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Abstract—Deep neural networks are capable of solving com-
plex control tasks in challenging environments, but their learned
policies are hard to interpret. Not being able to explain or verify
them limits their practical applicability. By contrast, decision
trees lend themselves well to explanation and verification, but
are not easy to train, especially in an online fashion. In this work
we introduce Q-BSP trees and propose an Ordered Sequential
Monte Carlo training algorithm that efficiently distills the Q-
function from fully trained deep Q-networks into a tree structure.
Q-BSP forests are used to generate the partitioning rules that
transparently reconstruct an accurate value function. We explain
our approach and provide results that convincingly beat earlier
online policy distillation methods with respect to their own
performance benchmarks.

I. INTRODUCTION

Deep reinforcement learning (RL) has excelled at automati-
cally learning human-level performance in a number of control
and gaming tasks [1]. Indeed, deep learned policies now exceed
human capabilities in complex video games like StarCraft
and Dota [2]. Despite impressive performance, the reasoning
behind such policies remains impenetrable, which can lead to
undesirable and even dangerous behaviour [3]. For applicability
in the real world, it is necessary for the policies to satisfy
certain guarantees, such as stability [4], correctness [5] and
robustness [6]. Confirming these characteristics directly for
deep learned policies is typically intractable [7].

Distillation [8] is an effective method to train models that
are often more compressed [9], more interpretable [10], more
structured [11]–[13], or shallower [14]. Recently, researchers
studying the safety of reinforcement learning have applied
forms of imitation learning [15] to distill policies from trained
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deep neural networks to tree structure representations in an
active-play setting [16], [17]. In this context, a fully-trained
deep reinforcement learning algorithm [1] is observed as it
performs actions in an environment (e.g., Cart-Pole [18]). All
the transitions executed by the policy are passed through
an online distillation algorithm that aims to condense the
information into a desirable tree structure. Figure 1 presents a
summary of the process.

We improve and extend the research of [16], [17] by
proposing a novel, efficient, self-consistent tree distillation
method that may be performed online and that achieves better
accuracy than other online and offline methods.

In summary, our contributions are as follows:

• We present a novel data structure we call the Q-BSP
tree, to learn distilled reinforcement learning policies. Q-
BSP tree nodes are strictly more expressive than standard
decision tree nodes and are effective at capturing pair-wise
dependencies among input features.

• We present a new combined regression and ranking
algorithm based on the particle Gibbs sampler, which
enables the online distillation of deep reinforcement
learning policies into Q-BSP trees. We find that this
method performs better and is relatively more scalable than
previous distillation approaches applied to reinforcement
learning policies.

• In addition to the best regression and gameplay perfor-
mance, the policies distilled by the trees closely resemble
the neural network in terms of feature importance. We
introduce this as a new effectiveness metric for distillation.
In common with the work in [16], we formally verify the
correctness of our distilled policy trees for the Cart-Pole
environment.
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Fig. 1. Architecture of our Distillation Process. The Deep Q-Network outputs a Q-value for every action in the action space. The argmax of those Q-values
(shown in red) is used to pick the best action to perform in the environment (denoted by a in figure). The action is performed in the simulation environment
and the new states are collected in a buffer along with the Q-values that will result from feeding those states into the DQN. The data collected in the buffer is
finally used to modify distilled decision trees, after which the buffer will be cleared.

II. PRELIMINARIES

A. Reinforcement Learning and Q-function
The objective of reinforcement learning is to find a policy that

guides the agent’s actions in an environment so as to maximize
the cumulative rewards the agent ultimately receives [19]. The
environment here is formally described by a Markov Decision
Process. A Markov Decision Process is a tuple (S,A, P,R)
where S defines the state space, A is a finite set of actions,
P (s, a, s′) is the probability that action a taken in state s will
lead to state s′ and R(s, a, s′) is the immediate reward received
after transitioning from state s to state s′ due to action a.

Q-function is a function of a state-action pair and returns
a real value Q : S × A → R. Q(s, a) represents the
expected cumulative future reward assuming the agent in state
s and performs action a and then continues playing until the
end of the episode by following the optimal policy. While
training, in any state s, either a random action (for exploration)
or an action a with the highest Q-value is performed, i.e.
a = argmaxai∈AQ(s, ai) (for exploitation). The Q-function
for continuous or large state spaces is intractable to tabulate
explicitly, and hence is often represented by a neural network.
This network is referred to as a Deep Q-Network (DQN) [1]
and is the focus of distillation in this paper.

B. Decision Trees : Evolution from CART to BSP Trees
Decision trees and random forests have a rich literature [20]–

[22]. In CART [20], a node in a decision tree is split in
two steps. First, the feature to be split is decided and then a
location along the chosen feature is finalized for the splitting.
The algorithm generally follows a greedy strategy to optimize
for some metric related to information gain. These decision
trees are used by [16] and require the entire dataset to be
loaded in memory to compute this gain metric for every split.
This prevents distillation in an online fashion.

Self-consistency, as described in [23], is a property exhibited
by a statistical process wherein restricting a process on a convex
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Fig. 2. Structural Representation of the Q-BSP Tree for a Cart-Pole
environment with 4 state dimensions (X1, · · · , X4) and 2 actions. Note
that in our tree structure, there are 2 trees, each representing the Q-value for a
single action. Each node encodes mathematically richer boundary expressions
and the output of one action tree is fed into the other. Just like in a DQN, the
argmax over the Q values chooses the action

polygon � to any sub-region 4 ⊆ �, the resulting partitioning
on the sub-region is distributed as if it is directly generated on
4. Mondrian forests [23], [24] and their recent successor Binary
Space Partitioning (BSP) forests [25], [26] exploit this property
to create the generative process for their respective trees. They
are self-consistent online forest methods that have consistently
matched the accuracy of the state-of-the-art offline regression
methods trained on the same dataset. The BSP process [25]
creates space partitions that are strictly more expressive than
decision trees and as a result are generally much smaller than
regular decision trees for the same accuracy. This is why we
use BSP processes as the basis for our Q-BSP forest structure.
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Fig. 3. Diagrammatic representation of the cutting process of a BSP tree leaf [25], [26]. Each node is represented by a polytope and the leaf partition is
shown in red in Step (1). Step (2) shows all the two dimensional projections, red signifying the projection chosen for split in Step (3) .The generation of θ and
u is shown as Step (3). Step (4) shows the parent node divided into two children nodes.

Algorithm 1: Sampling a leaf node to cut k∗ and generating
a cutting hyperplane H (k∗, (d∗1, d

∗
2), θ, u) to divide the

selected leaf from [26]

Input:

{
dataset (x, y)1:N

leaf index k ∈ {1, · · · , b}

Output:

{
cutting hyperplane H(k∗, (d∗1, d

∗
2), θ, u)

cost c
1 for (d1, d2) ∈ {(1, 2), · · · , (1, d), · · · , (d− 1, d)} do
2 for k ∈ {1, · · · , b} do
3 Project data points {x}k ⊂ {x}1:N reaching the

leaf k onto the (d1, d2) dimensions to get

a projection: Πk
(d1,d2) := {(xd1 , xd2) ∈ R2}k

4 Compute the convex hull Ck(d1,d2) on Πk
(d1,d2)

5 Calculate the perimeter Pk(d1,d2) of Ck(d1,d2)

6 Sample
7 a leaf node k∗ to cut, proportional to the sum of

projection perimeters
{∑

d1,d2
Pk(d1,d2)

}b
k=1

8 a dimension pair (d∗1, d
∗
2) for the leaf node k∗,

proportional to the perimeters
{
Pk∗(d1,d2)

}
∀(d1,d2)

9 a direction θ ∈ (0, π], proportional to lll(θ), onto which
Ck∗(d∗1 ,d∗2) is projected (see Fig. 3)

10 u uniformly on the projection of Ck∗(d∗1 ,d∗2) (Fig. 3)

11 Calculate H (k∗, (d∗1, d
∗
2), θ, u) as the straight line passing

through u and crossing through the projection Ck∗(d∗1 ,d∗2),
orthogonal to lll(θ), creating two new leaves.

12 Sample the cost c ∼ Exp
(∑

k

∑
d1,d2

Pk(d1,d2)

)
If cost exceeds budget, reject the proposed cut.

C. Binary Space Partitioning Tree

We summarize the tree generation process for BSP trees in
Algorithm 1 [25], [26]. The levels of the tree are recursively
generated through a series of cutting hyperplanes bounded by
the node polytope. A BSP tree T is implemented through a
set of partitions in the data space. Each partition is typically
represented by a convex polytope � ⊂ Rd and each cutting

hyperplane is parallel to the d − 2 dimensions it does not
cut through. For any arbitrary pair of dimensions (d1, d2) in
the d-dimensional input x = (x1, ..., xd) ∈ Rd, the selection
and splitting process for a leaf node k∗ in T , given a dataset
(x, y)1:N of size N , is summarized as follows.

First, to expand the tree and generate new leaves, an existing
leaf node is sampled in proportion to

{∑
d1,d2

Pk(d1,d2)

}b
k=1

,
where (d1, d2) represents pair of dimensions from a total of
d-dimensions. Pk(d1,d2) denotes the perimeter of the projections
of the input datapoints on dimensions (d1, d2) for leaf k. Once
the node to split has been decided, a pair of dimensions are
sampled to create a cutting hyperplane, in proportion to the
projection perimeters of the datapoints falling in that node.

Now that the node to cut and the dimensions of the cutting
hyperplane have been finalized, the direction of the cutting
hyperplane is decided. An angle is chosen at random from
(0, π], with a probability density in proportion to the length of
the line segment lll(θ) onto which the hyperplane is projected.
After choosing the angle, a random position u is chosen on
that line segment lll(θ). The cutting hyperplane for the node
k along dimensions (d1, d2), denoted H (k, (d1, d2), θ, u), is
formed as a line passing through u and crossing the selected
projection orthogonal to lll(θ) in the selected dimensions.

The cost to cut a node is sampled from an exponential
distribution with the sum of the projection perimeters for
all leaf nodes as its rate. If the cost exceeds a predefined
budget (discussed in Sections III-A and IV), the newly formed
hyperplane is discarded.

III. THE Q-BSP FOREST

Consider an environment where we represent the agent state
s at any step by a d-dimensional vector s = (x1, ..., xd) in
Rd. The agent can perform one of m discrete actions in the
action space A = {a1, a2, · · · , am}. As indicated in Figure
1, a Q-value is generated for every possible action ai ∈ A
in a given state s. This set of Q-values is denoted Q̃(s) =
{Q(s, ai) | ai ∈ A}. The action to be performed is selected as

a = argmax
ai∈A

Q(s, ai). (1)

With a slight abuse of notations, we also refer to Q̃(s) as a
vector in Rm whose ith element is Q(s, ai). The transition



between the agent and the environment are recorded as tuples
of the form of (s, Q̃(s)) ∈ Rd × Rm. The supervised learning
task is then defined as a regression problem to fit our tree-based
model onto the input-output map s 7→ Q̃(s).

An independent collection of trees {T1, .., Tm} is created to
form a forest. Each tree Ti is responsible for regressing the
Q-value Q( · , ai) for a single fixed action ai ∈ A. A tree T
consists of a set of internal nodes containing decision rules and
a set of terminal nodes (leaves) containing parameter values,
as shown in Figure 2. Using notation from [22], let µ =
{µ1, µ2, ..., µb} denote the set of parameter values associated
with each of the b leaf nodes. Every input is associated with a
single leaf node z in T by a sequence of decision rules from
top to bottom, and is then assigned the value µz corresponding
to the leaf node z. The function g(·) encapsulates this tree
traversal and expresses the Q-value for the ith action as

Q(s, ai) = g(s;Ti,µi) + ε, ε ∼ N (0, σ2), (2)

where for each regression tree Ti and its associated leaf node
parameters µi, g(s;Ti,µi) is the function that assigns a leaf
node z and its parameter µz ∈ µi to the input s. ε denotes the
observation variance, assuming homoschedastic data. Once we
predict Q-values for all the m actions, we use Equation (1)
to predict the next action. Finally, we can trivially extend the
forest such that each Q(s, ai) value can be predicted by more
than one tree.

A. Online Expansion of Node Partitions

In Section II-C it is shown that every node in the BSP tree
(including the root) is bounded by the convex hull of the
points it has just observed. The original BSP trees were not
designed for online operation and hence did not include any
way of expanding the partition boundaries in case the incoming
data lay outside root node boundaries. Reinforcement learning
environments often have intractable state space, resulting from
a large number of state dimensions or dimensions with large
ranges. An effective way to overcome this constraint is to learn
in an online setting, where the training examples are presented
as a stream of input data.

We add the flexibility to expand partition (node) boundaries
to accommodate new datapoints that lie outside the current
node boundaries, while making sure that the partitions of their
children are adapted consistently to the extended space. We
note that if a new datapoint is observed, only one of two things
can occur for any given tree: (i) an existing split boundaries
are expanded to include the new datapoint, or (ii) a new split
is generated above the generated split (the split is reset). These
cases are illustrated in Figure 4. Algorithm 2 is summarized
below.

If a new datapoint is observed that is outside the current
boundary of the node, a new convex hull (boundary) is
computed for every dimension-pair projection that includes
the new datapoint. If the dimension-pair includes the cutting
hyperplane, the dividing line is extrapolated with the sample
angle θ for l(θ) and the corresponding hyperplane is expanded
back in the original polytope to follow the line. The new

Algorithm 2: Online Expansion of a BSP Tree T

Input:

{
tree node k
datapoints reaching node k : {s}k

1 Find the datapoints {s′}k ⊂ {s}k outside the partition
boundaries C of node k

2 for (d1, d2) ∈ {(1, 2), · · · , (1, d), · · · , (d− 1, d)} do
3 Compute
4 the projections (xd1 , xd2)k ⊂ {s′}k ∈ R2 onto

dimensions (d1, d2);

5 the new convex hull C∗(d1,d2) on old boundary
points and new projection points{

C(d1,d2)

⋃
(xd1 , xd2)k

}
6 the perimeter of C∗(d1,d2) as P∗(d1,d2)

7 Extrapolate lll(θ) to cut the new boundary C∗
8 Expand the cutting hyperplane H (k, (d∗1, d

∗
2), θ, u) to

mirror the line lll(θ)
9 Recompute the cost c∗ ∼ Exp

(∑
k

∑
d1,d2

Pk(d1,d2)

)
10 if cost c∗� within budget then
11 Recurse over children of k

12 else
13 Find new cuts : (θ, u) on the newly computed convex

hulls C∗

cost with the new perimeters is sampled and if it exceeds the
predefined budget, the cutting hyperplane and all the children
of the node are discarded. A new dimension pair, cutting line
and hyperplane are sampled afresh, following the BSP tree
leaf generation algorithm described in Section II-C.

IV. THE DISTILLATION TRAINING PROCESS

A fixed interval based approach {(Bi,Bi+1)}Si=0 is imple-
mented for Q-BSP training. At the ith stage (i = 0, · · · , S),
all the trees T1, . . . , Tm are under the same budget constraints
(0,Bi] and there might be zero, one or more cuts at every stage,
with the sum of the costs within the pre-allocated budget Bi
(refer Section II-C). When a tree T is initialized, a portion of
the tree is generated in every stage. The tree generated up to
stage i, denoted by T i, is assigned a numeric value ωi ∈ ω1:S

that describes its goodness of fit (regression fit) to the incoming
data so far.

We give a high-level summary of our training method
presented in Algorithm 3. Given the original tree, we proceed
in a sequential top-down manner. At every given tree level, R
mutations of the tree are created. The winner of a particular
level is used to create the R clones at the next level (line 4).
At every level, mutations can include splitting a leaf into two
nodes (line 7), destroying a node along with its children at
that level and recomputing the boundary line, or no change at
all (line 9). All the mutations and the original tree compete to
get the highest score on the training dataset (line 16). These
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Fig. 4. Online expansion of a BSP block. Diagram(a) plots the initial boundary of a BSP block when a new out-of-boundary datapoint appears. Now there are
only two ways in which expansion can work. In (b), we simply extrapolate the original boundary line to accommodate the new point. In (c), we try different
new boundary partitions and choose the one which minimizes the given loss metric

Algorithm 3: The Ordered Sequential Monte Carlo training process for the j-th Q-BSP-tree Tj regressing over action aj

Input:


batch data D = (s,Q(s, aj))

1:N

the number of particles R

Q-values predicted by all other trees for given dataset D: Q̂D =
{
Q∗(s, az)

}1:N

z∈{1,··· ,j−1,j+1,··· ,m}
Output: modified tree T ∗j , µµµ ∈ T ∗j

1 Initialization


i = 0,

T0 = empty tree(root node), particle array V [1 : R+ 1] = T0,

costs ci[1 : R+ 1] = 0, leaf params µµµi[1 : R] = 0.

2 Expand parent tree Tj using Algorithm 2 for (s,Q(s, aj))
1:N , if needed

3 for i = 1, · · · , S do
4 V [1 : R] = Ti−1 ; // make R clones of last successful tree
5 V [R+ 1] = T ij ; // the state of original tree at stage i

6 for r = 1, · · · , R, if Bi <
∑i−1
i′=0 ci′ [r] < Bi+1, do

7 Using Algorithm 1, recursively obtain

Hi[r] = {Ĥλ}Λλ=1 ∈ V [r], µµµi[r] ∈ V [r], ci[r] =

Λ∑
λ=1

{cλ},

where Λ is total number of cuts falling in (Bi,Bi+1], until
i∑

i′=0

ci′ [r] > Bi+1

8 if Λ = 0 then
9 Set Hi[r] = Hi−1[r], µµµi[r] = µµµi−1[r], and ci[r] = 0

10 for r = 1, · · · , R+ 1 do

11 Compute likelihood weight, ω[r] :=
prior(µµµi[r]) · p(Q(s, aj)|s,H1:i[r],µµµ1:i, σ

2)

posterior(µµµi[r]) · p(Q(s, aj)|s,H1:i−1[r],µµµ1:i−1, σ2)
12 Compute ranking weight, ϕ[r] = ρρρ(V [r], Q̂D,D), where ρρρ is the ranking loss function

13 for r = 1, · · · , R+ 1 do

14 Normalize weights W [r] :=
(ω[r] + α.ϕ[r])∑R

r′=1(ω[r′] + α.ϕ[r′])
, where α is a mixing parameter

15 Sample one particle r ∝W [r] as winner, Ti = V [r]

16 T ∗j = TS

scores are used to pick winners at every stage. The score is the
average of two metrics: (i) improvement in regression accuracy
on the training dataset over the base tree (line 11), and (ii) the
relative sorted ordering of the predicted value over all other
action-trees (or forests) (line 13).

To the best of our knowledge, the ordering metric has never
been used for RL distillation before, so we summarize its
motivation here. In our test environments, a score based on
regression accuracy alone produced minimal regressive losses,
but these failed to translate into high rewards. For some crucial



TABLE I
CART-POLE REGRESSION FIDELITY

Regression Loss

Algorithm MAE RMSE Leaves

FIMT[27] 32.744 62.862 2195
LMUT[17] 14.230 43.847 416
Q-BSP-Tree 2.222 3.700 45

TABLE II
MOUNTAIN-CAR REGRESSION FIDELITY

Regression Loss

Algorithm MAE RMSE Leaves

FIMT[27] 3.735 5.002 1021
LMUT[17] 0.475 1.015 453
Q-BSP-Tree 0.461 0.984 68

states, the difference in Q-values for competing actions is often
very small, such that regression error metrics prove insufficient
to force the correct action to be picked. Picking the wrong
action can often lead to catastrophic failures in the game. The
ordering score builds the relative ordering of Q-values as a
condition into the posterior sampling problem.

Each tree Tj produces the Q-value Q∗(s, aj) for action aj .
Collectively, all the trees reconstruct the original Q̃(s) function,
denoted Q̃∗(s). The ranking function ρρρ used in Algorithm 3
computes the mean square error between the neural network
ranking and the distillation tree ranking of the Q values in the
dataset.

V. RESULTS

The performance of our algorithms Q-BSP-Tree and Q-BSP-
Forests is compared to benchmark data from earlier works [17],
[27], under the same evaluation environments, implemented
through the Gym toolkit [28]. To make this comparison, we
consider environments Cart-Pole [18] and Mountain-Car [29],
but also include some results for the Lunar Lander environment.

Like LMUT [17], we convincingly outperform all the offline
methods that perform Q-value regression, including CART [20]
and M5 model trees [30]. The original BSP forests [26]
outperformed most online forests, including Breimain-Random
forests [21], Bayesian Additive Regression Tree forests [22],
Extremely Randomized forests [31] and batched versions of
Mondrian forests [24].

LMUT[17] and FIMT[27] have been used for distillation of
RL policies in the past. We present a quantitative comparison
between our performance and theirs. We refrain from providing
detailed performance comparisons with Viper [16], as it lacks
any regression component.

Note that since the authors of the above-mentioned algo-
rithms do not provide any access to their implementations, we
are forced to use data directly from their papers.

A. Regression Fidelity
Q-BSP-Tree and Q-BSP-Forests are evaluated on how close

their regression outputs are to the Q-values from the Q-

Fig. 5. RMSE loss curve averaged over 5 runs of the Cart-Pole task, each
lasting 100 iterations. A 80:20 training and testing ratio was chosen for every
set of collected trajectories.

networks. The standard regression metrics Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) are tabulated
for each Gym environment. In the LMUT tests, the trees are
trained over 30, 000 consecutive transitions and evaluated over
another 10, 000 transitions.

Mean Absolute Error is computed as

MAE =
1

m× n
∑
∀a∈A

n∑
j=1

|Q(sj , a)−Q∗(sj , a)|. (3)

Root Mean Square Error is computed as

RMSE =

√√√√ 1

m× n
∑
∀a∈A

n∑
j=1

(Q(sj , a)−Q∗(sj , a))2, (4)

where Q∗ represents the predicted Q-value, m is the size of
set A and n represents the batch size.

Table I presents the distillation performance results for
the Cart-Pole environment. Table II gives the comparative
regression accuracy for the Mountain-Car environment. Q-BSP-
Trees consistently outperforms older methods on all the envi-
ronments. In Cart-Pole, the difference between our approach
and the previous state-of-the-art is particularly convincing.
Figure 5 presents the regression curve for the 2-action Cart-
Pole environment.

B. Gameplay Performance

While regression might seem adequate to measure distillation
performance, Q-values for different actions can often be close
to each other, and excellent regression performance might not
translate to large rewards. Choosing sub-optimal actions at
certain crucial states can yield catastrophic results. Gameplay
performance offers a more informative view of the robustness
of distilled tree policies. For evaluation, the distilled tree policy
controls the agent through 100 games or episodes. We use
the Average Per Episode Reward (APER) metric to compare
performance across various algorithms. Table III presents the



Fig. 6. Reward obtained over 100 games of Cart-Pole by our oracle (DQN)
and distilled BSP Forest (one tree per action)

TABLE III
COMPARATIVE GAME PLAYING PERFORMANCE

Environment

Model Cart Pole Mountain-Car Lunar Lander

DQN 194.85 -130.32 200.0
FIMT[27] 40.54 -189.29 -
LMUT[17] 147.91 -149.91 -
Q-BSP-Tree 200.00 -141.65 200.00

comparative gameplay results over different distillation methods
and it is clear that Q-BSP-Tree performs the best; it matches
the oracle in Lunar Lander and beats the oracle while achieving
a perfect score in Cart-Pole. The gameplay performance for
Cart-Pole using the oracle and our distilled tree is plotted in
Figure 6.

C. Feature Influence

Decision Trees are amenable to visual inspection and are
hence often considered interpretable [17], [32]. To further
develop our understanding of the distillation efficiency, we
introduce a new metric and compare feature importance of the
state inputs derived from our trained deep learning model and
our distillation tree. Recently, Integrated Gradients (IG) [33]
have been widely adopted for computing feature importance
for neural networks. In brief, it computes the integral of the
gradients obtained from a set of scaled input features and
then takes the element-wise product of those features with the
original input.

For decision trees, there have been two widely accepted
feature importance metrics. Gini Importance (GI) [20] computes
the importance of each feature as the weighted sum over the
number of nodes (across all trees) that includes the feature
multiplied by the number of samples that node splits. Mean
Decrease in Accuracy (MDA) or Permutation Importance [34]
is a more recent measure that estimates feature importance of
an input dimension by randomly permuting that dimension for
the input data and observing the decrease in accuracy.

TABLE IV
FEATURE INFLUENCE FOR CART-POLE

Ranking(Relative Importance)

Feature GI MDA IG

Pole Angle 4 (0.106) 4 (0.123) 4 (0.06)
Cart Velocity 3 (0.209) 3 (0.244) 3 (0.17)
Cart Position 2 (0.231) 1 (0.339) 1 (0.49)
Pole Velocity 1 (0.455) 2 (0.295) 2 (0.28)

TABLE V
FEATURE INFLUENCE FOR MOUNTAIN-CAR

Ranking(Relative Importance)

Feature GI MDA IG

Velocity 2 (0.216) 2 (0.479) 2 (0.47)
Position 1 (0.784) 1 (0.521) 1 (0.53)

We compute the relative importance of each feature by
normalizing the feature importance values to sum to 1.0. The
feature importance comparison between the deep learning
policy and distilled tree policy for the Cart-Pole environment is
presented in Table IV, and for the Mountain-Car environment
in Table V. A rank of 1 indicates the most important feature,
while a rank of 4 denotes the least important feature.

The results demonstrate that our distillation method transfers
almost the entire feature importance from the deep learned
policy to the tree.

D. Verification

Bastani et al. [16] recently showed that tree policies can be
used for verifying the correctness, stability and robustness of
linear controllers. In Cart-Pole, the policy tries to move the cart
to the finish line while keeping the pole in a vertical position.
The action a provides linear force in each direction to the cart.
We repeat the same correctness experiments for our distilled
Cart-Pole controller, using the Z3 SMT Solver [35] under the
linear dynamics approximation f(s, a) = As+Ba, the small
angle assumption, and a finite time horizon of T = 8 steps.
Our controller was deemed correct, since the pole angle stayed
between −10 and +10 degrees during the entire rollout.

VI. CONCLUSIONS

In this work we proposed a new approach to learning
online decision tree policies. Q-BSP Trees outperformed other
distillation methods and achieved performance closest to the
oracle DQN policy. We ensure meaningful distillation by
measuring feature influence transfer, while our generated trees
are amenable to verification tools and visual inspection. Q-
BSP distillation consumes only a third of the runtime memory
needed by Viper [16] and, unlike that approach, performs
distillation completely online. Relative to previous algorithms,
our algorithm scales better and handles a larger range of state
spaces. In contrast to greedy approaches like LMUT, where
trees can only expand linearly (in the downward direction)
in response to new data, every level of the Q-BSP tree is



evaluated with respect to an incoming batch of data. As a
result, the trees are much smaller and are easily extensible in
a forest configuration, with more than one tree regressing over
a particular action.

As future work, for image based reinforcement learning tasks,
feature vectors from pretrained feature extraction networks can
serve as an effective state space for distillation. With enough
resources, it would be interesting to scale our concept to these
use-cases along with relatively more complex to deal with
state spaces through Infinite Dirichlet Clustering on multiple
compute nodes split by data points, state dimensions or trees
(or all three).
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