
Cognitive Architecture for Video Games
Hongming Li∗, Ying Ma†, Jose Principe‡, Life Fellow, IEEE

Department of Electronic and Computer Engineering
University of Florida

Gainesville, FL, 32611, USA
hongmingli@ufl.edu∗, mayingbit2011@gmail.com†, principe@cnel.ufl.edu‡

Abstract—There has been an increasing interest in Frame-
oriented reinforcement learning (FORL) in recent year. However,
most of the works in the literature show little inspiration from
human’s perception action reward cycle (PARC) and causation.

Inspired by human’s vision system and learning strategy, we
propose a novel architecture for FORL that understands the
content of raw frames. The architecture achieves four objectives:

1.Extracting information from the environment by exploiting
only unsupervised learning and reinforcement learning.

2.Understanding the content of a raw frame.
3 Exploiting a Folvea vision strategy which is analogous to

human’s vision system.
4.Establishing self-awareness and collecting new training data

subset automatically to learn new objects without forgetting
previous ones..

The architecture is developed in the Super Mario Brothers
video game.. At first, Mario is the only object recognized by
the architecture. After automatic data subset collection and
memory update, the architecture can recognize both Goomba and
Mario and classify them using incremental training.We exemplify
performance of each piece of the architecture with snippets
obtained from the video game.

Index Terms—Brain-inspired cognitive architectures, visual
system, Frame-oriented reinforcement learning

I. INTRODUCTION

Frame-oriented reinforcement learning (FORL), which
means the model inputs are raw video frames, is gradually
becoming the norm in reinforcement learning (RL)thanks to
the introduction of deep Q learning [1]. Recent developments
have heightened the need for understanding the contents of
frames in an unsupervised way. To this end, recent trends
in FORL have led to a proliferation of studies that utilize
prior knowledge, e.g. motion of objects or for reducing the
complexity of the input imagery using feature representations
[2] [3] [4] [5]. Several other attempts have been made to
augment rewards with auxiliary objectives [2] [6].

Theoretically, most of the works in the FORL literature are
rooted in optimization and show little inspiration of how the
brain exploits the perception action reward cycle (PARC). In
fact, RL is based on point estimations of a function in a high
dimension space to improve future rewards. It is amazing that
this simple procedure was proven to converge to the optimal
policy [22], but experience has shown that it is very far from

This work was supported in part by the Lifelong Learning Machines
Program of the Defense Advanced Research Projects Agency, Microsystems
Technology Office, under Grant FA9453-18-1-0039.

efficient and requires huge number of interactions with the
environment. In contrast, humans learn from the environment
in one shot!

Human’ brain architecture is built from the information in
the DNA. But the parameters in babies’ brains at birth are not
set at the proper values. To simplify we can assume that at
birth babies brains are in a state that we can call ”Tabula
rasa”. Tabula rasa is a Latin phase meaning ”clean state”,
and it is via the PARC that brain circuits are trained using
correlation, as first demonstrated by Donald Hebb [7]. So,
babies have to discover the world themselves, gradually and
then continue to learn through interaction with the environment
using the PARC. Life-long learning is necessary for all of us,
and we keep learning throughout our life span, so parameters
are continuously being learned online, very quickly, and most
of the time without a teacher.

Human learning also exploits causation, while machine
learning is based on correlation. The ingredients to reach cau-
sation are being discovered. Wiener showed that causation can
be mathematically defined between two models of time series
[23], which was after exploited by Granger [24]. In statistics
it is also known that we need at least 3 random variables to
compute conditional mutual information and define causality
[25], which is compatible with Wiener’s idea because time is a
causal third variable. Indeed, Wiener’s approach is the one that
is most similar to how humans interact with the environment.
In our opinion, it is not sensible to ignore the learning strategy
that evolved from animals for thousands of years. While
exploiting the PARC, humans initiate the interaction with the
dynamic environment (time series) using internal models of
past experience, which are necessarily causal because the brain
is a physical system. So, if a change is observed by the human
in the external world after the human action, it may be causally
related to the action, provided that the human focuses on
the proper subset of variables. This is not an easy task (see
Pearl [25]), but using attention, humans properly select the
subset of variables for which the causality can be inferred.
For instance, every parent has seen babies throwing objects
to the floor multiple times. They are effectively learning the
rules of gravity, and they can predict the fall after a very few
(sometimes one experiment) which explains the fun they have
doing this. So, we submit that one tool for one shot learning
is to base learning on causality.

Human’s visual system is also inspiring. To simplify the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. The Cognitive Architecture

analysis of the real-world complexity, nature cut corners
when it ‘designed’ the human visual system. Only the central
portion of the field of view when we gaze (5 degree) is a
high–resolution “camera”, while the peripheral vision is blurry
and used for context and to find where the next eye saccade is
going to be targeted. That is the reason we develop a ‘focus
of attention’ to implement the ”focus of attention” part of
the saccade direction control. There is also a discrimination
influence that includes past experience stored in memory, the
scene type and the cognitive goal.

In this exploratory paper, we will present our FORL Tabula
Rasa Architecture inspired by the human visual system and the
PARC. We assume that the vision module is working, as well
as the memory, but the system does not know anything about
the world (Mario Video game). The architecture achieves the
following objectives:

Objective 1: A FORL architecture that extracts information
from the environment without labels, i.e. only unsupervised
and reinforcement learning. The input of our architecture
consists of raw frames while the output is the action of the
agent, as is being proposed in Deep Q Networks and its
variants.

Objective 2: Understanding the content of a raw frame.
Our architecture can detect and even discriminate objects and
agents in a frame, in an unsupervised way, and learn a good
policy according to their past behavior to maximize reward.

Objective 3: Folvea vision strategy and External memory.
Inspired by human’s vision strategy, our architecture possesses
a readable and writable external memory module coding the
learned objects, and agents (e.g. enemies, Mario), in the video
game. The memory can be updated based on the interaction

between agent and the environment as analogous to life-long
learning.

The “focus of attention” in our architecture is implemented
by the Gamma saliency [8] algorithm, which predicts the
number of candidate patches in a frame and estimates the
size of objects. The vision processing cycle is initiated by
a saccade. The most salient candidate patch is examined
and sent to the Deep predictive coding network (DPCN) [9]
for discrimination. The process is repeated until there are
no more salient patches above threshold. Therefore, the x,y
coordinates of each patch are known and store along with
the time they were looked at. The first layer parameters of the
DPCN (the columns of a matrix) become the dictionary atoms
that represent the learned object. Each column is stored in an
external memory of the content addressable type.

Objective 4: Self-awareness and collecting training data
automatically from raw videos for memory updating. Humans
do not have an image of themselves when born [10] (Babies
cannot recognize their image in a mirror). We postulate in
our agent-initiated game that for interaction in the world, the
first person to be recognized should be the agent. Because the
agent can move and recognize movement in the x,y location
coincident with its location, it can infer that the recognized
object from the DPCN corresponds to itself, using causality
(the agent initiated the movement). Therefore, the first step to
understand the world in our architecture is identification of the
agent, i.e. Mario. We can identify Mario naturally without any
additional training because the RL algorithm controls Mario.
In practice, we collect a training set containing only Mario and
use it to train the DPCN, and the codes are stored in an external
CAM memory. After learning the agent, the program captures

new objects when Mario is rewarded, cannot move (obstacles)
or dies. These events mean that there was an interaction in the
x,y coordinates of the agent with another (unknown) agent
or obstacle in the environment. The system must then go
back in the frames from the point of interaction and collect
frames that lead to the interaction. Since its coordinates are
known, a patch is drawn around this point and sent to the
DPCN for further learning. Notice also that the system knows
(causality) if it was good or bad, which can immediately be
translated in affordances (avoid or repeat the action). This
implements “one-shot learning”. Of courses, the procedure is
still unrealistic because the movie has to be rewound, but the
existence of a working memory (as in the brain) would not
require this step. Finally, we train the DPCN using the new
data consisting of new objects to populate the dictionary or for
memory update. In summary, the architecture is tabula rasa and
totally automatic in its interaction with the world for learning,
except the “learning of the self” procedure.

II. RELATED WORKS

Much of the current literature pours attention into extracting
better feature representation [5] [11] [12] [13]. The paper [14]
extracts key spatial feature points with a pre-trained model
back to 2016.

More recent approaches have emphasized the use of specific
patches in a raw frame, objects especially. [5] proposed object-
oriented framework and reason the interactions for reinforce-
ment learning. [2] proposed a motion-oriented model for
reducing the sample complexity through unsupervised learning
of optical flow. With the same motivation, [3] highlights object
keypoints in an image through the model of [4].

There are also works sharing similar motivation with ours.
[15] understood the raw image by disentangling the repre-
sentation of the frame. These features are used for domain
adaptation, and “improve zero-shot transfer in reinforcement
learning”. [6] built the architecture being analogues to human’s
learning strategy. Believing that “the image of the world
around us in our head is a model”, the architecture consists
of vision, memory, and controller model. However, the key
motivation is still reducing the sample complexity.

III. METHODOLOGY

We first give an overview of the general architecture in
section III-A. The objective of each module is introduced,
then we discuss algorithms of each module in detail in the
following subsections. Results of each module are illustrated
which is helpful for understanding the architecture.

A. Overview of the architecture

Fig.1 depicts the general architecture pipelines. We divided
it into two parts: 1) working pipeline, 2) updating pipeline.
Table.I summarizes the method for each module illustrated
in Fig.1. Algorithm.1 and Algorithm.2 are pseudocodes of
working and updating pipeline, respectively.

TABLE I
ALGORITHMS OF THE MODULES

Modules Algorithms
1.”focus of attention” algorithm Gamma saliency

2.discrimination algorithm /

Memory Writer
DPCN

3.External Memory Dictionary Matrices
of DPCN

4.Event cause detection Objectness
Estimation

5.Replay and tracking CSRT

Algorithm 1: Working pipeline
Requirement: Self- awareness.Initializing memory

containing only Mario;
while not achieving goal of the game do

1. extract candidate patches using ”focus of
attention”;

2. discriminating and labeling the candidate
patches using discriminator based on memory;

3. the Mario interacts with the environment
controlled by object-based reinforcement learning;

if the same event happens 50 times, e.g. Mario
dies then

update memory using Algorithm.2;
end

end

Algorithm 2: Updating pipeline
Requirement: The patches whose center is the Mario

when the event happens, 50*20 frames before the
event happens;

for 50 do
detect objects in Mario vicinity using objectness
estimation;

if there is a unknown object then
1. track the object backward using CRST in
frames before the event happens;

2. append the tracked patches to new training
set;

end
end
Do Updating the memory by training new dictionary

matrices of DPCN with new dataset;

First of all, we train the DPCN with a dataset containing
only Mario for formation of self- awareness. The dictionary
matrices become the initial memory.The external CAM mem-
ory and discrimination algorithm are rooted in the DPCN. The
details of it will be discussed in section III-C.

The blue arrows and blocks in Fig.1 represents working
pipeline modules in the following and the Algorithm.1:

(1) After a raw frame is fed, the ”focus of attention”
algorithm extracts candidate patches from the frame which
is analogous to human’s visual detection system.

(2) The candidate patches and the external memory are the

input of discrimination algorithm. The algorithm scores the
patches and labels them based on the content of the memory.
This process is quite similar to discrimination flow of human’s
vision system [16].

Before we introduce the updating pipeline, let’s review a
crucial problem: How do we define an object in an environ-
ment, i.e. the Mario game in our experiment? If we follow the
idea of vision-based definition, there will always be irrelevant
‘background’ which looks like objects, e.g. small bushes.
Inspired by PARC, we define the object as the patches which
interact with the agent (Mario in this paper) and enjoy high
objectness descriptors [17].

The red arrows and blocks in Fig.1 represent modules of
updating pipeline in the following:

(1) When events happen (e.g. Mario dies), the architecture
determines if there is a known object (stored in the DPCN ma-
trix) in Mario’s vicinity. If not, the system does the following
steps; (Else, Reinforcement learning process is continued).

(2) Event causes detection: objectness estimation. We must
set a high threshold to avoid detection errors though it in-
creases the probability of missing objects.

(3) Replay and tracking: Track the candidate object using
Channel and Spatial Reliability-Tracking (CSRT) [18] in the
20 frames from the point of the event (Mario’s death).

(4) Repeat (2) and (3) for fifty scenarios of death (does not
need to be contiguous).

(5) Using few shot learning to train new DPCN dictionary
matrices which represents only the new object. The new
matrices become ‘new memory’. Activation of different Matri-
ces indicates different objects naturally without an additional
classifier.

(6) After update, continue the reinforcement learning pro-
cess.

B. ”Focus of attention” algorithm: Gamma Saliency

As mentioned above, only a portion of visual field of
human’s eye an form high-quality images while the peripheral
portion forms blurry context. In computer vision, the topic
saliency can be considered as bionics of this design.

Gamma saliency is a fixed measurement. It gives a high
score if the region is different from the neighborhood. To this
end, the algorithm convolves images with 2D Gamma kernels
for emphasizing center as well as comparing it with regions
in vicinity. The basic kernel can be written as:

gk,µ(x, y) =
µk+1

2πk!

√
x2 + y2

k−1
exp(−µ

√
x2 + y2) (1)

where x and y are the local support grid while µ and k are
parameters controlling the shape of the kernel. Center kernels
are subtracted by a surround kernels, and kernels are summed
up for multi-scale adaption. More formally:

gtotal =
∑M−1
m=0 (−1m)gm(km, µm) (2)

A multi-ring or multi-scale gamma kernel allows for the

potential to intrinsically approximate the size of an object by
knowing the relationship between the order of the kernel and
the number of pixels separating each ring. A crucial advantage
of Gamma saliency is its speed, because the computation
complexity is equal to a single convolution with a mask.

After initialization, raw frames are fed into the architec-
ture during the process of reinforcement learning. Gamma
saliency (”focus of attention” algorithm) predicts eight can-
didate patches of objects illustrated in Fig.2

In this example, we can find that the algorithm is sensitive
to any high contrast point in the backgrounds. It proposes non-
objects, e.g. bushes, which is different from it neighborhood.
Gamma Saliency has modest performance as a feature extrac-
tor/map generator. It only takes color and local contrast into
consideration, which is not sufficient for human level attention.
Therefore, a discrimination algorithm is introduced to offset
it.

C. External Memory and discrimination algorithm: Deep Pre-
dictive Coding Network (DPCN)

External Memory and discrimination algorithm are synthe-
sized according to the procedure in the paper [9], using a single
layer DPCN in our architecture which is a dynamic variant of
sparse coding on image sequences. Sparse coding has been
extremely popular feature extractor and wildly applicated in
visual neuroscience [19]. Combining the predictive coding,
DPCN relies on an efficient inference process to get more
accurate latent features from image sequences [9].

A general predictive coding architecture is a state-space
model in the form of:

ỹt = F (xt) + nt,
xt = G(xt − 1, ut) + vt

(3)

Where ỹt is the data and F and G are functions whose
parameters are able to be learned, e.g.θ. ut is ‘cause’ which
are encouraged to have a non-linear relationship with the
observation ỹt compared to original sparse coding. The hidden
state xt mediates the influence of ut. Both vt and nt are noise
or other stochastic uncertainty.

In detail, the objective function of the single layer DPCN is:

E(xt, ut, θ) =
∑N
n=1(

1
2

∥∥∥ỹt(n) − Cx(n)t

∥∥∥2
2
)

+λ
∥∥∥x(n)t −Ax(n)t−1

∥∥∥
1

+
∑K
k=1

∣∣∣γt,k · x(n)t,k

∣∣∣) + β ‖ut‖1

where

γt,k = γ0[
1+exp(−(But)k)

2]

(4)

θ = {A,B,C} is the set of dictionary matrices of the
DPCN and used as the external memory of our architecture.
n ∈ {1, 2...N} represents contiguous patches.k ∈ {1, 2...K}
represents patches for average pooling. In our experiment, N
= 1 and K = 4.

Fig. 2. Saliency maps and candidate patches predicted by Gamma saliency

The first term of Eq.4 is the reconstruction loss identical
to sparse coding while the second term is the recurrent term
mediating the influence of time delay. The third term is the
L1 regulation term of xt and the essence of DPCN. This term
makes the cause ut control the sparsity of state xt through it.
This design encourages the non-linearity of the DPCN as well
as decreasing the dimensionality of the output. Normally, the
dimensionality of the sparse coding model is larger than the
input. The final term is the L1 regulation of causes ut which
encourages sparsity of causes. Notice that, each ut corresponds
to four xt through average pooling, and the structure of DPCN
is illustrated in Fig.3 [9].

Fig. 3. The basic Architecture of DPCN

Learning
Inference: Fixed θ, xt and ut are jointly inferred through

minimizing Eq.4, using an improved FISTA [20]. In other
words, we update xt and ut alternatively using a single update
step to minimize Eq.4, while keeping taking the other variable
as constant (xt,or ut). After convergence, an iteration of
inference is finished.

Dictionary updating: After a number of iterations, all the
xt and ut are fixed and are used as ‘training data’ batch for
updating θ = {A,B,C} by minimizing Eq.4 using conjugate

gradient method. The dictionary matrices are updated indepen-
dently. B and C are column normalized after update. Notice
that, the process of dictionary updating happens in updating
pipeline (red part of the Fig1.), but the inference in both.

Inference and dictionary updating are operated alternatively
until the dictionary updating coverage.

Test mode
Dictionary matrices are fixed during testing (blue parts in

1), while the inference is almost identical to the learning
process except the recurrent term. Notice that, the input of
working DPCN consists of candidate patches extracted using
Gamma saliency. It is obvious that these patches are not time-
related. Therefore, the recurrent term of Eq.4 is removed in the
inference process of working mode, and the DPCN is degraded
to a sparser coding algorithm.

In the following, we show how the DPCN can ‘remember’
the objects. We start with the initial memory trained from
dataset consisting the Mario itself.

Fig. 4. The receptive fields of the causes of Mario

In Fig.4, the receptive fields of the causes, i.e. dictionary
matrices, are visualized using the same method that was
detailed for [9]. After initialization, only the features of Mario
were stored in the dictionary matrices. The corresponding
blocks of the dictionary are activated when the input matches.
In other words, only Mario can be detected by DPCN at the
beginning.

Observing the score map in Fig.5, some background regions
are also activated, because there are also blocks representing

Fig. 5. Procedures of Noise Canceling in two steps: 1. Scan a random image based on Memory blocks consisting of Mario; 2. Get rid of Memory blocks
activated too often

Fig. 6. The receptive fields of the causes of Mario and Goomba

general image features.. As illustrated in Fig.4, some of blocks
are edges instead of Marios. The probability that the general
feature blocks are activated is extremely high.

Therefore, the noise from background can be canceled by
applied the DPCN on a random frame and remove the blocks
of dictionary matrices activated too often (illustrated in Fig.5).

The noise canceled score map of Fig.5 illustrates what the
architecture is ‘seeing’ in a raw frame. DPCN scores each
patch under the condition of dictionary matrices (external
memory). The different matrices correspond to specific
objects; hence the architecture classifies objects naturally.
They can be seen as binary classifiers in parallel.

Learning the “Mario-style” features in Fig.4: The object
size is small in our experiments. Batches of 20*20 patches
are the DPCN input. Each of them is divided into 12*12
sub-patches overlapping by 4 pixels. The sub-patches are
inferred into 150-dimensional state vectors. The four vectors
representing four contiguous neighboring sub-patches were
pooled for inferring a single 60-dimensional cause vector.
Notice that, each element of the vector corresponds to a unique
dictionary block. The object sizes are from 16*16 to 24*24,
so this makes image primitives [16] cover almost the entire
patch in our experiment.

A more popular choice is representing an object as a
configuration consisting of small primitives [16], e.g. edges
or shapes. Considerable researches believe CNN sharing the
same motivation. This is suitable for natural images but too
much for the pixel-style games according to the results of our
experiments. Expanding single layer to multi-layered model
through greedy layer-wise learning, DPCN can also achieve

this, but it is not discussed in this paper.
With the help of the visual front-end, reinforcement learning

algorithms predict actions based on information processed
above. The environment feedback, a new state, leads to the
next iteration of reinforcement learning.

D. Event causes detection: Objectness estimation

After formation of self-awareness, i.e. locating the Mario
in our environment, it is necessary to propose an algorithm to
find the event causes when the state of the agent changes, e.g.
Mario dies, is trapped or is rewarded.

A branch of unsupervised object detection algorithms dedi-
cated to objectness estimation [17] have been well-known for
their performance and handiness in computer vision before
convolution neural network. The cue, superpixels straddling
(SS), is reported to outperform most of others in the field of
objectness estimation [17]. The idea is that an object window

Fig. 7. Procedures of Objectness estimation

is occupied by superpxiels contained entirely inside it instead
of straddling it. The SS for superpixels s in a window w is
written as:

SS(w) = 1−
∑
s∈S

min(|s\w|,|s
⋂
w|)

|w| (5)

Where S is the set of superpixels obtained by quick-
shift clustering [21]. The cost of computation of SS cannot
support online operation (20FPS). We propose an efficient
approximation of it in the following steps:

1) Generating superpixels using quick shift clustering from
raw images.

2) Get rid of superpixels smaller than a threshold and set
the left pixels to be 1. The result of this step is illustrated in
Fig.7. Besides, the score of Mario is constricted.

3) Convolve the output of 2) with kernels whose center
region is covered by positive values while boundary is negative
values and the left is -α. We implement kernels in various sizes
and keep the largest score. It makes the algorithm immune to
scale variance of the object. Examples of kernels are illustrated
in in Fig.7. The yellow part indicates 1 while the green
indicates -α.

More formally:

S̃S(w,α) =
∑
{p|p ∈ center} − α

∑
{p|p ∈ boundary}

(6)
where p is pixel of the output of 2) The steps above convert

the computation of Eq.5 to a single convolution computation
while share the same motivation with SS. With the objectness
estimation, we extract the patch with highest scores (should be
higher than a threshold) in vicinity of the agent as the detected
object leading to the death of the agent.

Obviously, not only death can be considered as an event,
various background features of the game can also be included
into this module. In other words, it is convenient to add more
rule-based strategy. Another example is obstacle detection.
Usually, a small reward is given as long as the agent move
forward in side-scrolling video game using RL algorithms.
Therefore, the obstacle can be defined as the patches in front
of the agent if no reward is given for a while.

E. Replay and track for new training data

Past 20 frames are recorded as a queue before the point
of the event. Once the events happen and their causes are
detected, the patches of the causes are tracked in the these
frames.We use CSR-tracking for its better performance based
on experiments.

Examples of new training samples are illustrated in Fig.8.
The new training set contains noise (questioning blocks), but
they are canceled naturally during the learning of DPCN.

F. Updating memory

In order to update memory in our architecture, DPCN is
trained for new dictionary matrices. Training the DPCN on
the new dataset, new dictionary matrices are appended to the
external memory. The receptive fields of the causes of Mario
and Goomba are illustrated in Fig.6.

A significant advantage of our memory is visualization
which is illustrated in Fig.6. Therefore, we know exactly what
the DPCN has learned rather than considering it as a black
box. Since different objects are represented by corresponding
dictionary matrices, objects are classified without any addi-
tional algorithms. The result of the vision system after memory
update is illustrated in Fig.9. Now, the DPCN can detect both
Mario and Goomba if we repeat the Algorithm.1, i.e. blue
parts of Fig.1.

IV. CONCLUSION

Returning to the motivation discussed at the beginning of
this study, our aim is to propose an architecture which can
understand the content of raw frames in the process of frame-
oriented reinforcement learning, being analogous to human

Fig. 8. Examples of new data collected automatically

vision system and learning strategy. That is, learning from
”tabula rasa” and keeping learning for the whole ”life”. It is
now possible to state that the proposed architecture, though
preliminary, achieves the objectives.

In this paper, we proposed a new architecture inspired
by human vision system and human learning strategy. The
architecture mainly consists of ”focus of attention” algorithm,
discrimination algorithm, external memory and event cause
detection module. Each part of the architecture has been indi-
vidually trained directly from data, but the overall algorithm
training has only now started. Using Gamma saliency, DPCN,
dictionary matrices of DPCN and objectness estimation corre-
sponding the four module, respectively, we showed examples
of memory update and proved the feasibility of our idea.

At first, Mario is the only object recognized by the architec-
ture. After fifty different scenarios of Mario’s death, the cause
(i.e. Goomba) is detected, and a new data subset is collected
for memory update, which can be easily automated..

After update, the architecture can recognize both Goomba
and Mario and classify them using incremental training. The
architecture is totally automatic except the self-awareness
procedure,

Another critical advantage of our architecture is model
interpretability. Each parameter including the dictionary matrix
has its interpretable ”physical meaning”, e.g. size of window,
thresholds. We can even know what the DPCN is learning
through visualizing the dictionary matrices instead of analyz-
ing it as a black box.

In summary, our architecture remains a promising avenue
for the application of life-long learning and ”tabula rasa”
theory on reinforcement learning.

REFERENCES

[1] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., ... Petersen, S. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529-533.

[2] Goel, V., Weng, J., Poupart, P. (2018). Unsupervised video object
segmentation for deep reinforcement learning. In Advances in Neural
Information Processing Systems (pp. 5683-5694).

[3] Jakab, T., Gupta, A., Bilen, H., Vedaldi, A. (2018). Unsupervised
learning of object landmarks through conditional image generation. In
Advances in Neural Information Processing Systems (pp. 4016-4027).

[4] Kulkarni, T. D., Gupta, A., Ionescu, C., Borgeaud, S., Reynolds, M.,
Zisserman, A., Mnih, V. (2019). Unsupervised learning of object
keypoints for perception and control. In Advances in Neural Information
Processing Systems (pp. 10723-10733).

[5] Yuezhang Li, Katia Sycara, and Rahul Iyer. Object-sensitive deep
reinforcement learning. In Global Conference on Artificial Intelligence,
volume 50, pages 20–35, 2017.

[6] world modelsHa, D., Schmidhuber, J. (2018). World models. arXiv
preprint arXiv:1803.10122..

Fig. 9. Results of the cognitive system after memory update

[7] Hebb, D. O. (2005). The organization of behavior: A neuropsychological
theory. Psychology Press.

[8] Burt, R., Santana, E., Principe, J. C., Thigpen, N., Keil, A. (2016,
March). Predicting visual attention using gamma kernels. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 1606-1610). IEEE.

[9] Chalasani, Rakesh and Principe, Jose C. Deep predictive coding net-
works. CoRR, abs/1301.3541, 2013.

[10] Gallup Jr, G. G., Anderson, J. R., Shillito, D. J. (2002). The mirror test.
The cognitive animal: Empirical and theoretical perspectives on animal
cognition, 325-333.

[11] Kulkarni, T. D., Narasimhan, K., Saeedi, A., Tenenbaum, J. (2016). Hi-
erarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. In Advances in neural information processing
systems (pp. 3675-3683).

[12] Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P. (2015,
June). Trust region policy optimization. In International conference on
machine learning (pp. 1889-1897).

[13] Lange, S., Riedmiller, M. (2010, July). Deep auto-encoder neural
networks in reinforcement learning. In The 2010 International Joint
Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

[14] Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., Abbeel, P. (2016,
May). Deep spatial autoencoders for visuomotor learning. In 2016 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 512-
519). IEEE.

[15] Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A.,
... Lerchner, A. (2017, August). Darla: Improving zero-shot transfer
in reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70 (pp. 1480-1490). JMLR.
org.

[16] Zhu, S. C., Mumford, D. (2007). A stochastic grammar of images.
Foundations and Trends® in Computer Graphics and Vision, 2(4), 259-
362.

[17] Alexe, B., Deselaers, T., Ferrari, V. (2012). Measuring the objectness
of image windows. IEEE transactions on pattern analysis and machine
intelligence, 34(11), 2189-2202.

[18] Lukezic, A., Vojir, T., ˇCehovin Zajc, L., Matas, J., Kristan, M. (2017).
Discriminative correlation filter with channel and spatial reliability. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 6309-6318).

[19] Gregor, K., LeCun, Y. (2010, June). Learning fast approximations of
sparse coding. In Proceedings of the 27th International Conference on
International Conference on Machine Learning (pp. 399-406).

[20] Chalasani, R., Principe, J. C., Ramakrishnan, N. (2013, August). A
fast proximal method for convolutional sparse coding. In The 2013
International Joint Conference on Neural Networks (IJCNN) (pp. 1-5).
IEEE.

[21] Vedaldi, A., Soatto, S. (2008, October). Quick shift and kernel methods
for mode seeking. In European conference on computer vision (pp. 705-
718). Springer, Berlin, Heidelberg.

[22] Bellman, R. (1954). The theory of dynamic programming (No. RAND-
P-550). Rand corp santa monica ca.

[23] Wiener, N (1956). The Theory of Prediction. Modern Mathematics for
engineers.

[24] Granger, C. W. (1969). Investigating causal relations by econometric
models and cross-spectral methods. Econometrica: journal of the Econo-
metric Society, 424-438.

[25] Pearl, J. (2009). Causality. Cambridge university press.

