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Abstract—Tomato crops are one of the most important agri-
cultural products at economic level in the world. However, the
quality of the tomato fruits is highly dependent to the growing
conditions such as the nutrients. One of consequences of the
latter during tomato harvesting is nutrient deficiency. Manually,
it is possible to anticipate the lack of primary nutrients (i.e.
nitrogen, phosphorus and potassium) by looking the appearance
of the leaves in tomato plants. Thus, this paper presents a
supervised vision-based monitoring system for detecting nutrients
deficiencies in tomato crops by taking images from the leaves of
the plants. It uses a Convolutional Neural Network (CNN) to
recognize and classify the type of nutrient that is deficient in the
plants. First, we created a data set of images of leaves of tomato
plants showing different symptoms due to the nutrient deficiency.
Then, we trained a suitable CNN-model with our images and
other augmented data. Experimental results showed that our
CNN-model can achieve 86.57% of accuracy. We anticipate the
implementation of our proposal for future precision agriculture
applications such as automated nutrient level monitoring and
control in tomato crops.

Index Terms—Agriculture, image processing, deep learning,
computer vision, color analysis

I. INTRODUCTION

Currently, approximately one third of food for human con-
sumption is wasted in the various stages of the supply chain.
It is estimated that 40% of agricultural production is directly
affected by poor plant care, being reactive to pests and diseases
that the plants present [1]. Based on data from the Food and
Agriculture Organization (FAO), an estimated 1.3 billion tons
of food is wasted every year in the world, which it is equivalent
to one third of the food designated for human consumption
[2]. Moreover, the waste existing during the production phase
reaches 28% of the total evaluated [2]. On the other hand, food
waste in Latin America is considered to be 127 million tons
per year which means 9.8% of world waste [2]. Thus, having
efficient agricultural practices allows obtaining an optimum
use of the crop, a reduction of environmental pollution, and
reduction of waste [3]. At present, these practices allow the
farmer to supply the necessary amount of nutrients to the
plants, at the time they need them.

One of the most important agricultural products at an
economic level in the world is the tomato [4]. Thanks to the
production standards that this fruit has achieved over the years,
it has allowed the demand to have increased considerably

nationally and internationally for its quality, performance,
and profitability. For example, in Mexico, tomato crops have
increased by 50% over the years. Thus, in 2010, more than 54
thousand hectares for its cultivation were destined. In 2014,
based on data obtained by the Mexican Agrifood and Fisheries
Information Service (SAGARPA, from Spanish), tomato crops
took second place while chili cultivation continued taking first
place in crops in Mexico. [4]. Moreover, Mexico is considered
the main tomato supplier worldwide with a market share of
25.11% of all world exports [5].

Tomato is a perennial plant that grows as an annual crop
belonging to the Solanaceae family which includes different
crops such as chili peppers, potatoes and eggplant, among oth-
ers [6]–[9]. Tomato harvesting can be carried out throughout
the year. However, it is important to take into account frost
and extreme heat, as they can damage the plant [10].

One of the problems in tomato crops is nutrient deficiency
because it impacts on the quality of the plant and the fruits.
Nitrogen, phosphorus and potassium are known as primary
nutrients vital for many plants including tomatoes. Literature
[11], [12] has reported symptoms in the leaves of tomato crops
where those nutrients are deficient, as shown in Figure 1.
For example, large leaves of the plant change from green to
yellow and the small ones turn pale when there is lack of
nitrogen. Leaf veins of the plant turn purple color in absence
of phosphorus, and lacking of potassium turns the edges of
leaves yellow [11], [12].

Tomato has become, over the decades, one of the star crops
as commercial and homegrown crops. This product is used in
a large number and variety of dishes and can be consumed in
different presentations, which allows its great acceptance by
consumers and one of the sources of vitamins and minerals
present in their diet [13]. As consequence, searching for
technological solutions to improve the best practices in these
types of crops has increased, due to the importance present in
the different aspects mentioned above. For example, precision
agriculture and robotics have been implemented [14], as well
as sensor-based and vision-based monitoring [15]–[19].

In this work, we propose a supervised vision-based moni-
toring system of the leaves of tomato for predicting nutrients
deficiencies in the crops. It uses a Convolutional Neural
Network (CNN) to recognize and to classify the type of
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Fig. 1. Thumbnails of examples in the dataset created for this work. First
row are leaves with nitrogen deficiency (yellow leaves); second row are leaves
with phosphorus deficiency (purple veins of leaves); third row are leaves with
potassium deficiency (yellow in edges of leaves), and fourth row are leaves
with in normal levels of nutrients.

nutrient deficiency in tomato plants. First, we create a data
set of images of leaves of tomato, where the images show
different symptoms that the tomato plant present when one
of its main nutrients –nitrogen, potassium and phosphorus– is
missing. The data set was validated by chemical measurements
made on the soil without nutrients and with the presence of
them. Secondly, we performed four experiments to compare
the accuracy of the classification of the CNN: (i) using the
images of the data set, (ii) using the images with contrast
enhancement, (iii) augmenting the data set with images ob-
tained from the Internet with a protocol-basis, and finally, (iv)
using the augmented data set with contrast enhancement of
the images.

The contribution of this work consists of developing a com-
puter system for monitoring nutrients deficiencies in tomato
crops through the visual analysis of their leaves. To the best
of our knowledge, this is the first time that a vision-based
analysis is done over tomato leaves for monitoring nutrient
deficiency. Moreover, this work is an on-going research for
enhancing tomato crops by modifying nutrients, in an informed
way, even before fruits have been grown in the plant.

The remainder of the paper is organized as follows. Section

II presents the related work of relevant technologies use in
agriculture, giving some examples. Section III presents an
overview of our proposal and the methodology followed. In
Section IV, we show the experimental protocol carried out
to generate the data set. Section V presents the results of
the prediction of the CNN, whereas Section VI offers the
conclusions of this work.

II. RELATED WORK

Over the years, advances in technology using robotics in
agriculture has become more popular. Based on the needs
of each country or region, projects and research have been
carried out to meet them. In Japan, for example, Noguchi and
Barawid [20] investigated the usage of mobile robots in the
form of tractors to perform the necessary tasks within a rice,
soybean and wheat crop. These tasks begin with the sowing of
seeds and continue with the cultivation of plants, fertilization
and monitoring of the crops and harvest of final product. The
project was designed to cover large farmland, focusing on user
safety with the use of multiple inexpensive sensors and having
a system for locating and searching for better trajectories.

Pollution and variety of climates have been issues of
concern in agriculture activities, so different investigations
have been carried out to protect crops from these factors.
In [15], Hemming et al. presented a room equipped with
different robots, sensors and specialized areas in each type of
cultivated plant. This room can control temperature, humidity
and pressure, allowing it to adapt to any type of plant.
However, this has not been fully automated, requiring human
intervention to perform certain tasks such as supervision of
the tasks performed by the robots or detection of color of the
fruits to be harvested.

On the other hand, precision agriculture has get involved
in combination of robotics and agriculture. To achieve high
quality in the cultivated food and crop safety for the user and
the final product, projects based on GAP (Good Agricultural
Practices) have been carried out with the help of measurement
tools, performance sensors and analysis software seeking to
implement a controlled harvest [14].

Due to the increase in environmental awareness in recent
years, it is perceptible and necessary to use new technologies
to obtain better crops and provide greater security for the user.
And because these technological advances have their advan-
tages and limitations, it is important working with them to
obtain greater benefits. For example, to calculate the necessary
amount of treatment to achieve specific exterior maturation
of freshly harvested oranges for final consumption, a project
based on image processing was carried out to detect their
coloration [21]. To carry out the evaluation it was necessary
to have an Android device and the use of its camera. The cal-
culation obtained from the detected image shows the amount
of treatment necessary based on the established color indices.
Furthermore, vision-based systems have been used for color
detection and analysis of the tomato during its growth [16]–
[19], and thus finding the ideal date to harvest and sell the
product. Also, this type of technology has been used during the



Fig. 2. Proposed vision-based monitoring system for detecting nutrients
deficiencies in tomato plants.

phase of accommodation and distribution of the product, where
the tomato can be classified as defective or non-defective, and
mature or immature for its separation.

Thus, based on the detection of the color of fruits, it is
possible to determine the ripeness of the fruit at different
stages of the supply chain, being the main ones during the
growth and the harvest of the plant. There are different works
based on the color of the fruit peel to be evaluated. For
example, in [22] the authors analyzed the coloring of papaya
for its final harvest. With this, it is sought to obtain better
products for sale and final consumption without having to
use physical and chemical processes to obtain the required
maturation.

As described above, the previous projects have the advan-
tage of using accessible technologies for a better quality of
the final product, however, it only focuses on the analysis of
a single fruit (e.g., tomato or papaya) and its harvest time, not
on the rest of the plant and its complete life cycle.

Recently, deep learning methods have been used to analyze
the characteristics of the leaves of different plants and thus
to detect diseases or pests. In [23], it is presented a system
capable of detecting the lack or excess of nutrients in plants. It
is important to work with plant pests and diseases to save on
resources such as pesticides, however, it is equally important
to focus on plant nutrients and deficiency thereof to obtain
healthy plants and quality products. In this work, we take
advantage of deep learning to analyze the leaves of the tomato
crops for detecting nutrients deficiency.

III. DESCRIPTION OF THE PROPOSAL

This section describes the proposed vision-based system for
monitoring nutrients deficiencies in the leaves of tomato crops.

The proposal consists of using a single RGB-camera that
takes photographs of tomato plants. Contrast enhancement and
resizing are applied to the images for further analysis. Then,
each image is input into a pre-trained CNN-model that is
able to classify three possible nutrient deficiencies (i.e. lack of
nitrogen, lack of phosphorus and lack of potassium) or normal
level of nutrients in the plant. Figure 2 shows the proposed
system. Furthermore, the methodology for developing our
monitoring system comprises the following steps: (i) data ac-
quisition, (ii) data pre-processing, (iii) CNN-model construc-
tion, and (iv) CNN-model evaluation. Figure 3 summarizes
the workflow of the monitoring system implementation. The
details of the steps are described following.

Fig. 3. Workflow of the vision-based monitoring system implementation.

Fig. 4. Examples of the chemical testers used in the dataset protocol: (a)
sample test of nitrogen deficiency, (b) sample test of phosphorus deficiency
and (c) sample test of potassium deficiency. In each pair of images, the tester
is shown to the left and the corresponding state of the plant is shown to
the right. Five levels of nutrients can be measured with the tester: depleted,
deficient, sufficient, adequate and surplus.

A. Data Acquisition

This step consists of creating a dataset of multiple images
of leaves of tomato plants and the associated level of nutrients.
In that sense, we collected data, during 10 weeks, from tomato
plants harvested in separate pots located at the backyard of a
house in Mexico City, Mexico. At the beginning, the soil was
washed with water several times to eliminate any nutrient.
Then, three plants were grown in the pots with that neutral
soil. We added the primary nutrients once per week to those
plants. At the end of the period, all the plants had sufficient
nutrients to be considered with normal levels. We measure
the level of nutrients manually, using chemical nutrient testers
as depicted in Figure 4. One time per week, we tested the
nutrients in the three plants following the next steps:

1) Take a sample of soil 5 cm deep from the surface of the
pot and place it in an isolated container.

2) Add water to the container (5 times the amount of the
soil sample).

3) Stir the water with the soil and let stand until the soil
settles at the bottom of the container.

4) With a dropper, take the water from the surface of the
container to fill the samples of each element (nitrogen,
phosphorus and potassium).

5) Add the associated chemical reagent to each sample and
stir until combined with water.

6) Wait for the reaction to occur and evaluate the amount of
nutrient in the pot (see Figure 4).

After the ten weeks, the reported levels of nutrients for each
of the three plants were summarized as shown in Table I. This
table summarizes the pH values measured in the soil (not used
in this work), the level of nitrogen, the level of phosphorus
and the level of potassium, where each column corresponds to
one plant. Five different levels of nutrients can be reported (as
specified in the testers): depleted, deficient, adequate, sufficient
and surplus.

During the ten weeks, 596 images of 3024 × 4032 pixels
size were obtained at different hours of the day and shooting in
different angles to maximize the diversity of images. From this



TABLE I
LEVEL OF NUTRIENTS IN THE SOIL. MEASURES DONE ONCE PER WEEK.

Week pH Phosphorus Potassium Nitrogen
1 6.5 adequate depleted depleted
2 6.5 adequate depleted deficient
3 6.5 adequate depleted deficient
4 6.5 adequate deficient adequate
5 6.5 adequate deficient surplus
6 6.5 sufficient deficient surplus
7 6.5 sufficient deficient surplus
8 7 adequate deficient surplus
9 7 adequate adequate surplus

10 6.5 adequate adequate depleted

set of images, 213 were tagged as lack of nitrogen (nitrogen),
168 as lack of potassium (potassium), 94 as lack of phosphorus
(phosphorus), and 121 as normal level (normal). Figure 1
shows some examples of the created dataset. We considered
lack of nutrient if the chemical tests were found depleted or
deficient; otherwise, the level of nutrient was tagged as normal.

B. Pre-processing

This step comprises two main data pre-processing: contrast
enhancement and image resize. In the first case, we applied
contrast enhancement to original images to emphasize the
color in the leaves. For that pre-processing, we computed a
gamma transformation on the RGB channels of the images
[24], as it is shown in Eq. (1):

s(r) =


0 ; r < a

(L− 1)
[
r−a
b−a

]γ
; a ≤ r ≤ b

(L− 1) ; r > b

(1)

where the images have, for each RGB channel, gray levels in
the range [0, L − 1]; r is the input gray level to the gamma
transformation, s is the resulting output gray level, and [a, b]
It is the input range of gray levels of interest (i.e., to be
enhanced). For all images in the experimentation, the γ value
was set to 1 and we used the following input range of gray
levels to contrast enhancement: [0.2 ∗ (L − 1), 0.6 ∗ (L − 1)]
for the red channel, [0.3 ∗ (L− 1), 0.7 ∗ (L− 1)] for the green
channel, and[0, (L− 1)] for the blue channel.

In the second step of data pre-processing, we reduce the
original images (3024 × 4032 pixels) to 28 × 28 pixels size
to reduce the computing task in the CNN-model for further
analysis, as described below.

C. CNN-model Construction

After pre-processing the images, we trained a CNN classifier
model to detect four different classes related to the nutrients
deficiencies in the tomato plant. Those classes are: nitrogen,
phosphorus, potassium and normal. We selected CNN as clas-
sifier based on its ability to handle images and to automatically
extract features from them. In a nutshell, CNN is a type
of machine learning that learns to perform a regression or
classification task from images, multimedia or texts [25].

In this work, we designed a CNN that receives as input
a 28 × 28 pixel size of an RGB color image. The image

Fig. 5. Architecture of the CNN-model implemented in this work.

inputs into a network of three convolutional layers with 8,
16 and 32 filters of 3× 3 size. Each of these layers continues
with a rectification layer that activates a nonlinear function
(rectified linear unit, ReLU) and reduces the spatial size of
the maps in order to avoid redundant information. At the
end, there is a fully connected layer in which all neurons are
connected with the units of the previous layer. The last of these
layers is the one that contains the characteristics to classify
the images. A softmax layer normalizes the output of the last
fully connected layer. Finally, it computes the classification
for detecting nutrient deficiency in the input image. Figure 5
shows the architecture of the CNN-model used in this work.

To get a suitable trained CNN-model, we used the stochastic
gradient descent with momentum (SDGM) algorithm for train-
ing, and we varied two hyper-parameters: the initial learning
rate (ranging from 1× 10−6 to 1× 10−2) and the maximum
number of epochs (from 200 to 500). We fixed the momentum
value to 0.9 and the regularization term to 1× 10−4.

D. CNN-model Evaluation

The last step of the methodology is to test the performance
of the trained CNN-model classifier. We calculated the ac-
curacy metric of the output response of the CNN-model as
expressed in Eq. 2), where TP , TN , FP and FN represent
the true positive, true negative, false positive and false negative
values, respectively.

accuracy =
TP + TN

TP + TN + FP + FN
(2)

IV. EXPERIMENTATION

From the above methodology, one critical part is to train
and test the CNN-model performance. However, CNN-models
depend on a diverse of settings such as the choice of the hyper-
parameters to find a suitable architecture, or the preparation of
input data [26]. In that sense, we carried out four experiments
related to the preparation of input data as follows:

• Experiment 1: use the original images as input data.
• Experiment 2: use the contrasted images as input data.
• Experiment 3: use the original images augmented with a

subset of images from Internet (see below) as input data.
• Experiment 4: use the contrasted images augmented with

a subset of contrasted images from Internet (see below)
as input data.

In all the cases, the input data was partitioned into 70%
for training (418 images) and 30% for testing (178 images).
For the augmentation procedure, we extended the training set



TABLE II
RESULTS OF PERFORMANCE OF THE CNN-MODEL IN Experiment 1.

Test Learning rate Epochs Test acc. (%) Training acc. (%)
1 0.000001 350 41.90 43.88
2 0.000001 500 34.64 43.88
3 0.00001 350 43.58 82.01
4 0.00001 400 46.37 88.49
5 0.00001 500 45.81 89.93
6 0.00005 200 45.81 99.04
7 0.00005 300 50.84 99.52
8 0.0001 200 51.96 99.76
9 0.0001 250 54.75 99.04
10 0.0001 300 49.72 99.76
11 0.0001 350 56.42 99.28
12 0.0001 400 50.84 99.04
13 0.0001 500 50.84 99.28
14 0.0005 200 43.02 99.04
15 0.001 300 55.31 99.52
16 0.001 350 49.72 99.04

with 58 images retrieved from the Internet. The latter were
collected manually by inspection and the level of nutrients
were tagged using the information in the description of the
web sources. In Experiment 4, those images from Internet were
also contrasted using the same pre-processing method as the
ones in the dataset.

We varied only two hyper-parameters of the CNN during
each experiment. Those are the initial learning rate and the
maximum number of epochs (see Section III-C). We conducted
16 combinations of these hyper-parameters to evaluate the
performance of the CNN-model. The accuracy metric was
chosen for the evaluation.

All the experiments were implemented in Matlab using the
Deep Learning Toolbox. A personal computer with the fol-
lowing characteristics was used for experimentation: MacBook
Pro (13 inch, Late 2011), processor Intel Core i7 at 2.8 GHz,
two CPU cores, and RAM of 4GB 1333 MHz DDR3.

The dataset used in this work, as well as the codes
for experimentation, can be found in the GitHub repository
(https://github.com/ccevallo/Monitoreo Jitomate).

V. RESULTS AND DISCUSSION

As explained earlier, four experiments were carried out. The
details of each one are presented as follows.

A. Experiment 1 – Original images

We tested the performance of the CNN-model trained with
the original images in our dataset. Table II summarizes the
results of this experiment. As shown, the obtained CNN-model
was over-fitted because in the training phase, it performed
∼ 99% of accuracy while in the testing phase, 50% of the
results range between 45% and 52% of accuracy; and the best
performance of the CNN-model was 56.42% of accuracy. For
the best CNN-mode, the initial learning rate was set to 0.0001
and the maximum number of epochs was 350.

B. Experiment 2 – Contrasted images

This experiments considers the contrasted images of our
dataset. Table III summarizes the results of performance of

TABLE III
RESULTS OF PERFORMANCE OF THE CNN-MODEL IN Experiment 2.

Test Learning rate Epochs Test acc. (%) Training acc. (%)
1 0.00001 250 44.69 76.74
2 0.00001 300 39.11 84.65
3 0.00001 350 43.58 85.61
4 0.00001 400 48.60 89.21
5 0.00001 500 46.37 92.09
6 0.00005 350 49.72 99.52
7 0.0001 250 54.75 99.52
8 0.0001 300 43.02 99.28
9 0.0001 350 49.16 99.52

10 0.0001 400 46.37 99.76
11 0.0005 350 52.51 99.76
12 0.0005 450 45.81 99.76
13 0.001 300 45.25 99.28
14 0.001 350 50.84 99.28
15 0.001 400 47.49 99.04
16 0.001 800 43.58 99.28

TABLE IV
RESULTS OF PERFORMANCE OF THE CNN-MODEL IN Experiment 3.

Test Learning rate Epochs Test acc. (%) Training acc. (%)
1 0.00001 300 67.60 79.83
2 0.00005 350 83.24 99.16
3 0.0001 300 84.36 99.79
4 0.0001 350 85.47 98.95
5 0.0001 400 77.65 98.95
6 0.0005 300 82.68 98.95
7 0.0005 350 84.36 99.16
8 0.0005 400 79.33 99.37
9 0.001 250 84.36 99.16

10 0.001 300 86.59 99.58
11 0.001 350 84.36 99.37
12 0.001 400 83.24 99.37
13 0.001 550 82.12 99.16
14 0.01 250 79.33 99.95
15 0.01 300 82.12 99.74
16 0.01 350 82.12 99.16

the CNN-model. It can be observed that 50% of the test
results are between 44% and 49% of accuracy. This experiment
stills reported over-fitting as shown in the table. Furthermore,
the best CNN-model performed 54.75% of accuracy using an
initial learning rate of 0.0001 and the maximum number of
epochs of 250. It can be said that, compared to Experiment 1,
this experiment was not better since the test accuracy tends to
be less than 50%.

C. Experiment 3 – Original and augmented images

This experiment consisted of augmented our dataset with
images found on the Internet. The results of the experiment
are reported in Table IV. It shows an increasing of the test
accuracy, reporting the 50% of the results to be between 82%
and 84%. The best test result was 86.59%, while 67.60% was
the lowest of the results. The hyper-parameters configuration
that allowed the best CNN-model was 0.001 of initial learning
rate and 300 epochs. Thus, data augmentation improves the
performance of the CNN-model.

D. Experiment 4 – Contrasted and augmented images

The last experiment was conducted using the contrasted
images of our dataset and contrasted images augmented from



TABLE V
RESULTS OF PERFORMANCE OF THE CNN-MODEL IN Experiment 4.

Test Learning rate Epochs Test acc. (%) Training acc. (%)
1 0.00005 350 80.45 98.74
2 0.0001 200 82.68 99.37
3 0.0001 250 85.47 99.16
4 0.0001 300 83.24 98.53
5 0.0001 350 82.12 98.95
6 0.0005 300 80.45 99.79
7 0.0005 350 86.59 99.37
8 0.001 250 86.03 99.37
9 0.001 300 86.59 99.37
10 0.001 350 85.47 99.58
11 0.001 400 83.80 99.37
12 0.001 450 84.92 99.37
13 0.01 250 83.80 99.16
14 0.01 300 85.47 99.37
15 0.01 350 84.36 99.74
16 0.01 400 84.36 99.37

TABLE VI
SUMMARY OF RESULTS PERFORMED BY THE CNN-MODEL.

Experiment Learning rate Epochs Test acc. (%) Training acc. (%)
1 0.0001 350 56.42 99.28
2 0.0001 250 54.75 99.52
3 0.001 300 86.59 99.58
4 0.0005/ 0.001 350 / 300 86.59 99.37

the Internet. Table V summarizes the results of this experiment.
It can be seen that 50% of the results are between 83% and
85% of test accuracy. As in Experiment 3, the best result was
86.59% but the lowest result was 80.45% of accuracy. For the
best CNN-models, the initial learning rate was set to 0.0005
and 0.001 while the number of epochs was set to 350 and 300,
respectively (tests number 7 and 9).

E. Discussion

Based on the results obtained in the experiments, it can be
seen that Experiment 4 reports the best test accuracy. In ad-
dition, over the tests, the CNN-model performed consistently,
obtaining 84.11±1.93 of accuracy. In addition, Table VI sum-
marizes the performance of the CNN-model in the different
experiments carried out. It reports the initial learning rate, the
maximum number of epochs, the test accuracy and the training
accuracy of the best models in each of the experiments. Also,
Figure 6 shows the accuracy of each experiment. It can be
observed that the augmentation of the images highly increases
the performance of the CNN-model going up to the mean test
accuracy (71.09%) of the best models in the experiments.

Some advantages of this vision-based monitoring system
can be summarized as follows. It is possible to anticipate the
insufficiency of primary nutrients in the tomato crops using
this monitoring system over the leaves of the plants. Since
the dataset was created using different distances and angles
for shooting the camera, then the detection of the nutrients
does not require specifications in the method of gathering the
images. In addition, the adoption of this system would lead
on saving resources of nutrients, and increasing the quantity
and quality of the plants.

Fig. 6. Summary of the test accuracy performed by the best CNN-models
at each experiment. The dashed lines represent the minimum (54.75%) and
maximum (86.59%) values, and the straight line represents the mean accuracy
(71.09%).

However, there are still some limitations that should be
solved before its implementability. For example, the archi-
tecture of the CNN-model proposed here has three degrees
of depth, but more accurate solutions might require a more
complex architecture. Also, the augmentation procedure is
limited to a manual research on Internet; thus, it requires
more images to achieve better training of the CNN-model.
Furthermore, this work does not consider a rigorous study on
the light conditions and the effect of the contrast enhancement.
Thus, a study on the robustness of this and other environmental
conditions should be done. In addition, this CNN-model is
focused on the classification of deficiency or normal levels of
the three primary nutrients; but the prediction of the nutrient
level is still challenging and not provided by our proposal. In
terms of the training process, this approach looks to be over-
fitted as shown in training versus testing accuracy values (see
Table VI). In this regard, a more in-depth exploration of the
CNN architecture is required. Also, it is important to consider
the resizing of the images from 3024×4032 to 28×28 pixels
in which it is possible that important information has lost.
Lastly, this monitoring system works for tomato crops, but
other plants are not considered so far.

To this end, and to the best of our knowledge, this is the
first time a vision-based monitoring system for detecting the
nutrient deficiency in plants, over the leaves and before the
fruits, is proposed. Thus, we consider our ongoing research
very promising for future precision agriculture applications.

VI. CONCLUSIONS

Throughout this paper, we presented a vision-based mon-
itoring system for detecting nutrients deficiencies in tomato
crops by taking images from the leaves of the plants.

In this work, we created a dataset with images of tomato
leaves with different symptoms suffered by the lack of primary
nutrients (i.e. nitrogen, phosphorus and potassium) in the soil.
This dataset was used for trained a CNN-model for classifying
four levels of nutrient absence in the plant: lack of nitrogen,
lack of phosphorus, lack of potassium, or normal presence.



We carried out four experiments to determine two hyper-
parameters in the CNN-model and the input data that best
influences in the performance of the classification model. After
the experiments, we trained a CNN-model that performed
86.57% of accuracy, using contrasted and augmented images
from our dataset and from the Internet.

As future work, we are considering to increase the number
of images in the training set to study the robustness of the
CNN-model due to light conditions and the effect of the
contrast enhancement, as well as, to optimize the architecture
of the model. Also, it is important to determine the impact of
image reduction in the predictability of the CNN. Lastly, we
are interested on implementing this approach in a precision
agriculture application.
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Agrı́colas en la Agricultura Urbana y Periurbana. [Online]. Available:
http://www.fao.org/3/a-i3359s.pdf

[11] Agrologica. (2018, March) Deficiencias y excesos nutricionales
en tomate: sı́ntomas y corrección. [Online]. Available:
http://blog.agrologica.es/
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