes, the com-
pressed model is retrained to recover the accuracy without
using the original labeled dataset. Figure 3 shows the overview
of our proposed retraining method. We split the layers of
the model into trainable layers and non-trainable layers. We
keep the quantized layers as non-trainable layers because the
unnecessary parameter values have been already eliminated
in the quantized layers, and also the retraining method might
be able to produce unnecessary parameter values that will just
increase the model size without improving the model accuracy.
We therefore choose only non-quantized layers as trainable
layers for the retraining method. This approach is also helpful
to shorten the retraining time since it takes longer if we handle
more layers as trainable.

In our method, we leverage the outputs from the original
model to retrain the quantized model instead of using the
original labeled dataset. We supply the same unlabeled dataset
to both the original model and the quantized model and acquire
the output vectors from the two models. Figure 4 illustrates an
output vector from the last layer of a model, which represents
the probability of each output class, the size of output vector



TABLE II: Hardware specification

Hardware Specification

CPU Intel Xeon Gold 6148 x2

Main Memory 384 GiB

GPU NVIDIA Tesla V100 SXM2 x4
GPU Memory 16 GiB

is (number of samples in the training dataset)x(number of
output classes). The weights in the trainable layers of the
quantized model are then updated so as to minimize the loss
between the output vectors from the original model and the
quantized model. If the provided dataset covers enough variety
of samples, the quantized model can be retrained with the
outputs from original model as teacher signals. This method
is highly effective since we do not need to prepare a new
labeled dataset for retraining.

IV. CASE STUDY

This section shows the experimental results when applying
our proposed method to VGG-16 and ResNet-50. These two
models achieve outstanding performance in image classifica-
tion tasks [18]. The experiments were conducted using the
computational resource of the Al Bridging Cloud Infrastruc-
ture (ABCI) ! provided by the National Institute of Advanced
Industrial Science and Technology (AIST). Table II shows the
hardware specification of a compute node in ABCIL.

Both models were trained using ImageNet, which is a
dataset of images established for the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [19]. Although the
ImageNet dataset is publicly available, we assume a situation
where we cannot access the original labeled dataset for the
retraining method, and we use another image dataset, the
CIFAR dataset established by the Canadian Institute For
Advanced Research [20] instead. Since the CIFAR dataset
is compiled by a completely different organization than the
original dataset, we can evaluate how our method works with
such a different dataset.

A. Case Study of VGG-16 model

VGG-16 is a deep neural network model which won the
first place in the ILSVRC 2014 classification task. It is a
convolutional neural network designed for image classification
tasks [21]. Even though this model has been exceeded by
newer network architectures such as Inception or ResNet, it is
still one of them most important neural network architectures
for image classification tasks since most of the newer neural
network architectures in computer vision is inspired by VGG-
16.

1) Model analysis: Figure 5 shows the VGG-16 architec-
ture. The 16 layers in the model can be divided into six blocks
depending on the size of their inputs and filters.

We counted the number of weights and biases in each layer
separately. Figure 6 shows the number of weights in each
layer. It indicates that the number of weights in the last block

Thttps://abci.ai/
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occupies the majority of the entire model. The number of
weights has the same trend as the biases, but the number of
biases is less than the number of weights by 10° times and
thus insignificant in terms of storage space.

2) Model quantization: Quantization was applied to both
biases and weights with varying number of centroids.

Figure 7 presents the model size of the quantized VGG-
16 models when quantizing the weights. We found that
quantizing the weights in the 1°/—13*" layers and 16"
layer did not decrease the model size more than 15%.
Quantizing the weights in the 14** and 15" layer reduced
the model size by 20% and 65%, respectively. Therefore,
we decided to quantize the weights in the 14" and 15" layer.
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Figure 8 presents the model accuracy of the quantized
VGG-16 models when quantizing the weights. We found that
quantizing the weights in 14 and 15" layer at the same time
decreases the accuracy more than 10% when the number of
centroids is less than 8.

We found that quantizing the biases did decrease the model
size for more than 15% of the original model. Also, quantizing
the biases in any of the layers did not degrade the accuracy
more than 5%.

Based on these observations, we decided to quantize the
biases in all layers using one centroid and the weights in the
14" and 15'"1ayers using 8-256 centroids.

3) Model retraining: Our retraining method was applied
to VGG-16. Figure 9 presents the model accuracy of the
quantized VGG-16 models our proposed retraining method for
100 epochs.

We found that using 16 or less centroids clearly degrades
the model accuracy. The model accuracy is able to recovered
retraining method due to the suitable number of centroids in
model quantization remains the necessary parameter value in
the model, which makes the model still has learning ability
to improve the accuracy. The accuracy of quantized model
converged to the accuracy of original model when using 32 or
more centroids due to the number of centroids is sufficient to
keep the necessary parameter value of learning ability in the
model. Therefore, the suitable number of centroids is required
for the efficient quantized model.
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Fig. 9: Retraining quantized VGG-16 models

Quantizing the 14" and 15" layers using 32-256 centroids
achieved nearly the accuracy of the original model (75.12%).
Therefore, the best configuration for quantizing the VGG-16
model is to quantize the biases in all layer using one centroid
and the weights in 14*" and 15" layer using 32 centroids
because it compressed to possible smallest model size without
significant accuracy loss.

B. Case Study of ResNet-50 model

ResNet-50 is a deep neural network model which won the
first place in the ILSVRC 2015 classification task. ResNet is a
short name for Residual Network. As the name of the network
indicates, the new terminology that this network introduces is
residual learning [22]. Residual layer is an important compo-
nent layer in the ResNet model. It enables residual learning,
which is skipping over layers to solve gradient vanishing
problem to reuse the parameter from the previous layer in
the model.

1) Model analysis: There are three types of layers in
ResNet-50 when classified by the number of parameters in
a layer. The first type is the max pooling layer which does
not have any parameter. The second type is the convolutional
layer which has two parameters: (1) bias and (2) weight.
The third type is the batch normalization layer which has
four parameters: (1) alpha (2) beta (3) mean and (4) standard
deviation. Figure 10 shows the ResNet-50 model architecture.
The 50 layers in ResNet-50 can be divided into six blocks by
the size of input and the size of filter. Eeach block has a max
pooling layer followed by a batch normalization layer.

We counted the number of parameters in each layer sepa-
rately. Figure 11 shows the number of weights in each layer.
The number of weights is more than the number of biases,
alpha, beta, mean and std by 10* times.

2) Model quantization: Quantization was applied to the
biases, weights, alpha, beta, mean and std values in the
ResNet-50 model.

Figure 12 presents the model size when quantizing the
weights. We found that quantizing the weights in the 15t-227¢
layers is not decreasing more than 20% of the original model,
but quantizing the weights in block3 (2374—40" layers) and
block4 (41°1—49t" layers) makes the size of quantized model
20% smaller. Quantizing the weights in block3 and block4
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Fig. 10: ResNet-50 model architecture

reducing the model size by 20% and 40%, respectively.
Therefore, we focus on quantizing weights in block3 and
block4. Quantized model is validated to calculate the accuracy
of each quantized model.

Figure 13 presents the model accuracy when quantizing the
weights. We found that quantizing the weight in block3 and
block4 layer makes the accuracy of the quantized model is
decreasing by more than 40% when the number of centroids
is less than 16 centroids.

We found that quantizing the biases does not decrease
the model size for more 10% of the original model. Also,
quantizing the biases in the different layer makes the accuracy
of quantized model is not decreasing more than 5% from the
original model.

Quantizing bias, alpha, beta, mean and std value in each
layer provides the same trend result of both model size and
model accuracy. We found that quantizing alpha, beta, mean
and std value does not decrease the model size more than 20%,
but the model accuracy decreases more than 45%.

Based on these observations, we decided to quantize the
biases in all layers using one centroid and the weights in
block3 and block4 using 16-256 centroids except the batch
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normalization layers. The model accuracy when quantizing the
block3 and block4 layers at the same time is reduced less than
30% and the model size is reduced more than 50%.

3) Model retraining: Our retraining method was applied to
ResNet-50. Figure 14 presents the quantized ResNet-50 model
accuracy when applying our proposed retraining method for
100 epochs.

We found that using 128 or less centroids clearly degrades
the model accuracy. In addition, quantizing the 137¢—49'"
layers using 256 centroids, achieves the model accuracy close
to the original model. Therefore, the best configuration to
quantize ResNet-50 is to quantize the biases in all layer using
one centroid and the weights in the 137?—49'" layers using
256 centroids.

V. EVALUATION

We compared the proposed retraining method against the
conventional retraining using VGG-16 and ResNet-50.

Figure 15 shows the improvement of the model accuracy
when applying the proposed and conventional retraining meth-
ods to the quantized VGG-16 and ResNet-50 models for
100 epochs. The accuracy of the quantized VGG-16 model
was 69.88% before retraining. The accuracy of the quantized
VGG-16 model was improved to 74.78% and 74.89% after
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applying the proposed and conventional retraining methods,
respectively. As a result, the difference of accuracy between
the retrained models was only 0.11%.

The accuracy of the quantized ResNet-50 model was
65.22% before retraining. The accuracy of the quantized
ResNet-50 model was 75.09% and 75.12% after applying the
proposed and conventional retraining methods, respectively.
As a result, the difference of accuracy between the retrained
models was only 0.03%.

The retraining time for the quantized VGG-16 and ResNet-
50 models are shown in Fig. 16. It indicates that the proposed
retraining method takes 85.46% less time than the conventional
retraining when applied to VGG-16. Also, our proposed re-
training method takes 82.49% less time than the conventional
retraining when applied to ResNet-50. The proposed retraining
method is clearly faster than conventional retraining method.

VI. CONCLUSION

In this paper, we proposed a novel retraining method for
compressed neural network models to reduce the size of neural
network models without significant accuracy loss. We designed
and implemented our proposed retraining method technique
which does not require labeled dataset as a training dataset.
Vector quantization is applied to compress neural network
model for decreasing model size. We proposed a retraining
method that trains both the original model and the compressed
model without using a labeled dataset. The output vectors from
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the both models were used as a training dataset to retrain the
last layer of the compressed neural network model.

We used VGG-16 and ResNet-50 to evaluate our proposed
methodology. The model size of VGG-16 was reduced by
81.10% with only 0.34% loss of accuracy. The difference of
accuracy after applying the conventional and proposed retrain-
ing was only 0.11%. ResNet-50 was reduced by 52.54% with
only 0.71% loss of accuracy. The difference of accuracy after
applying the conventional and proposed retraining method
with only 0.03%.

A future work is to apply the proposed retraining method to
other neural network models. In addition, the structure of other
neural network models should be investigated to conduct the
efficient retraining method. Moreover, we will try to apply
compression techniques other than quantization before the
proposed retraining.
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