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Abstract—In this paper, we present a deep learning framework
with attention mechanism for visibility prediction. We firstly
formulate visibility prediction as a temporal prediction problem.
An encoder-decoder architecture based network is proposed to
generate a multi-step prediction. To adaptively focus on different
parts of the input and output sequence, we incorporate input
attention and temporal attention into the network. Experiments
verify the feasibility of the proposed model. We produce state-of-
the-art prediction accuracy (68.9%) on the runway visual range
prediction in our customized data set collected at observation
stations of the airport.

I. INTRODUCTION

Airport operations are sensitive to visibility conditions.
Low-visibility issues may seriously influence the air traffic
and lead to flow capacity reduction, as the spacing between
two aircraft should be increased. Commonly, the airport low-
visibility procedures may come into force when runway
visibility falls below the airport-specific thresholds. In this
situation, airports will take some special actions to ensure
flight safety, i.e., postpone inbound flight landing or divert
to alternative airports, and delay or prevent outbound flight
taken off. Reliable visibility prediction plays a very important
role on aircraft planning and deployment.

Visibility prediction is a challenging task due to the com-
plexity of the physical process. Existing visibility forecasting
approaches can be categorized into two classes: physical
modeling and statistical modeling. Physical modeling with
numerical weather prediction models has been widely explored
in last decades, e.g., ALADIN [1], WRF [2], . However,
most of these methods cannot achieve a good prediction
within the next six hours, as some important parameters
cannot be accurately estimated in such a period. Physical
modeling methods are also computationally intensive in the
inference process, as a highly complex model has been built
for implementation. On the other hand, the statistical modeling
methods are usually computationally lightweight, especially
in the inference process. Since they are data-driven solution,
the model parameters are estimated on the train data set and
forecasting is implemented on the new data set. Regression
models, support vector machines [3], tree-based methods [4],
[5], and artificial neural networks [6], [7] have been used for
low-visibility forecasting.

In this paper, we formulate the low-visibility forecasting
task as a time-series prediction problem. By introducing the

convolutional component into the encoder-decoder architecture
with attention mechanism, the proposed network model com-
bines the advantages of LSTNet [8] and DA-RNN [9], [10],
and achieves the state-of-the-art prediction accuracy (68.9%)
on the runway visual range prediction.

II. RELATED WORKS

A. Physical modeling

The development of numerical weather models have made
significant progress on visibility forecasting [11]. Goswami
et al. explore and evaluate the potential of a dynamic fog
forecasting system with visibility calculated from observed
meteorological fields [12] for benchmark forecasts from an
atmospheric mesoscale model. Shatunova et al. find that the
numerical prediction meteorological parameters, like relative
humidity, or the rate and phase of precipitation, can be used for
visibility forecasting with synoptic approach [13]. Steeneveld
et al. evaluate the HARMONIE and Weather Research and
Forecasting (WRF) mesoscale models for two contrasting
warm fog episodes and find that the boundary-layer formu-
lation is critical for forecasting the fog onset, while the choice
of the microphysical scheme is a key element for fog dispersal
[14]. Tudor and Martina implement forecasting experiments
with the numerical weather prediction model ALADIN and
find that sophisticated radiation scheme is related to the
visibility [1]. Zhou et al. shows that the performance of the
low visibility/fog forecasts from the current operational 12
kmNAM, 13 km-RUC and 32 km-WRF-NMM models at the
National Centers for Environmental Prediction (NCEP) models
is still unsatisfactory [15]. Lin et al. conduct a series of numer-
ical simulations to understand the formation, evolution, and
dissipation of an advection fog event over Shanghai Pudong
International Airport (ZSPD) with the Weather Research and
Forecasting (WRF) model [2].

B. Statistical modeling

We review the existed statistical modeling methods for
visibility prediction task in this section. Dutta and Chaudhuri
develop visibility forecasting model for fog prediction by
combining the decision tree algorithm and artificial neural
network approach together at the airport of metropolis of India
[4]. Bartokov et al. employ decision-tree induction method
to build a mode for fog events nowcasting in the coastal
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desert area of Dubai [5]. Dietz et al. tree-based ensemble
statistical models based with highly-resolved meteorological
observations for low-visibility procedure states forecasting
[16]. Kneringer develops an ordered logistic regression (OLR)
model based probabilistic forecasting model of low-visibility
procedure states at Vienna International Airport [17]. Ortega
et al. presents an exploratory study of using machine learning
algorithms for visibility conditions classification with the data
collected from the weather stations in Florida [18]. Bari intro-
duces the machine-learning regression method into Kilometric
NWP Model for visibility prediction [19]. Ryerson et al.
presents a nonparametric ensemble postprocessing approach
for short-range visibility predictions in data-sparse regions
[20]. Deep neural network based machine learning techniques
is revived, since Krizhevsky et al. won the champion on
ILSVRC competition with a large margin in 2012 with their
deep convolutional neural network, AlexNet [21]. Like many
other fields, the field of visibility prediction is also benefited
from the fast growing deep learning technologies. Artificial
neural network model is developed for ceiling and visibility
forecasting in [6], [7]. Zhu et al. directly apply the deep learn-
ing for visibility forecasting in the airport [22]. Palvanov and
Palvanov develop ”VisNet” model based on deep convolutional
neural network for atmospheric visibility prediction [23].

III. MODEL

In this section, we first formulate our time series forecasting
task (section III-A). Then, the details of each component in
our proposed network model are presented: i) convolutional
component is introduced in section III-B, ii) input attention
mechanism based encoder is introduced in section III-C; iii)
temporal attention mechanism based decoder is introduced in
section III-D; iv) autoregressive component is introduced in
section III-E; and v) summing component is introduced in
section III-F. Figure 1 presents the graphical illustration of the
proposed model. Note that our proposed model combines the
advantages of the Long- and Short-term Time-series network
(LSTNet) in [8] and Dual-Stage Attention-Based Recurrent
Neural Network (DA-RNN) in [9].

A. Problem Formulation and Notation

In this paper, we aim to develop a neural network model
for the task of multi-step ahead multi-variate time series fore-
casting. Mathematically, given a sequence of fully observed
time series Y1:T = {y1,y2, ...,yT }, where yt ∈ Rn, n is
the number of variables, and T is the length of the input
time-series, we aim to predict a series of future time-series
signals ŶT+1:T+h =

{
ŶT+1, ŶT+2, ..., ŶT+h

}
, where h is

the desired horizon ahead of the current timestamp. Here, we
formulate the input matrix at timestamp T as X = Y1:T ={
y>1 ,y

>
2 , ...,y

>
T

}
∈ RT×n.

B. Convolutional Component

Similar to the LSTNet proposed in [8], we fuse local de-
pendencies for all of the used variables by a 2D convolutional
layer, consisting of C filters with width w and height h. Note

that the height of the convolutional filters, i.e. h, is set to be
the same as number of the utilized variables. The output of
the k-filter of the 2D convolutional layer is given by:

fk = ReLU (Wk ∗X + bk) , (1)

where ∗ denotes the 2-D convolutional operation, and the
output fk is a 1-D vector. The ReLU describes the rectified
linear units function. The input matrix X is zero-padded to
obtain each vector fk. Note that the output of the convo-
lutional layer is Xconv = f1:C =

{
f>1 ,f

>
2 , ...,f

>
C

}
=

{x1,x2, ...,xT }∈RT×C .

C. Encoder with Input Attention

The output of the convolutional layer is fed into the encoder
part of our network model, which is essentially an recurrent
neural network (RNN) that encodes the input sequences into
a feature representation, like the task of machine translation
[24]–[26]. In this multi-step ahead time-series prediction task,
the encoder is applied to learn a mapping from xt to the
hidden states of the encoder, henct , at timestamp t, by given
the output sequence of the convolutional layer, as: henct =
LSTM

(
henct−1,xt

)
, where ht ∈ Rm denotes the hidden state

of the encoder at time t, m is the size of the hidden state,
and LSTM represents the long short-term memory (LSTM)
unit [27]. In this work, we utilize LSTM unit instead of gated
recurrent unit (GRU) to capture long-term dependencies. At
timestamp t, the memory cell with the states senct in each
LSTM unit is controlled by three sigmoid gates: i) input
gate ienct , ii) forget gate fenct , and iii) output gate oenct . We
can formulate the updating process as:

fenct = σ
(
W enc

f × concat
{
henct−1;xt

}
+ bencf

)
(2)

ienct = σ
(
W enc

i × concat
{
henct−1;xt

}
+ benci

)
(3)

oenct = σ
(
W enc

o × concat
{
henct−1;xt

}
+ benco

)
(4)

senct = ft � senct−1

+ienct � tanh
(
W enc

s × concat
{
henct−1;xt

}
+ bencs

) (5)

henct = oenct � tanh (st) (6)

where concat { ·} represents the concatenate operator,
concat {ht−1;xt} ∈ Rm+T is the concatenation of the pre-
vious hidden state, ht−1, and the current input, xt, at the
timestamp t, σ denotes the sigmoid function, and � is the
Hadamard product operator. Wf , bf , Wi, bi, Wo, bo, Ws,
and bs, are learnable parameters. We use LSTM unit here to
overcome the gradient vanishing problem for capturing long-
term dependencies, as the cell states in the LSTM units are
continuously updating over time.

Next, we follow the idea proposed in [9], which is inspired
by the human attention system for elementary features selec-
tion [28]. We incorporate the input attention mechanism into
our network model to adaptively extract relevant driving series.
A feed-forward multi-layer perceptron is used to build up the
input attention mechanism for the k-th convolutional feature



(a) Network model

(b) Convolutional component

Fig. 1. Overview of the proposed multi-step LSTM prediction model.

f>k , according to the hidden state, i.e., ht−1, and the cell state,
i.e., st−1, in the previous timestamp in the LSTM unit, as:

ekt = v>enctanh
(
Weconcat {ht−1; st−1}+ be +Uef

>
k

)
(7)

where venc, We, be, and Ue are learnable parameters. Note
that ve is a vector of length T , We is a 2-D matrix with the
size of T × 2m, be is a vector of length T , and Ue is a 2-D
matrix with the size of T ×T . Hence, the adaptively extracted
driving series can be mathematically expressed as:

X̃ = (x̃1, x̃2, · · · , x̃T ) (8)

where x̃t is given by:

x̃t =
(
α1
tx

1
t , α

2
tx

2
t , · · · , αCt xCt

)
(9)

where the attention weights αkt is utilized to measure the
importance of the k-th convolutional features at timestamp t.
They are obtained by applying softmax function on ekt as:

αkt =
exp

(
ekt
)

C∑
i=1

exp
(
eit
) , (10)

Note that we use softmax function here to ensure the summa-
tion of all attention weights to be 1. Thus, the hidden state
at timestamp t is updated as: henct = LSTM

(
henct−1, x̃t−1

)
.

Note that here we use the extracted driving series x̃t−1 ∈ RC
to adaptively focus on the important part instead of using the



convolutional features xt−1 ∈ RC which treat all features
equally to update the parameters for the LSTM unit.

D. Decoder with Temporal Attention

Another LSTM unit based RNN is used to decode the
encoded information in the previous step. Found by [24], [25],
[29], when the input sequences are too long (i.e., length greater
than 50), the performance of the encoder-decoder architec-
ture may be seriously degraded. To maintain the prediction
accuracy in the long-term part, we introduce the temporal
attention mechanism in our network model, as [8], [9], [30],
to adaptively select the relevant encoded hidden states across
entire input time steps. We determine the attention weights for
each encoded hidden state at timestamp t, according to the
hidden state and cell state of the LSTM unit for the decoder
in the previous timestamp t− 1, as:

lit = v>dectanh
(
Wdecconcat

{
dt−1; sdect−1

}
+Udechi

)
(11)

where i is an integer ∈ [1, T ], both dt−1, and sdect−1 is a vector
with length p, representing the hidden state and the cell state
of the LSTM unit for the decoder in the timestamp t − 1,
respectively. concat { ·} represents the concatenate operator.
Hence, concat

{
dt−1; sdect−1

}
is a vector with length 2p. vdec,

Wdec, and Udec are learnable parameters. Note that vdec is a
vector with length m, Wdec is a 2-D matrix with size m×2p,
and Udec is a 2-D matrix with size m×m.

Next, we compute the context vector, ct, by using all hidden
states, {h1,h2, · · · ,hT } ∈ RT×m, of the LSTM unit for the

encoder, as: ct =
T∑
i=1

βithi, where i is an integer ∈ [1, T ].

The attention weights βit are obtained by applying softmax
function on lit, as:

βit =
exp

(
lit
)

T∑
j=1

exp
(
lit
) (12)

where lit computed from Eq.(11). Note that βit is used to
measure the importance of the i-th hidden states for encoding
context vector. From Eq.(12), we find that context vectors
c1, c2, · · · , cT are varied for different timestamp.

Next, we combine the context vectors with the input time
series to form new input time series at each timestamp t, as:

ỹt = W̃tconcat {yt; ct}+ b̃t, (13)

where concat { ·} represents the concatenate operator,
concat { yt; ct} is the concatenation of the input time-series,
yt, and the context vectors, ct, at timestamp t. W̃t and b̃t
are learnable parameters. Note that the function of 2-D matrix
W̃t and variable b̃t in Eq.(13) is to map the concatenation
of concat { yt; ct} to fit the size requirement for the decoder
input. Herein, W̃t is a 2-D matrix with the size of n×(m+ n).
concat { yt; ct} is a vector with the length of m+ n, and b̃t
is a vector with the length of n, at timestamp t. The newly
formed input time series, ỹt, which has the same size as
the input time series yt with a length of n, is utilized to

update the hidden state for the decoder at timestamp t, as:
h̃dect = LSTM

(
h̃dect−1, ỹt−1

)
. The memory cell with the

states sdect in the LSTM unit [9], [27] is also controlled by
three sigmoid gates: i) input gate idect , ii) forget gate fdect ,
and iii) output gate odect for the decoder to capturing long-
term dependencies. We can formulate the updating process of
the LSTM unit in our temporal attention based decoder, as:

idect = σ
(
W dec

i × concat
{
h̃dect−1; ỹt−1

}
+ b̃deci

)
(14)

fdect = σ
(
W̃ dec

f × concat
{
h̃dect−1; ỹt−1

}
+ b̃decf

)
(15)

odect = σ
(
W dec

o × concat
{
h̃dect−1; ỹt−1

}
+ b̃deco

)
(16)

s̃dect = fdect � s̃dect−1

+idect � tanh
(
W dec

s × concat
{
h̃dect−1; ỹt−1

}
+ b̃decs

) (17)

h̃dect = odect � tanh (s̃t) (18)

where mdec is the number of hidden units of the LSTM in
our decoder, concat { ·} represents the concatenate operator,
concat

{
h̃dect−1; ỹt−1

}
∈ Rm+n is the concatenation of hidden

state of the LSTM unit, h̃dect−1, for the decoder, and newly
formed input time-series, ỹt−1, in the previous timestamp t−
1. σ denotes the sigmoid function, and � is the Hadamard
product operator. W̃ dec

i , b̃deci , W̃ dec
f , b̃decf , W̃ dec

o , b̃deco , W̃ dec
s ,

and b̃decs are learnable parameters. W̃ dec
i in Eq.(14), W̃ dec

f

in Eq.(15), W̃ dec
o in Eq.(16), and W̃ dec

s in Eq.(17) are 2-
D matrices with the size mdec×

(
mdec + n

)
. b̃deci in Eq.(14),

b̃decf in Eq.(15), b̃deco in Eq.(16), and b̃decs in Eq.(17) are vectors
with the length of p.

We can then obtain the prediction for the next timestamp,
i.e., t = T + 1, as:

ŷdecT+1 = v>y

(
Wy × concat

{
ĥdect ; ct

}
+ b̃decy

)
+ b̃decv (19)

where ŷdecT+1 is the prediction result at timestamp T +1 for the
encoder-decoder part. Wy, b̃

dec
y , b̃decv are learnable parameters.

E. Autoregressive Component

The scale of input is not sensitive enough in our network
model, due to the non-linear nature for both the convolu-
tional components (section III-B) and LSTM -based encoder-
decoder architecture (sections III-C and III-D). To address
this issue, we incorporate the classical autoregressive(AR)
model [31] as an extra linear component (shown in Fig.) into
our network model. The prediction of the autoregressive(AR)
model can be formulated as:

ỹart,k =

war−1∑
jj=0

W ar
jj × yt−jj,k + bar (20)

where war denotes the window size. W ar, and bar are
learnable parameters.



F. Summing Component

The final prediction of our network model at timestamp t
is obtained by summing the outputs of the decoder part and
the autoregressive component, as:

ỹT+1 = ỹdecT+1 + ỹarT+1 (21)

where ỹdecT+1 is determined from Eq.(19), and yarT+1 is deter-
mined from Eq.(20). ŷT+1 denotes the final prediction of our
network model at timestamp T + 1.

IV. EXPERIMENTS

In this section, we first describe our customized data sets for
the visibility prediction task. Details for data preparation and
data preprocessing will be presented in section IV-A. Then, we
introduce the parameter settings, objective functions, and op-
timization strategy for our multi-step LSTM prediction model
in section IV-B. Subsequently, we introduce the evaluation
metrics to measure the effectiveness of our proposed networks
model for visibility prediction in section IV-C. Finally, the
prediction results are presented in section IV-D.

A. Data Sets

Data preparation: The data set used in this work is col-
lected at monitoring stations in Shanghai Pudong international
airport (31◦8′36”N, 121◦48′19”E). Of the 50 collected terms,
12 have been used in this paper for visibility prediction
(summarized in the Table I), i.e., 1 min average runway
visual range (RVR-1-AVG), 10 min average runway visual
range (RVR-10-AVG), 1 min average meteorological optical
range (MOR-1-AVG), 10 min average meteorological optical
range (MOR-10-AVG), 2 min average wind speed (WS-2-
AVG), 10 min average wind speed (WS-10-AVG), 10 min
maximum wind speed (WS-10-MAX), query normal height
(QNH), query field elevation (QFE), temperature (TP), relative
humidity (RD), and dew point temperature (DT).

Data preprocessing: Due to the electronic device’s noise
signal, unexpected intensive local changes are existed in the
capture data. Thus we employ moving average scheme [32]–
[34] with the window size of 15 to smooth our data set in the
preprocessing stage. Fig. 2 presents the preprocessing results.

B. Optimization and Parameter Settings

We simply use absolute loss (L1-loss) function as our
objective function for optimization, as:

Lθ = min
θ

{
T+H∑
t=T+1

∣∣∣Yt − Ŷt∣∣∣} (22)

where Lθ represents the objective loss function, θ rep-
resents the parameter set of our network model, t ∈
[T + 1, T + 2, · · · , T +H] is the timestamps set, Ŷt is the
predicted results, while Yt is the ground-truth at the timestamp
t. Note that we do not employ squared error (L2-loss) as
the loss function, differing from many previous works [9],
[35], [36] for time-series forecasting. The advantage of using
L1-loss instead of L2-loss is that it is more robust to the

Fig. 2. Data preprocessing. Blue line shows is plot of the RVR without
preprocessing; red line is the plot of the preprocessed RVR with median
encoding; green line is the plot of the preprocessed RVR with mean encoding.

anomalous data in the real time-series data [8] for our visibility
forecasting task.

In our work, the optimization strategy is similar to the tradi-
tional time series forecasting model [37]–[40]. As the proposed
end-to-end network model is differentiable, we can simply
employ stochastic gradient descent [41] together with the
Adam optimizer [42] to minimize the objective loss function,
Lθ, via back-propagation [43]. We train the network model
for 200 epochs on the NVIDIA GeForce RTX 2080 graphics
card with the learning rate of 0.001. In each epoch, the entire
train set is iteratively trained with the batch size of 16. The
proposed multi-step LSTM prediction model is implemented
via PyTorch [44], [45]. There are only two primary sets of
the parameters in the proposed network model: the number of
the hidden states, menc, the layer number of the LSTM
unit, lenc, in the encoder part; the number of the hidden
states, mdec, the layer number of the LSTM unit, ldec, in
the decoder part. Note that we simply set mdec = menc,
and ldec = lenc in the grid search over mdec = menc ∈
{32, 64, 128, 256, 512}, and ldec = lenc ∈ {1, 2, 3, 4}. We find



TABLE I
USED VARIABLES

Physics variables Unit Abbreviation
1 min average runway visual range [m] RVR-1-AVG
10 min average runway visual range [m] RVR-10-AVG
1 min average meteorological optical range [m] MOR-1-AVG
10 min average meteorological optical range [m] MOR-10-AVG
2 min average wind speed [m/sec] WS-2-MAX
10 min average wind speed [m/sec] WS-10-AVG
10 min maximum wind speed [m/sec] WS-10-MAX
query normal height hPa QNH
query field elevation hPa QFE
temperature [K] TP
relative humidity [%] RD
dew point temperature [K] DT

that mdec = menc = 512, and ldec = lenc ∈ {2} achieve the
best performance over the validation set.

C. Evaluation Metrics

We employ mean classification error (MCE) and mean
absolute error (MAE) as the evaluation metrics [46] to measure
the performance for different methods in this time-series
prediction task. i) MCE is defined by:

MCE =
∑

γ∈Ωtest

1

H

{
T+H∑
t=T+1

1 {yct , ŷct}

}
(23)

where 1 {} denotes the indicator function , yct represents the
ground-truth class, Ωtest represents the test set, ŷct represents
the predicted class. ii) mean absolute error (MAE) is defined
by:

MAE =
∑

γ∈Ωtest

{(
T+H∑
t=T+1

|yt − ŷt|

)}
(24)

where Ωtest represents the test set, yt is the ground-truth
time-series in the timestamp t ∈ [T + 1, T + h], and ŷt is
the predicted time-series in the timestamp t ∈ [T + 1, T + h].

D. Results

To demonstrate the effectiveness of the proposed multi-step
LSTM model, we compare it against the LSTNet [8] and DA-
RNN [9]. The prediction results of runway visual range are
shown in Fig. 3. Our multi-step prediction model achieve the
mean MCE of 68.9%, and mean MAE of 306.2 m, slightly
better than the results of LSTNet with the mean MCE of
65.4%, and mean MAE of 356.9 m. The prediction results for
the intervals of [0, 150), [150, 350), [350, 600), [600, 800),
[800, 1500), and [1500, 3000) are given in Table II. The plots
of the predictions results of our multi-step LSTM prediction
model and LSTNet are presented in Fig. 3.

V. CONCLUSION

In this paper, we present a deep learning framework for
visibility prediction. We reformulate it as a multi-variate
time series forecasting task. By introducing the convolutional
component into the encoder-decoder architecture with atten-
tion mechanism, the proposed network model combines the

advantages of LSTNet [8] and DA-RNN [9], [10], and achieves
the state-of-the-art prediction accuracy (68.9%) on the runway
visual range prediction for the visibility measurement for the
airport.

As for future research, there are several promising directions
for optimizing this work. First, introduce the skip-connection
for long-term prediction. Second, replace the current RNN-
based encoder-decoder architecture with the transformer ar-
chitecture may further improve the prediction accuracy.
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