
Regularized Training of Convolutional Autoencoders using
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Abstract—Weproposeaninformation-theoreticcostfunctionfor
the regularized training of convolutional autoencoders that imposes
an organization on the bottleneck-layer-projected samples so as to
facilitate discrimination. This function is based on a continuous-
space, Rényi-mutual-information version of Stratonovich’s value of
information. It quantifies the maximum benefit that can be obtained
for a given bottleneck-layer representation compression amount.
The compression amount is controlled by a single hyperparameter
that trades off between the autoencoder reconstruction quality and
the hidden-layer representation uncertainty.

Index Terms—Value of information, deep neural networks, deep
learning, information-theoretic learning, information theory

I. INTRODUCTION

Unsupervised and semi-supervised deep learning is a widely popular
approach for uncovering features from data. It does, however, have issues
that can inhibit performance. Deep autoencoder networks may not un-
cover parsimonious, intermediate feature representations that lend them-
selves well to classification. The bottleneck-layer-projected samples may
hence be organized arbitrarily. As well, the autoencoder representations
are usually not minimally sufficient statistics in an information-theoretic
sense. They might not be maximally compressive intermediate mappings
that preserve the most information about the desired response and hence
have the chance of being overfit.

For unsupervised and semi-supervised deep learning to be effective,
the aforementioned learning concerns should be addressed. We believe
that this can be partly resolved by utilizing details about the training
samples to inform parameter selection. This objective, which may be
viewed as a type of lossy source compression, can be handled by apply-
ing information-theoretic concepts that trade off between the network
prediction quality and the representation uncertainty.

Here, we consider an information-theoretic [1] cost function for
the regularized training of semi-supervised, convolutional autoencoder
networks for object recognition. This cost is based on a novel Rényi-
information version of Stratonovich’s value of information [2, 3]. The
value of information quantifies the maximum benefit that can be obtained
from a given quantity of information to improve the average penalties.
This has the effect of guiding the choice of network parameters so that,
in the bottleneck-layer of an autoencoder network, samples from the
same class are typically grouped while samples from different classes
are well separated for appropriate choices of penalty functions.

More specifically, the value of information is a two-term optimization
problem that significantly pre-dates and generalizes the information-
bottleneck method [4, 5] to arbitrary cost functions. When applied to
training autoencoder networks, we show that the value of information
facilitates an optimal trade-off between the conciseness of the bottleneck-
layer representation and that network’s expected predictive capability
through the chosen network parameters. This compromise is dictated by
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a Rényi-mutual-information bound that specifies the mutual dependence
between the intermediate representation and the model response. The
higher the bound, the greater the representation uncertainty. This leads
to a bottleneck-layer representation organization for each object class
that can be increasingly arbitrary but facilitates high model accuracy.
That is, the autoencoder network learns to mimic the training samples
well for appropriate penalty functions. The intermediate representation
may have highly overlapping class regions, though, which complicates
learning a good classifier from the bottleneck features. Lowering the
bound imposes constraints on the representation organization, which
often speeds up training due to an aggregation of Markov chains [6]
underlying the network layers. The representation for each object class
tends to become increasingly compact and well separated, despite not
using class labels during training. This sample-separation property aids
in subsequent discrimination between the different classes; labels can
be utilized to often enhance discrimination.

For the value of information to be effective for network training,
an efficient optimization strategy is required. We have already begun
investigating this topic in the context of reinforcement learning [7–10].
Any of these schemes could be directly applied to train deep architectures.
They would be computationally prohibitive, though, given the great
number of parameters that need to be tuned, let alone the continuous
nature of the network random variables. Here, we estimate Rényi mutual
information using positive-definite kernels with specific properties. This
allows us to obtain information-like quantities without assuming that
the underlying conditional probabilities associated with the network
layers and marginal probabilities related to the data are either known or
estimated. We then show that this kernel-based representation admits
gradients that can be used to efficiently train the regularized networks
via back-propagation gradient descent with mini-batches.

II. METHODOLOGY

In what follows, we build up to and describe the notion of the Rényi-
Stratonovich value of information. We then show how to optimize a
principled approximation of the criterion.

A. Criterion Definition
Consider a system defined by an input, intermediate encoding, and

output space, all of which are measurable; this will be an abstraction of an
autoencoder network. We letxt andyt be continuous random variables for
the input and output, at iteration t; we use the same variables to denote the
random-variable values, where appropriate. We assume that these random
variables are distributed according to some joint probability distribution
pxt,yt;θ with marginal probabilities indicated by pxt =

∫
Y pxt,dyt;θ and

pyt =
∫
X pdxt,yt;θ . We also assume that the internal representation zt

of a hidden layer is a stochastic encoding of the input, which is specified
by the conditional probability pzt|xt;θ = pxt,zt;θ/

∫
Y pxt,dyt;θ , with

parameters θ∈Rp.
After observing the input xt, output yt, and encoding zt random

variables, an estimate of the network parameters could be obtained by
minimizing the conditional expected penalty,

infθ E[gxt,yt,zt;θ; pxt ] = infθ
∫
X gxt,yt,zt;θpdxt ,

where gxt,yt,zt;θ is a real-valued penalty function. The obtained estimate
would, however, be independent of the stochastic encoding pzt|xt;θ . A
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more appropriate expression to minimize is E[gxt,yt,zt;θ; pxt,zt;θ] =
E[E[gxt,yt,zt;θ; pzt|xt;θ]; pxt ], the total expected penalty,

infθ E[gxt,yt,zt;θ; pxt,zt;θ] = infθ
∫
X

∫
Z gxt,yt,zt;θpdzt|xt;θpdxt ,

as it accounts for the influence of the stochastic encoding. For it to
prove useful for regularized training, though, additional constraints are
required. If they are not imposed, then there is the chance, for arbitrary
penalty functions, that the network will simply implement an identity
mapping without regards to hidden-layer organization.

We adopt the view that information-theoretic constraints can reg-
ularize network training. One way of doing this is to ensure that any
mappings which minimize the total expected penalty also obey a mutual
information bound between the intermediate random variable and either
the input or output random variables. Such a bound limits the amount
of information that is propagated through the network and hence helps
choose parameter values that cause the network to remove superfluous
details.

When using a mutual information constraint, there are two ex-
treme cases to consider. The first is when the intermediate layer ran-
dom variables carry no information about either the autoencoder in-
put or output random variables. In this case, there is only one way
to choose parameters, which is by using the marginal. The total ex-
pected penalty hence becomes equivalent to the conditional expected
penalty, infθ E[gxt,yt,zt;θ; pxt,zt;θ] = infθ E[gxt,yt,zt;θ; pxt ]. There is
hence complete uncertainty, and the network will not optimize the
stochastic encoding against the penalty function. If the intermedi-
ate layer possess complete information about either the input or the
output random variables, then the total expected penalty becomes
infθ E[gxt,yt,zt;θ; pxt,zt;θ]=E[infθ gxt,yt,zt;θ; pxt ], where

E[infθ gxt,yt,zt;θ; pxt ] =
∫
X infθ gxt,yt,zt;θ.

The network will optimize the penalty function and the best performance
will be achieved, as there is no uncertainty. This does not imply that the
network will maximize class discrimination, though; in the context of
autoencoder networks, it will merely imply that the input is reconstructed
well at the output.

The transition between no information to complete information, and
hence a reduction of penalties, is not immediate. There is a smooth,
non-linear transition [11] between these two extremes for varying levels
of information. Stratonovich [2, 3] proposed an expression for these
intermediate cases: the value of information. The value of information
is independent of the chosen information measure; here we consider a
Rényi mutual information term to ease optimizing the criterion in the
continuous random variable case.

For autoencoder networks, the value of information quantifies the
expected decrease in penalties from the baseline case, as quantified by
the conditional expected penalty, where the mutual dependence of the
random variables for the stochastic encoding is constrained.

Definition 2.1. Let xt, yt, zt be random variables with marginals
pxt , pyt , pzt and conditional distributions pzt|xt;θ, pzt|yt;θ parame-
terized by θ ∈ Rp. Let gxt,yt,zt;θ be a real-valued penalty function.
The Rényi-Stratonovich value of information is the difference be-
tween the conditional expected, E[gxt,yt,zt;θ; pxt ], and total expected,
E[gxt,yt,zt;θ; pxt,zt;θ], penalties,

infθ
∫
X gxt,yt,zt;θpdxt − infθ

∫
X

∫
Z gxt,yt,zt;θpdzt|xt;θpdxt ,

where the minimization is subject to a Rényi mutual-information bound
Iα(yt; zt) = β, β ≥ 0; this bound is referred to as the β-information
amount.

Definition 2.2. Let yt, zt be random variables with a marginal and pa-
rameterized conditional distribution. For α∈(0, 1) ∪ (1,∞), a version
of Rényi’s mutual information is given by the difference between the
Rényi entropy, log(E[pα−1

zt ; pzt ])/(1−α), and the conditional Rényi
entropy, log(E[E[pαzt|yt;θ/pzt ; pzt ]

1/α; pyt ])
α/(α−1),

Iα(yt; zt) = log(
∫
Z p

α
dzt)/(1−α)

+ log(
∫
Y(

∫
Z p

α
dzt|yt;θ)

1/αpdyt)
α/(α−1).

Here, we have considered a version of Rényi’s mutual information

defined by a novel conditional Rényi’s entropy. This version has several
advantageous properties over existing definitions, and we theoretically
motivate it in the appendix.

The value of information pre-dates and generalizes several regu-
larizations schemes. One is the information-bottleneck method [4, 5].
The latter uses on a non-fixed penalty function that relies on a so-
called optimal mapping gxt,yt,zt;θ = DKL[pyt|xt;θ‖pyt|zt;θ]; it mea-
sures the dissimilarity between the conditionals pyt|xt;θ and pyt|zt;θ=∫
X pyt|xt;θpzt|xt;θpdxt/pzt so that maximally relevant information

about the output random variables can be retained. Such a penalty may
not be appropriate in all situations, though, as we show in our simulations.
The value of information, in contrast, permits the use of arbitrary penal-
ties that can be tailored to specific applications, such as semi-supervised
learning.

Criterion Interpretation. The value of information specifies a con-
strained difference in penalties. The first term,E[gxt,yt,zt;θ; pxt ], quanti-
fies the expected penalty when the divergence between the intermediate-
layer and input random variables are zero. It establishes the worst
autoencoder performance. This is because the network parameters are
only be guided by the marginal probability, which is not a sufficient
regularizer. This second term, E[E[gxt,yt,zt;θ; pzt|xt;θ]; pxt ], specifies
the total expected penalty for case where the random variables have
partial to no uncertainty. Both terms highlight the possible improvement
in the autoencoder’s ability to mimic the identity mapping.

The constraint term, an expected Rényi’s α-information, stipulates
the amount of informational overlap between conditional stochastic
encoding pzt|yt;θ and the marginal probability pzt . This term is bounded
by theβ-information amount, which dictates the amount that the marginal
probability pzt can change to become a conditional probability pzt|yt;θ .
If it is zero, then there is no overlap between the two random variables
and the transformation costs are infinite, so pzt|yt;θ does not change
from pzt . This corresponds to the no-information case, which implies
that the penalty function is not minimized due to the lack of information
flowing through the network. The hidden-layer features tend to be
distributed inacompact,well-separatedmanner, though,when thisoccurs.
If the β-information is larger than the output random-variable entropy,
−E[log(pyt); pyt ], then the highest amount of overlap is achieved and
the transformation costs are ignored. The marginal probability pzt is
therefore free to change to a stochastic encoding pzt|yt;θ that leads
to the greatest reduction of penalties. This yields an autoencoder that
mimics well the identity mapping for the chosen penalty function. The
hidden-layer features often belong to overlapping distributions, though,
due to the lack of random-variable quantization.

Taken together, the value of information highlights the decrease
in the penalty function for a given compression of the hidden-layer
randomvariables.Theuseofa joint-random-variableuncertaintymeasure
facilitates quantization, as described in [12, 13].

B. Criterion Optimization
Our previous approaches to optimizing the value of information

have been through expectation-maximization-like updates where the
mutual-information term does not need to be explicitly estimated [7–10].
While these updates are suitable for discrete spaces, they are intractable
for continuous ones. Another issue is that they require knowledge of
the underlying probability densities; these can be difficult, let alone
computationally expensive, to estimate.

Here, we sidestep these issues by approximating the Rényi mutual-
information constraint with a matrix-based version in a reproducing
kernel Hilbert space. As a consequence of this approximation, we can
derive efficient, mini-batch-based gradient updates.

Matrix-BasedRényi Information. We begin by establishing the notion
of a matrix-based Rényi entropy for positive-definite kernels; we refer
readers to [14] for more details.

Definition 2.3. Let κ�0, where κ∈Rn×n is a Gram matrix computed
from mini-batch of n samples. The parameterized matrix functional
for Rényi’s entropy is given by sα(κ) = log(tr(κα))/(1−α), where
α∈(0, 1) ∪ (1,∞).

We can view this version of entropy as measuring the lack of statistical
regularities in a transformed version of a mini-batch, as represented by



the Gram matrix. It hence quantifies uncertainty.
This notion can be extended to the joint and conditional cases; here,

we consider the case of two random variables, but the definitions can be
posed for any finite number of them [15].

Definition 2.4. Let κk � 0, k = 1, 2, where κk ∈ Rn×n. The matrix
functional for the joint Rényi entropy, for α∈(0, 1) ∪ (1,∞), is

sα(κ1, κ2) = sα(κ1 ◦ κ2/tr(κ1 ◦ κ2)).

The matrix functional for the conditional Rényi entropy is

sα(κ1|κ2) = sα(κ1 ◦ κ2/tr(κ1 ◦ κ2))− sα(κ1).

An advantage of this formulation is that the random-variable probabilities
do not need to be known, let alone estimated estimated. This property is
immensely useful when dealing with massive datasets, let alone large
networks with many parameters.

The following proposition establishes that these matrix-derived
quantities behave similarly to entropy.

Proposition 2.1. Let κk � 0, [κk]i.j ≥ 0, ∀i, j and k = 1, 2, where
tr(κk)=1 and [κk]i,i=1/n, ∀i. We have the following generalizations
for:

(i) Monotonicity: sα(κ1 ◦ κ2/tr(κ1 ◦ κ2)) ≥ sα(κ2)

(ii) Chain rule: sα(κ1 ◦ κ2/tr(κ1 ◦ κ2)) ≤ sα(κ1) + sα(κ2).

Due to the generalization of the chain rule, we have a partial guaran-
tee of non-negativeness for the following Rényi mutual-information
approximation.

Definition 2.5. Let κk � 0, [κk]i.j ≥ 0, ∀i, j, where tr(κk) = 1 and
[κk]i,i = 1/n, ∀i and k = 1, 2. The matrix-based Rényi mutual-
information approximation is sα(κ1)+sα(κ2)−sα(κ1, κ2).

To guarantee non-negativity, we assume that the kernels specifying the
Gram matrices are infinity divisible. This constraint can be satisfied by
choosing Gaussian kernel functions, for instance.

Proposition 2.2. Let κk � 0, [κk]i.j ≥ 0, ∀i, j and k = 1, 2, where
tr(κk) = 1 and [κk]i,i = 1/n, ∀i. Let κ◦rk denote the entry-wise rth
power: [κ◦rk ]i,j =([κk]i,j)

r . If κ◦rk �0, for ∀r≥0, then:
(i) Non-negativity: sα(κ1)+sα(κ2)−sα(κ1, κ2) ≥ 0

(ii) Monotonicity: sα(κ1) ≥ sα(κ1)+sα(κ2)−sα(κ1, κ2).

This formulation of Rényi’s mutual information is well defined since
the set of positive semi-definite matrices is closed under the Hadamard
product. It also stems from the well-definedness of sα(κ◦rk /tr(κ◦rk )) due
to the use of infinitely divisible kernels.

Value-of-Information Gradients. We now re-state the value of in-
formation in a way that facilitates deriving meaningful gradient-based
updates for parameterized encoding and decoding mappings with a fully
connected bottleneck layer of arbitrary dimensionality. These expres-
sions are general and encompass convolutional maps for certain mapping
functions.

Definition 2.6. Let xt, zt, yt be random variables. A parameterized
autoencoder network is given by the encoder mapping zt=ψ(θxtxt+
ρxt) and decoder mapping yt=ψ−1(θytzt+ρyt) for some real-valued,
differentiable functionψ; here, θxt , θyt are weight matrices and ρxt , ρyt
are biases.

Definition 2.7. Let xt, yt, zt be random variables with marginals
pxt , pyt , pzt and conditional distributions pzt|xt;θ, pzt|yt;θ parameter-
ized by θ∈Rp. Let gxt,yt,zt;θ be a real-valued penalty function. The
unconstrained Rényi-Stratonovich value of information is

infθ
∫
X gxt,yt,zt;θpdxt −

∫
X

∫
Z gxt,yt,zt;θpdzt|xt;θpdxt

− γ(sα(κzt) + sα(nκzt ◦ κyt)− sα(κyt)),

where γ is a Lagrange multiplier and κxt , κyt are normalized Gram
matrices for the respective random variables.

Proposition 2.3. Assume the above definition for the form of the param-
eterized encoder and decoder mappings. The gradients of sα(κyt) and

sα(nκxt ◦ κyt) with respect to κyt are

∂sα(κyt)/∂κyt = αUΛα−1U>/(1−α)tr(καyt)

∂sα(nκxt◦κyt)/∂κyt = α(nκxt◦(V Γα−1V >))/(1−α)tr((nκxt◦κyt)
α)

where UΛU> and V ΓV > are the eigenvalue decompositions of κyt
and nκxt ◦ κyt , respectively. The partial derivatives of the conditional
entropy with respect to the autoencoder parameters are

∂sα(κyt)/∂θyt = −4(θytZ
>
t )(Dyt−Pyt)Z

∂sα(κyt)/∂θxt = −4(θ>xtθxtZ
>
t (Dyt−Pyt) ◦Ψ>zt)X

∂sα(κyt)/∂ρyt = −4(θ>xtθxtZ
>
t (Dyt−Pyt) ◦Ψ>zt)1n

whereDyt =diag(Pyt1n)−Pyt and Pyt =∂/∂κytsα(κyt) ◦κyt/2σ2,
assuming a Gaussian kernel with variance σ2. Ψzt = ψ′(Zt) are the
derivatives of the encoder non-linearity at Zt=XtΘ

>
xt +Pxt .

For α∈(0, 1], Rényi’s mutual information is provably convex; for
α∈(1,∞), it is quasi-convex. The value of information is hence either
convex or quasi-convex and a global minimum can be found.

III. SIMULATIONS

In this section, we assess the capability of convolutional autoencoder
networks to recognize various objects when value-of-information reg-
ularization is used. Learning discriminative, reduced-dimensionality
feature representations for these images is challenging due to the varieties
in the objects’ appearances, among other issues.

We have multiple simulation aims. Our main objective is to demon-
strate that the value of information yields bottleneck-layer organizations
which innately facilitate discrimination. Tied with this objective is that of
understanding how the hyperparameter influences the organization. We
additionally highlight that value-of-information regularized networks
outperform existing regularization schemes for both unsupervised and
supervised learning models. Many of these regularizers can be seen as a
special case of the value of information, which permits direct compar-
isons and analyses of their behavior. Fewer epochs are also needed to
achieve good classification performance when using the value of infor-
mation. Our results discussions in this section focus on an understanding
of why these various methodologies behave as they do.

A. Hyperparameter Effects Results and Discussions
In what follows, we assess the effects of the hyperparameter β on the

discrimination performance for value-of-information-based networks
applied to the CIFAR-10 dataset. We show that large values of β lead to
better-performing features for classification, as they promote a disentan-
glement of the latent generating factors for the imagery.

Simulation Setup. Our convolutional autoencoder networks were
implemented using the TensorFlow framework. For optimization pur-
poses, we used ADAM-based gradient descent with mini batches [16].
ADAM maintains an average of the first two gradient moments and
performs a bias correction to adjust the per-parameter learning rates,
thereby facilitating quick convergence to good parameter values.

Except where otherwise noted, we considered the following param-
eter values and update schemes in our simulations. These parameters
were informed by prior experiments on vision-based problems. An initial
learning rate of 10−3 was chosen for ADAM. The learning rate was
decreased by half every twenty epochs. We used exponential decay rates
of 9.0×10−1 and 9.9×10−1 for the first- and second-order moments,
respectively. An epsilon additive factor of 10−8 was employed to preempt
division by zero. Lastly, a mini-batch size of 32 samples was used to
ensure that the gradient estimation was sufficiently noisy to bias against
terminating in poor local minima [17].

The results presented in this section were averaged across 100 Monte
Carlo simulations where the network’s initial parameters are randomly
chosen. For each simulation, we randomly split the CIFAR-10 dataset
into training, testing, and validation sets, where ratios of 70%, 15%, and
15% were used, respectively. Each simulation was terminated once the
error on the validation set monotonically increased for 10 epochs. We
report classification results for both an unsupervised cross-entropy-error
and semi-supervised learning-by-association [18] cost function.
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Figure 1: Regularized training results for the CIFAR-10 dataset. (a)–(c) Class-colored scatterplots highlighting the bottleneck-layer sample organization when using the
Rényi-based value of information for training, whereα=0.99 and γ=0.1, 0.075, and 0.001, respectively. Higher values of γ, up to some data-dependent threshold,
lead to better discriminability, due to the autoencoder mainly encoding features that are predictive of the class label. Lower values of γ favor autoencoders that
implement an increasingly accurate identity map. (d)–(f) Plots of the smoothed, averaged normalized loss, validation set accuracy, and layer-wise mutual information
for the various regularization schemes; averages were obtained over 100 random runs when using good, empirically-derived parameters. These statistics highlight that
the value of information converges more quickly, leads to more predictive features, and filters out unnecessary information better than the alternatives. (g)–(h) Decoder
reconstructions of random samples from the bottleneck-layer feature space for γ=0.1 and 0.001, respectively. High values of γ only preserve low-frequency
characteristics of the images, like rough shape and color information. Low values incorporate more details about textures and sharp edges. This is quantitatively
illustrated in (i) and (j). The images in (i) include two images from (h) (left) and two from (i) (right) along with a visualization of their high-frequency components
(below); it is clear from the zero-crossings (dark contours) in the high-frequency-component images that the images from (h) have more texture content. The plots in (j)
quantitatively illustrate this behavior: the red and blue curves correspond, respectively, to the average logarithm of the high-frequency components for the images from
(g) and (h). (k)–(l) Activation maps for the networks which generated (g) and (h). High values of γ lead to networks which capture only rough directional and color
information from the images. Low values of γ permit reproducing complex patterns to produce better autoencoders. (m) Class activation heatmaps for the value of
information (top row), variational autoencoders (middle row), and information bottleneck (bottom row). The networks trained using our criterion consistently focus
their attention on regions where there is a target of interest. The other unsupervised regularization schemes often either are not stimulated by the target or focus on
unimportant details.

We relied on an eleven-layer convolutional autoencoder topology for
our simulations. The encoder stage network consisted of a 24×24×26
convolution layer followed by a 12×12×26 max-pooling layer. Follow-
ing this was an 8×8×36 convolution layer, a 4×4×36 max-pooling layer,
a 250-element fully-connected layer with leaky-rectified-linear-unit ac-
tivation functions, and a 2-element bottleneck layer for visualization
purposes. In some of our tests, we considered a higher-dimensional
bottleneck layer to allow for more degrees of freedom for an appended
classification layer consisting of linear activation functions. The decoder
portion of the network was a reverse of this. It was composed of a
250-element fully connected layer, a 4×4×36 de-convolution layer, an
8×8×36 un-pooling layer, a 12×12×26 de-convolution layer, and a
24×24×26 un-pooling layer. Both the encoder and decoder parts of
the network have a total of about 3.38×105 parameters. We found that
alternate topologies extracted either too few or too many unnecessary
image-based features for adequately representing the objects.

Results. The plots in figures 1(a)–(c) showcase the representation
discriminability property of our criterion. High values of γ promote
distributional compactness and separability, leading to trivially linearly
separable bottleneck codes regardless of which of the two cost functions
were used. The autoencoder performance, however, is poor. As γ de-
creases, the distributions begin to overlap, reducing the recognition rate
but improving the autoencoder performance.

Figures 1(h)–(l) summarize the effects of the hyperparameter on
the network response. For high values of γ, the decoder responses only
preserve the most salient object details, such as shape and color. Few
high-frequency components, such as texture and sharp edges, remain,
as captured in figures 1(i)–1(j). The network filters are mainly sensi-
tive to only directional and color details. For low values of γ, more
high-frequency components remain, as the goal becomes to mimic the
identity function; such components are needed to ensure an accurate
reconstruction of the original image. The network filters converge to
representations that retain details about complex patterns.

Discussions. Through these simulation results, we have demonstrated
the effects of the hyperparameter γ on the regularization process. This
parameter also naturally influenced the discrimination capability of the
bottleneck-layer features.

Our results in figure 1(c) indicate that near-zero values ofγ lead to con-

volutional autoencoders with little to no class-distribution organization.
Significant class overlap can be encountered, which complicates the ensu-
ing classification for both linear and non-linear appended layers. This was
expected. As γ tends to zero, the importance of the total expected penalty
term,E[E[gxt,yt,zt;θ|pzt|xt;θ]|pxt ], diminishes. The network attempts to
solely maximize the mutual dependence, E[DKL(pzt|yt;θ‖pzt)|pyt ], be-
tween the bottleneck-layer and output random variables. The bottleneck-
layer representation hence carries combinations of details about the
various objects beyond the type. These include, but are not limited to, the
objects’ orientations, outline and shape, which is corroborated by both
the distributional overlap and the covariances. All of these characteristics
aid in optimally reconstructing the images at the network output layer,
but do not necessarily lend themselves to discrimination.

High values of γ, which tend toward the random-variable en-
tropy, fair better for class discrimination, as we showed in figure 1(a)–
(c). Such values assign a high weight to the total expected penalty,
E[E[gxt,yt,zt;θ|pzt|xt;θ]|pxt ]. For our chosen penalty measure, the value
of information is encouraging the bottleneck layer to maximally quantize
the pseudo-information associated with the input while minimizing the
uncertainty between the bottleneck-layer representation and the output.
Minimally sufficient statistics, in a Neyman-Fisher sense, about the
output from the input are therefore recovered. The resulting bottleneck-
layer representation primarily encodes the objects type from a non-linear
combination of various objects’ shape and textural features. Samples
from each class are mapped to compact, well-separated distributions
in the reduced-order space, which are trivially linearly separable. The
per-class distribution variance decreases as γ rises due to the additional
imposed quantization. If γ is increased high enough, then each sample
would be mapped to a distribution with zero variance. The resulting
reconstruction is then just an approximate average of the class samples.

Valuesofγ between these twoextremes lead toacompromisebetween
the objective of being maximally predictive and maximally compressive.
Particular ranges of γ where one objective dominates the other are data
dependent. To help choose good values, we augmented the value-of-
information criterion so that the rate-distortion-like curve was provably
convex with respect to γ. Values of γ for which this augmented criterion
achieved a maximal value correspond to the ‘knee’ region of the original
criterion, which is where the two competing objectives become balanced.
The resulting autoencoders are capable of faithfully reproducing the



images while still possessing a bottleneck-layer representation that is
near-completely linearlyseparable,whichwedemonstrated infigure1(a)–
(b). Such optimal values of γ could be deduced algebraically, assuming
that all of the data are available a priori. For streaming-data problems
where the statistics of the images change dramatically with each batch,
γ would need to be re-assessed periodically to ensure that a near-optimal
trade-off between the quantization amount and prediction quality is
maintained.

At a higher level, value-of-information-regularized convolutional
autoencoders can be seen as learning a disentangled representation. That
is, individual latent processing elements are sensitive only to changes in
single generative factors while being mostly invariant to changes in other
factors [19, 20]. In the context of object recognition, this implies that the
value-of-information-trained networks learned independent latent units
that are sensitive to generative factors like the object identity, its position
and orientation, shape and scale, and so on, thus acting as an inverse
graphics model [21]. In a disentangled representation, knowledge about
one factor can generalize to novel configurations of other factors [22],
which explains the good generalization performance that we obtained.
As we elaborate on below, the hidden-unit disentanglement behavior
also supports why the networks organized the bottleneck-layer features
in the manner presented in figure 1(a).

We can prove that the value of information actively promotes dis-
entanglement. To do this, we consider the total-correlation measure
E[log(qzt)|qzt ]−

∑
j E[log(q

z
j
t
)|q

z
j
t
]. This measure is zero if the com-

ponents j of the intermediate-layer random variables are mutually in-
dependent and hence disentangled. Here, qzt is a factorized product
distribution related to the marginal pzt , the latter of which is intractable
to exactly compute. The value of information is implicitly forcing the
total correlation to be zero in certain cases, which follows from re-writing
the Shannon information E[DKL(pzt|yt;θ‖qzt)|pyt ], for the factorized
distribution qzt , as E[DKL(qzt|yt;θ‖pzt)|pyt ], which can be further
simplified to DKL(pzt|xt;θ‖

∏
j q

j

z
j
t

) and hence DKL(qzt‖
∏
j qzjt

) +

E[DKL(qzt|yt;θ‖qzt)|pyt ], assuming mutual independence is adopted.
Total correlation thus emerges as a constraint in the original objective
function. The influence of total correlation on learning is dictated by the
Lagrange-multiplier value. As the corresponding Lagrange multiplier
rises, the network is increasingly forcing the total correlation toward zero,
implying that the latent units are primarily sensitive to just the object
identity and shape. This naturally yielded compact representations with
a high between-class distance and minimal overlap, since the generating
factors behind the objects were separated. As the multiplier decreased,
it became difficult to disassociate the underlying factors, which led to
class distributions that overlapped and had large covariances.

In summary, the class-sample quantization behaviors emerged due
to the use of an information measure that restricts the amount of infor-
mation passing through the network. The penalty function also played a
role, and alternate choices may organize the features in ways that can
possibly impede discrimination. If, for instance, a mean-squared-error-
like penalty term was used within the value of information, then the
network would just attempt to mimic the identity mapping for both small
and large values of γ. No constraints would hence be imposed on the
bottleneck feature distribution. This corresponds to the conventional
learning case for autoencoder networks where class discrimination can
hence be poor. Additionally, other information measures may yield worse
behaviors, especially if they do not promote disentanglement. We show
this in the next section, where we compare against conventional network
regularization techniques that turn out to be special instances of the
value of information with degenerate information measures that impede
disentanglement.

B. Comparative Results and Discussions
We now demonstrate that value-of-information-trained networks can

better discriminate between objects types than other popular regulariza-
tion schemes. We also highlight that they generalize better to untrained
samples, even ones with markedly different statistics. Both behaviors
are due to a Markov-chain-aggregation property of the criterion.

Simulation Setup. For the ensuing simulations, we relied on the
same training protocols and network configuration as in the previous

section. We considered a range of alternate regularization approaches
that used correlation-based error measures. These included network drop-
out, network drop-connect, which we incorporated into ADAM-based
gradient descent. We also considered the information-bottleneck method
where mutual information is estimated via a variational approximation.

Both network drop-out [23] and drop-connect [24] operate by stochas-
tically altering the topology of the network during training to prevent
the processing elements from co-adapting too greatly. Drop-out does
this by temporarily removing, at random, both processing elements and
their connections. Drop-connect instead randomly selects a subset of
connections between processing elements and sets their corresponding
weights to zero. For our simulations, the chance of removing a connection
was 5.0×10−1 and 8.0×10−1 for hidden-layer and input-layer process-
ing elements, respectively, when using drop-out. For drop-connect, the
probability of temporarily severing a connection was 4.0×10−1. Such
values were guided by previous empirical studies.

Results. Quantitative comparisons of the value of information with
other conventional regularization schemes, for the same convolutional
architecture, are provided in figures 1(d)–1(f). Figure 1(d) shows that
the value of information cost function converges more quickly than the
alternate regularization approaches, such as drop-out and drop-connect.
Figure 1(e) highlights that our criterion generalizes better, regardless
of the chosen cost function, in fewer epochs. They also encode more
relevant information, which is captured in figure 1(e).

We also compared against both variational and information-
bottleneck-regularized convolutional autoencoders. Neither approach
fared as well as our criterion; see figures 1(e) and 1(m).

Discussions. The above results indicate that the value of information
often outperforms common network regularizers.

In the context of parameter selection, optimizing the value of infor-
mation attempts to minimize the ‘distance’ between a joint and marginal
distribution such that the representations are increasingly sufficient, in a
Neyman-Fisher sense. Both drop-out and drop-connect propagate a pos-
sibly non-optimal amount of information through the network and hence
do not necessarily yield representations that are minimally sufficient
statistics.

The fact that the value of information will outperform these reg-
ularizers can be definitively proved; here we provide a sketch of this
fact. Both drop-out and drop-connect are special cases of the value of
information where the hidden-layer random variables are, respectively,
corrupted by multiplicative Bernoulli noise with unit mean and mul-
tiplicative log-normal noise with zero mean. In this case, the Rényi
information term is marginalized, leading to a Rényi α-divergence,
Dα

R (pzt|xt;θ|pzt). As well, the penalty function is an augmented cross-
entropy term E[−log(pyt|zt;θ)|pzt|xt;θ]. For the same penalty func-
tion, the value of information yields equal or better parameter values,
which follows since E[Dα

R (pzt|yt;θ‖pzt)|pyt ]≤D
α
KL(pzt|xt;θ|pzt) due

to Jensen’s inequality and some additional arguments. Hence, global
solutions to drop-out and drop-connect lie on or above the value-of-
information’s rate-distortion-like curve.

Variational autoencoders [25] can be considered as instances of the
value of information. Similar arguments to those we used above can be
used to prove that the value of information will either perform similarly
or better than it. This explains our empirical findings.

The value of information converges to good network parameter values
more quickly than other regularizers. This is due to its Markov-chain
aggregation properties [6]. As we noted in [26, 27], autoencoder networks
can be viewed as analogues of Markov chains. In [6], we proved that the
value of information quantizes the state space of Markov chains. The
criterion maps state groups from the original chain to states of a reduced-
order chain and provides probabilistic one-to-many correspondences
between those two group sets. The number of state groups is dictated
entirely by the Lagrange multiplier. For low multiplier values, many
state groups exist in the reduced-order chain. This complicates the
training process, since a wide gamut of parameter values are considered
during training. The parameter values are sought that are specialized
to groups containing a few input samples in an attempt to model them
well and recover the identity function. This case leads to a reduced-order
Markov chain with similar long-run dynamics as the original chain;



there is little to no regularization since a large parameter space must be
explored. For high parameter values, the chains are compressed greatly
and parameter regularization occurs. This implicitly leads to training
over a topologically simpler network.

V. CONCLUSIONS

The value of information is an information-theoretic criterion that
describes the maximum benefit that can be obtained from a piece of
information for either increasing expected rewards or reducing average
costs. We have previously shown that this property facilitates optimal
decision-making under uncertainty. Here, we have exploited it to reg-
ularize parameter selection when training convolutional autoencoder
networks for object classification.

More specifically, the value of information trades off between the
competing objectives of mimicking the identity function and compressing
the autoencoder representation, as dictated by the class organization.
The emphasis placed on either objective is dictated by a single user-
selectable hyperparameter. Near-zero values of this hyperparameter do
not regularize parameter selection. There are hence no constraints on the
bottleneck-layer class organization, which corresponds to conventional
training for autoencoder networks. As the hyperparameter values is
increased, the samples from each class start to become grouped in the
bottleneck layer. High values ensure that the each class’ samples are
compactly distributed and well separated. That is, features are extracted
from the input samples that facilitate discrimination, which should have
been an explicit behavior implemented by autoencoder networks since
their inception.

Efficiently optimizing the value of information is imperative for
choosing thousands to millions of network parameters. Our previous
work on solving the value of information relied on either expectation-
maximization updates or numerical continuation updates, neither of
which would be computationally tractable for the complicated network
topologies. They also would not be able to easily handle the continuous
random variable case. We thus developed an alternate, more general
optimizationscheme that is basedon approximatingvalue-of-information
solutions. That is, we showed how to nearly tightly bound the criterion
while still preserving its differentiability. This allowed us to use mini-
batch-based gradient descent for tuning the network parameters in the
continuous random-variable case. This approach is also applicable to
discrete random variables.

In our simulations, we highlighted the appropriateness of this train-
ing regularization for both supervised and unsupervised learning. We
demonstrated that, regardless of the bottleneck-layer dimensionality, the
value of information promoted the formation of compact, well-separated
class distributions for appropriate hyperparameter values. That is, the
features extracted by the networks led to classes that were trivially lin-
early separable. This permitted recognition for a variety of diverse object
types. The features also were relatively insensitive to nuisances, such as
background variations. As a consequence, they tended to perform simi-
larly to features extracted by unsupervised convolutional autoencoder
networks. In the latter case, this was because conventional autoencoder
networks can produce features that lead to highly overlapping class
distributions. This occurs even if the class labels are used to help choose
the weights in the encoder and decoder portions of the networks.

In the future, we will explore alternate applications of the value
of information for network training. We will show that the value of
information can be used to perform layer-wise parameter selection in
conventional neural networks. In this context, the value of information
will be limiting the amount of information that flows through each layer
of the network. This should have the effect of speeding up network
training time compared to conventional deep architectures. It should
also guarantee that the network achieves a certain level of performance.

A. APPENDIX

We first demonstrate that our Rényi conditional α-entropy can be
related to Shannon conditional entropy.

Proposition A.1. Let yt, zt be random variables with marginals pyt , pzt
along with a conditional distribution pzt|yt;θ and joint pyt,zt;θ param-
eterized by θ ∈Rp. We have that our Rényi conditional α-entropy is
equivalent to Shannon conditional entropy in the limit of α→1,

limα→1log(
∫
Y(

∫
Z p

α
dzt|yt;θ)

1/αpdyt)
α/(α−1) =

−
∫
Y

∫
Z pdyt,dzt;θ log(pyt,zt;θ/pdzt).

As a consequence of this equality, our Rényi α-mutual-information
is equivalent to Shannon mutual information in the same limit. This
property follows from the equivalency of Rényi’sα-entropy and Shannon
entropy in this case.

We can also show consistency of our Rényi’s conditional α-entropy
with conditional min- and max-entropy.

Proposition A.2. Let xt, yt be random variables with marginals pyt , pzt
and a conditional distribution pzt|yt;θ parameterized by θ∈Rp. We have
that our Rényi conditional α-entropy is equivalent to,

(i) Conditional min-entropy: When α→∞,

limα→∞log(
∫
Y(

∫
Z p

α
dzt|yt;θ)

1/αpdyt)
α/(α−1) =

−log(
∫
Y pdyt infZ pzt|yt;θ).

(ii) Conditional max-entropy: When α→0,

limα→0log(
∫
Y(

∫
Z p

α
dzt|yt;θ)

1/αpdyt)
α/(α−1) =

log(supyt∈Y |supzt∈Z pzt|yt;θ|).

WenowshowthatourRényi’s conditionalα-entropy ismonotonically
decreasing with respect to α; this is a similar behavior to the non-
conditional α-entropy case.

Proposition A.3. Let xt, yt be random variables with marginals pyt , pzt
along with a conditional distribution pzt|yt;θ parameterized by θ∈Rp.
For α≤β, α, β∈ [0,∞], we have that

log(
∫
Y(

∫
Z p

α
dzt|yt;θ)

1/αpdyt)
α/(α−1) ≤

log(
∫
Y(

∫
Z p

β
dzt|yt;θ)

1/βpdyt)
β/(β−1),

which is naturally less than or equal to log(|Z|).

It is apparent that our Rényi’s conditional α-entropy Hα
zt|yt;θ is non-

negative, so these quantities are bounded below by zero.
Two important properties that we verify are that conditioning on

one variable has the potential to reduce the uncertainty in another, on
average, and that the weak chain rule of conditional entropy is satisfied.
It therefore behaves similarly to Shannon entropy.

Proposition A.4. Let xt, yt be random variables with marginals pyt , pzt
along with a conditional distribution pzt|yt;θ parameterized by θ∈Rp.
For α∈ [0,∞], we have that

(i) Conditioning reduces average uncertainty: Hα
zt ≥ H

α
zt|yt;θ ,

log(
∫
Z p

α
dzt/(1−α)) ≥ log(

∫
Y(

∫
Z p

α
dzt|yt;θ)

1/αpdyt)
α/(α−1),

(ii) Weak chain rule: Hα
zt|yt;θ ≥ H

α
zt,yt;θ−H

0
zt ,

log(
∫
Y(

∫
Z p

α
dzt|yt;θ)

1/αpdyt)
α/(α−1) ≥∫
Y

∫
Z p

α
dyt,dzt;θ/(1−α)−H0

zt .

Demonstrating that the chain rule is satisfied is important. For two
random variables yt, zt, the joint α-entropy given by the expression
Hα
yt,zt = log(E[pαyt,zt;θ/pyt pzt |pyt pzt ])/(1−α) describes the number

of bits, on average, needed to describe the exact system state. If we first
learn the value of zt, then we have gainedH0

zt bits of information and at
leastHα

yt,zt−H
0
zt remaining bits are needed to describe the entire system

state. If an information-theoretic measure does not satisfy the chain rule,
then a greater number of bits will be needed. We therefore would not
be able to directly express the joint α-entropy in terms of the difference
between the conditional and marginal, which would complicate our
learning strategy, since we rely on this property to re-write our cost
function in a more easy-to-optimize form.

It can be shown that existing definitions of Rényi’s conditional α-
entropy only satisfy either the weak chain rule property or the uncertainty
reduction property, not both. They would therefore be poorly suited as
regularizers for restricting the flow of information through deep networks.

Proposition A.5. Let xt, yt be random variables with marginals pyt , pzt



along with a conditional distribution pzt|yt;θ and joint pyt,zt;θ parame-
terized by θ∈Rp. For α∈ [0,∞], we have that

(i) The following conditional α-entropies do not reduce average
uncertainty by conditioning∫

Y log(
∫
Z p

α
dyt,dzt;θ/p

α
dyt)pdyt/(1−α),

log(
∫
Y

∫
Z p

α
dyt,dzt;θ/

∫
Y p

α
dyt)/(1−α).

(ii) The following conditional α-entropies do not satisfy either a
weak or strong chain rule,

log(
∫
Y(

∫
Z p

α
dyt,dzt;θ/p

α
dyt)pdyt)/(1−α),

log(
∫
Y(

∫
Z p

α
dyt,dzt;θ/p

α
dyt)

1/(α−1)pdyt)
α−1/(1−α).
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