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Abstract—Training neural networks for neuromorphic deploy-
ment is non-trivial. There have been a variety of approaches
proposed to adapt back-propagation or back-propagation-like
algorithms appropriate for training. Considering that these
networks often have very different performance characteristics
than traditional neural networks, it is often unclear how to set
either the network topology or the hyperparameters to achieve
optimal performance. In this work, we introduce a Bayesian
approach for optimizing the hyperparameters of an algorithm for
training binary communication networks that can be deployed
to neuromorphic hardware. We show that by optimizing the
hyperparameters on this algorithm for each dataset, we can
achieve improvements in accuracy over the previous state-of-the-
art for this algorithm on each dataset (by up to 15 percent). This
jump in performance continues to emphasize the potential when
converting traditional neural networks to binary communication
applicable to neuromorphic hardware.

Index Terms—hyperparameter optimization, neural networks,
Bayesian optimization, neuromorphic
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I. INTRODUCTION

Neuromorphic computing offers the promise of very low
power hardware implementations of machine learning, along
with potential opportunities for new ways to perform comput-
ing with a fundamentally different type of architecture [1].
Neuromorphic hardware platforms are being developed by
both industry and academic groups that have largely focused
on providing an implementation of traditional spiking neural
networks. To date there has been relatively little focus on the
development of algorithms which aim to effectively leverage
neuromorphic systems for spiking networks [2].

One common class of algorithms of this type are based
on traditional back-propagation-trained algorithms, such as
those used for traditional neural network training but have
been adapted to accommodate for neuromorphic deployment.
When these algorithms are applied to networks that can be
deployed on spiking neuromorphic systems, hyperparameters
can have a tremendous impact on the performance of the
network. This challenge is well known in traditional neural
network training [3]–[5], and often these hyperparameters are
determined through a combination of trial-and-error, intuition,
and random search [6]. However, it is not clear how these
methods should be adapted to accommodate for the changes
in the training algorithm. Moreover, there are often even more
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new hyperparameters for these adapted approaches to back-
propagation-like algorithms.

One such algorithm we choose to investigate is Whetstone
[7]. Whetstone trains networks that have binary communi-
cation, which are amenable for mapping onto spiking neu-
romorphic hardware. In this approach, neural networks are
trained initially with differentiable activation functions (e.g.,
sigmoidal or bounded rectified linear units), but over the
course of gradient descent optimization, the activation func-
tions are slowly “sharpened” to non-differentiable threshold
functions. This approach not only has all of the hyperpa-
rameters associated with traditional neural network or deep
learning network training, but also additional hyperparameters
of its own, for example, associated with how sharpening
occurs over the course of the algorithm. As we will show
below, these hyperparameters can have a significant effect on
the performance of the algorithm, but it is not clear what
hyperparameters to use for a given dataset a priori.

In this work, we apply Bayesian hyperparameter optimiza-
tion [5], [8], [9] to find optimal hyperparameters for the
Whetstone algorithm on four different datasets. We compare
our results to the previously published Whetstone results from
[7] and show that by tuning the hyperparameters for each
dataset we can achieve significantly better performance, up to
a 15% improvement in accuracy in some cases. We compare
the best performing hyperparameters for each dataset, and
study the sensitivity of the final performance on the changes
of hyperparameters. Finally, we discuss how this approach
can be extended, both in future work with the Whetstone
approach as well as other training approaches for Spiking
Neural Networks (SNNs), and neuromorphic systems. These
results represent, not just an improvement over state-of-the-art,
but also an indication that off-the-shelf spiking algorithms may
be significantly improved by optimization via this Bayesian
approach.

The main contributions of this work are:

• A demonstration of the effect of hyperparameters on
a training algorithm (Whetstone) that trains neural net-
works with binary communication.

• A Bayesian optimization approach to optimize Whet-
stone’s hyperparameters.

• State-of-the-art results for Whetstone on four commonly
used datasets.

II. BACKGROUND AND RELATED WORK

We first review the various approaches used for optimizing
the hyperparameters of deep learning models. Hyperparameter
optimization for neural networks used to be largely governed
by rules of thumb [10]. Bengio outlines some of these rules
and practical guidelines for efficiently training large-scale
deep neural networks [11]. Bergstra and Bengio show that
random search outperforms grid search and manual search
for hyperparameter optimization and has good theoretical
guarantees and empirical evidence [6]. Continuing along this
line of research, Bergstra et al. present greedy sequential

algorithms for hyperparameter optimization and show that
their performance is better than that of random search [12].

Bayesian-based approaches have also been used for opti-
mizing the hyperparameters of deep neural networks. Bergstra
et al. show that algorithms based specifically on the Gaussian
process are the most call-efficient for hyperparameter opti-
mization of deep neural networks [13]. Snoek et al. describe
algorithms that take into consideration the variable costs
of learning experiments and show that the resulting set of
hyperparameters returned by these algorithms can match or
even surpass human expert-level optimizations [14]. Zhang et
al. propose a search algorithm based on Bayesian optimization
while training deep convolutional neural networks on the
PASCAL VOC 2007 and 2012 datasets [15]. Balaprakash
et al. develop DeepHyper, which is a Python package that
leverages the Balsam workflow and provides an interface
for implementation and study of scalable hyperparameter
search methods [16]. Ilievski et al. propose a deterministic
and efficient method for hyperparameter optimization using
radial basis function as the error surrogate in Bayesian-based
methods called HORD, and demonstrate its effectiveness on
MNIST and CIFAR-10 datasets [17].

Evolutionary optimization techniques have also been used
for hyperparameter optimization in the literature. Miikkulainen
et al. propose CoDeepNEAT, which is a method that ex-
tends the conventional neuro-evolution methods to topology,
components and hyperparameters and achieves performance
comparable to the best human-optimized networks [18]. Young
et al. propose a scalable evolutionary optimization method and
demonstrate its efficacy on varied datasets [19]. Shafiee et al.
propose a genetic algorithm-like method for hyperparameter
optimization, which not only achieves the state-of-the-art
performance, but is also seen to use up to 48× less synapses
in doing so [20]. Liang et al. evaluate several hyperparameter
optimization methods that evolve the architecture of deep
neural networks and demonstrate that a synergetic approach
for evolving custom routings with evolved, shared modules
is very powerful, and significantly improves the state-of-
the-art performance on the Omniglot character recognition
domain [21]. In addition to these evolutionary optimization-
based methods, reinforcement learning has also been used for
hyperparameter optimization of deep neural networks.

While the above approaches catered to deep neural net-
works, several hyperparameter optimization methods have
been used in the literature for optimizing architectures or
hyperparameters specifically pertaining to neuromorphic com-
puting. Schuman et al. present several approaches for encod-
ing numerical values as spikes for spiking neural networks,
hierarchically combine them to form more complex encoding
schemes, and demonstrate their usability on four different
applications [22]. Salt et al. use differential evolution (DE) and
self-adaptive differential evolution algorithms (SADE) to opti-
mize the parameter space of synaptic plasticity and membrane
adaptivity learning mechanisms in the lobula giant movement
detector (LGMD) neuron that is driven by a dynamic vision
sensor (DVS) camera [23]. Schuman et al. develop an evo-



lutionary optimization based training framework for spiking
neural network and neuromorphic architectures, and test this
approach on four datasets [24]. Kim and Kim apply a Neuro-
evolutionary algorithm to optimize the hyperparameters of
spiking neural networks and show that the model trained using
this approach outperforms all other models [25]. Parsa et al.
demonstrate effectiveness of Bayesian approach for hyperpa-
rameter optimization for spiking neuromorphic systems [8].

In this work we focus on Bayesian hyperparameter opti-
mization for binary communication network for neuromorphic
deployment, Whetstone [7]. The powerful and yet effective
underlying mathematics of Bayesian approach, paves the way
to quickly estimate an expensive objective function such as
network performance.

III. METHODS

In this section we briefly introduce Whetstone and Bayesian
optimization approaches. The former is an approach for
training binary communication networks for neuromorphic
deployment, and the latter is an optimization tool for problems
with black-box and expensive objective functions. Detailed
description on each of these techniques can be found at [7],
and [9], [26], respectively.

A. Whetstone

Whetstone utilizes bounded rectified linear units (bRE-
LUs) and sigmoidal units that are modified during training
to approach binarized step-functions. The approach aims to
gradually modify the activation function so as to minimally
otherwise disrupt network training. Due to the sensitivity of
backpropagation to zeroed activations, this sharpening and
thus binary conversion process was found to be more stable
when applied layer-by-layer on a schedule and in the direction
of input layer to output layer. This scheduled-sharpening
involves several hyperparameters, such as the epoch to start
the sharpening, duration of sharpening, and number of epochs
to wait before starting the next scheduled sharpening (inter-
mission). To avoid a fully manual schedule with additional
hyperparameters, Whetstone’s authors introduced an adaptive-
sharpening scheduler that monitors loss after each training
epoch and decides to resume or pause sharpening dependent
on the relative change in training loss.

Whetstone also attempts to mitigate a condition which
occurs in bRELUs and sigmoidal nodes that stop responding
and produce zero outputs regardless of input. The authors note
that this condition happens in non-binarized networks as well
but hypothesize that the sharpening process can increase oc-
currence odds. To alleviate this problem, Whetstone networks
typically use redundant output encodings as output targets.
To produce output for loss computation, Whetstone uses a
softmax over a population encoding (neuron distribution key
generated or specified at network initialization) that allows for
n-hot encoding of targets while output neurons can contribute
to more than one class. This also enables the use of a
cross-entropy loss function (common to many neural network

classification tasks), which the authors found to be more
effective than a direct mean squared error vector loss.

Severa et al. [7] also demonstrate the effects of architecture
hyperparameters such as number of convolution layers and
filter sizes on the overall performance of Whetstone for four
different dataset. Their results for these various hyperparam-
eters were consistent with the intuition that deeper networks
perform better for spiking networks. However, they did not
perform any comprehensive hyperparameter optimization. Ad-
ditional instability was noted in relation to the choice of op-
timizer used during training, with Adam optimized networks’
performance being especially sensitive to initial conditions.
For the choice of optimizer, they show that Adadelta and
RMSprop are more reliable compared to Adam. Batch normal-
ization was further found to improve stability during training.
The sensitivity of Whetstone approach on various hyperparam-
eters such as the choice of optimizer or batch normalization
layer, differentiates the hyperparameter optimization approach
for this binary communication from traditional artificial neural
network training. This leads to a research question on which
hyperparameter optimization technique is suitable for non-
traditional networks such as Whetstone.

In this work, we only focus on scheduled-sharpening due
to the stability and consistency of the results obtained with
this scheduler. In our hyperparameter optimization search, we
considered three main hyperparameters involved in this tech-
nique: sharpener starting epoch (“sh st”), duration (“sh du”),
and intermission (“sh int”). For each case study, detailed of
the ranges for each of these hyperparameters is given in the
following section.

B. Bayesian Optimization

To systematically take the human out of the loop in finding
the optimum set of hyperparameter for an expensive, black-
box objective function such as training a neural networks,
several approaches are introduced in the literature and already
discussed in section II. Bayesian optimization is one of the
primary approaches for these types of problems due to its
flexible and powerful underlying mathematics [26].

As summarized by [5], [9], [26], Bayesian optimization is
a sequential technique that aims at predicting the unknown
objective function with limited and yet effective observations.
For our hyperparameter optimization problem, the unknown
objective function is the classification performance of Whet-
stone, and observations are the performance values (accu-
racies) for a set of hyperparameters in each iteration. We
start the optimization process with two random initial set
of hyperparameters, and for each one of them evaluate the
performance of Whetstone network. This will create the first
set of observations. In the Bayesian optimization technique for
each iteration, we estimate a Gaussian distribution over the
available observations (called the prior distribution, current
beliefs). We update the current beliefs with a new obser-
vation and estimate the posterior distribution. With enough
observations, the posterior distribution is the prediction of
the unknown, expensive objective function we are optimizing.



In this search technique, the new observations are chosen
based on optimizing a surrogate model, called the acquisition
function. This function is built upon the posterior distribution
at each iteration. There are different policies introduced in the
literature to calculate this function such as improved-based,
optimistic, and information-based policies. Each one of these
approaches calculate the acquisition function to explore and
exploit the search space. The maximum point of this function
is the best next set of hyperparameter to observe in the next
iteration. More details on Bayesian optimization can be found
in [26]. In this work, we are dealing with a single objective
Bayesian optimization problem [27], as we aim at finding the
optimum set of hyperparameter that maximizes the Whetstone
performance.

IV. RESULTS

We validate our Bayesian hyperparameter optimization ap-
proach across several datasets, hyperparameter combinations
and case studies. In using Whetstone, there are a variety of
sets of hyperparameters that can be optimized. Here we focus
on the following hyperparameter sets: optimizer parameters,
noise parameters, batch normalization parameters, Whetstone
sharpener parameters, and CNN architecture parameters. De-
tails of the hyperparameters that are optimized and their
corresponding ranges are given in each case study as follows.

A. Datasets

Our methods were benchmarked on four labeled image data
sets commonly used to demonstrate efficacy of supervised
image classification protocols. The MNIST [28] dataset con-
sists of gray-scale images of handwritten single digits, each
28 × 28 pixels. There are 10 classes, one for each number
0−9, and the data is split in to a training set of 60000 images
and a test set of 10000 images. The Fashion MNIST [29]
dataset consists of gray-scale images of miscellaneous clothing
items (shirts, pants, shoes, etc.), each 28 × 28 pixels. There
are 10 classes, one for each type of item, and the data is
split in to a training set of 60000 images and a test set of
10000 images. The Fashion MNIST dataset is designed to be
a drop in replacement for the MNIST dataset, with the only
difference being the items which are classified. The CIFAR-
10 [30] dataset consists of color images of miscellaneous items
(dogs, airplanes, birds, ships, etc.), each 32×32 pixels. There
are 10 classes, one for each type of item, and the data is split
in to a training set of 50000 images and a test set of 10000
images. The CIFAR-100 [30] dataset is the same as the CIFAR-
10 dataset, except with 100 classes. Each class represents an
equal proportion of the total dataset.

B. Case Study One

For case study one, we select a small search space for
hyperparameters given in Table I for classification task on
CIFAR-100 dataset [30]. This limited search space is helpful
in validating the results through comparing the optimum
hyperparameters from the optimization technique and the grid
search approach. The grid search approach is evaluating the

TABLE I
CASE STUDY ONE: EVALUATED HYPERPARAMETERS

Hyperparameter Range
Optimizer learning rate (lr) 0.0001, 1
Optimizer decay (dec) 1e-8, 1e-6
Sharpener starting epoch (sh st) 15, 25
Sharpener duration (sh du) 3, 7
Sharpener intermission (sh int) 2, 5
Conv. layer 1, filter size (filter 1) 3, 7
Conv. layer 1, # of features (feat 1) 64, 128
Dense layer, # of features (dense) 256, 1024

Search space size: 256

Hyperparameter Value
Optimizer rho 0.9
Optimizer epsilon 1e-6
Optimizer type Adadelta
Gaussian noise layer Without noise
Batch normalizer
conv. layers momentum 0.95

Batch normalizer
dense layer momentum 0.95

Batch normalizer epsilon 1e-3
Batch normalizer center True
Batch normalizer scale True
Conv. layer 2, filter size 5
Conv. layer 3, filter size 3
Conv. layer 2, # of features 256
Conv. layer 3, # of features 512

network for all possible combinations of the hyperparameters.
In this case study, the fixed hyperparameters that are not
included in the optimization search and their corresponding
values are given in Table IV-B.

In Figure 1, for CIFAR-100 dataset, the grid search results
are compared with the results from the Bayesian hyperparam-
eter search. The hyperparameter ranges are given in Table I.

Fig. 1. Case Study One: Comparing grid search and Bayesian hyperparameter
optimization for hyperparameters given in Table I with search space size of
256



TABLE II
CASE STUDY ONE: DETAILS OF BAYESIAN HYPERPARAMETER OPTIMIZATION

HPs Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10 Iter 11 Iter 12 Iter 13 Iter 14 Iter 15
lr 1e-4 1e-4 1 1e-4 1 1 1 1e-4 1 1 1e-4 1 1 1 1
dec 1e-8 1e-6 1e-6 1e-8 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-8 1e-6 1e-6
sh st 25 25 15 15 25 25 25 25 25 25 25 25 25 25 25
sh dur 3 7 3 3 7 7 3 3 7 3 7 7 7 7 7
sh int 2 2 2 5 5 5 5 2 2 5 2 2 5 5 2
filter 1 3 7 7 3 3 7 7 3 7 7 3 3 3 3 3
feat 1 64 128 128 64 64 64 64 128 128 64 128 128 64 128 64
dense 256 256 1024 1024 256 256 1024 1024 1024 256 256 1024 1024 1024 1024
Acc (%) 5.61 6.37 38.65 7.69 49.69 43.4 45.19 7.59 47.84 41.34 6.11 53.13 51.54 52.38 51.69

After only 15 evaluations of Whetstone [7], the Bayesian
hyperparameter search finds the almost optimum combina-
tion of hyperparameters that the grid search predicts after
256 evaluations. This optimal point for the Bayesian search,
(l r = 1, dec = 1e − 6, sh st = 25, sh du = 7, sh int =
2, filter1 = 3, feat1 = 128, dense = 1024), is shown in
red star in Figure 1, and leads to accuracy of 53.13%, which
outperforms the 38% accuracy reported in Whetstone original
results [7]. The optimum hyperparameter set for the grid search
is (l r = 1, dec = 1e − 6, sh st = 25, sh du = 3, sh int =
5, filter1 = 3, feat1 = 128, dense = 1024) with accuracy
of 53.34%. These two points predict almost the same classi-
fication accuracy and only differ in two hyperparameters of
“duration of sharpening”, and “sharpening intermission”. The
hyperparameter values at each iteration are given in Table II.

We also perform further analysis on the changes of hy-
perparameters and their effect on the final accuracy of the
network. For example, with changing the sharpener starting
epoch from 15 to 25, its duration from 3 to 7, and the filter
size in the first convolution layer from 7 to 3, we are able to
improve the final accuracy from 38.65% to 53.13% (iteration 3
versus iteration 13 in Table II). This table also shows that some
hyperparameters play a vital role on the final performance of
the system, such as learning rate.
C. Case Study Two

In case study two, we increase the search space size
to 398,131,200 combinations of hyperparameters shown in
Table III. In this scenario we consider various hyperparameter
types ranging from optimizer hyperparameters, to Gaussian
noise, or batch normalization layers. In addition we also
include the Whetstone scheduled sharpening [7] hyperpa-
rameters, and the hyperparameters that belong to the neural
network architecture itself, such as filter sizes or the number
of features to extract.

The Whetstone’s scheduled sharpener sharpens layers one at
a time in sequential order. The “start epoch” hyperparameter
is the epoch on which it begins sharpening the first layer.
The “duration” is how many epochs it takes to sharpen each
layer, and the “intermission” is how many epochs it waits
after sharpening a layer before beginning sharpening of the
next layer. For each hyperparameter, all values in Table III
are based on acceptable and reasonable ranges.

For the hyperparameters given in Table III, the performance
of the hyperparameter optimization approach for Whetstone

TABLE III
CASE STUDY TWO: EVALUATED HYPERPARAMETERS

Hyperparameter Options

Optimizer

Learning rate 0.0001, 0.001, 0.01,
0.1, 1

Rho 0.9, 0.95
Epsilon 1e-8, 1e-6
Decay 1e-8, 1e-6
Type Adadelta, RMSprop

Noise Standard deviation 0.2, 0.3

Location Without noise,
After first dense layer

Batch
Normalizer

Momentum, conv. 0.85, 0.95
Momentum, dense 0.85, 0.95
Epsilon 1e-3, 1e-2
Center False, True
Scale False, True

Sharpener
Schedule

Start Epoch 20, 25, 30
Duration 4, 5, 6, 7
Intermission 1, 2, 3, 4, 5

CNN
Architecture

Conv. layer 1, filter size 3, 5, 7
Conv. layer 2, filter size 3, 5
Conv. layer 3, filter size 3, 5
Conv. layer 1, # of features 32, 64, 128
Conv. layer 2, # of features 64, 128, 256
Conv. layer 3, # of features 256, 512
Dense layer, # of features 256, 512, 1024

Search Space Size: 398,131,200

technique for four different dataset of MNIST [28], Fashion-
MNIST [29], CIFAR-10 [30], and CIFAR-100 [30] as well
as their corresponding optimum hyperparameter values are
given in Table IV. For each dataset, the Whetstone network
is trained for 50 epochs and the hyperparameter optimization
search evaluated the network for 30 different hyperparameter
sets. The Whetstone performance once its hyperparameters are
optimized is increased from 99.53% to 99.6% for MNIST,
and from 93.2% to 93.68% for Fashion-MNIST dataset.
This improved performance is more noticeable for larger
dastaset such as CIFAR-10 and CIFAR-100. For the former,
the accuracy is increased from 79% to 84.36, and for the
latter it is improved from 38% to 53.42%. Table V shows
a comparison between the Spiking Neural Network (SNN)
classification accuracies on MNIST, Fashion-MNIST, CIFAR-
10, and CIFAR-100 dataset for state-of-the-art models and
network architectures in the literature. The purpose of this
work is not obtaining the best accuracy for each dataset;
instead, our goal is to show that with an effective hyperpa-



Fig. 2. Case study two: Performance value (accuracy (%) for each hyperpa-
rameter optimization search iteration for MNIST, Fashion-MNIST, CIFAR-10,
and CIFAR-100 dataset with the hyperparameters given in Table III

Fig. 3. Case study two: Histograms of each hyperparameter value for CIFAR-
100 dataset experiment for the 30 iterations of the optimization search process

rameter optimization framework, we can drastically improve
a performance of a model with only few evaluations. It is
worth noting that the networks that achieve higher accuracy
in this table are often significantly more complicated than the
network structure we use, in terms of the architecture and input
encoding techniques for SNNs. By allowing for more complex
network structures, we expect that comparable accuracies can
be achieved.

Figure 2 demonstrates the exploration and exploitation
capability of Bayesian optimization technique in finding the
optimum set of hyperparameter for each dataset. Starting from
two random sets of hyperparameters, the search technique not
only exploits and leverages the sets of hyperparameters with
decent performance, but also explores the search space. In
Figure 3, we show the frequency of selecting each value for
some of the hyperparameters given in Table III for CIFAR-100.
The x-axis is the choice of hyperparameter and the y-axis is the
number of times that a specific choice is called within the 30
evaluations in the Bayesian optimization search. The optimum

hyperparameter values are highlighted in red rectangles in the
figure. This also shows that after 30 iterations for searching the
optimum hyperparameter set, the Bayesian framework not only
leans toward the optimum values by selecting them most, but
also tries all possible hyperparameter values to avoid trapping
in any local minimum.

Table VI gives a comprehensive sensitivity analysis on
changing hyperparameter values and observing the final per-
formance of the spiking neural network for CIFAR-100 dataset
with the hyperparameter values given in Table III, and the
performances shown in Figure 2 for this dataset. These ex-
periments are chosen among the 30 iterations of the Bayesian
optimization search. The first three experiments in Table VI
show that with quite different combinations of hyperparam-
eters we are getting almost zero improvement in the classi-
fication performance. This also intuitively shows that when
the performance is not acceptable, the Bayesian approach
drastically changes the hyperparameters to find the areas in the
search space with better accuracies. In experiment four, the hy-
perparameter combination leads to an acceptable classification
performance of 44.21%. From this point forward, the changes
in the hyperparameter values are less aggressive to leverage
the decent performance (only two hyperparameter values are
changed from experiment four to five). In experiment six,
optimizer hyperparameter type and the corresponding learning
rate are changed; however, the final performance is within
the same range compared to experiment five. This shows
that different sets of hyperparameters might lead to similar
classification performances. This indicates that this problem
is well-suited for multi-objective hyperparameter optimization
problems, where we might achieve similar performance while
minimizing energy or area consumption. Experiments seven
and eight demonstrate the exploration aspect of our optimiza-
tion approach, meaning that although we already know an
acceptable values for the hyperparameters, we also explore
other areas of the search space to see if we can further improve
the performance or not.

V. DISCUSSION AND CONCLUSION

In this work, we introduce a hyperparameter optimization
approach on Whetstone for training neural networks that can
be deployed to neuromorphic hardware. We show that by
optimizing the hyperparameters associated with Whetstone we
increase the performance over the previous state-of-the-art for
this algorithm. From our results, we see that the choice of
hyperparameters (even among reasonable choices) can have a
tremendous effect on the performance of Whetstone. We also
observe that the best hyperparameters found for each dataset
differ across the datasets, indicating the importance of specifi-
cally optimizing hyperparameters for each new problem when
converting to binary communication. We perform some small
network architecture optimizations in this work. In particular,
we optimize the filter size and number of features for each
of the three convolutional layers, as well as the number of
features for the dense layer. We are limiting our search to
a fixed maximum network depth to deploy it on embedded



TABLE IV
CASE STUDY TWO: OPTIMIZED HYPERPARAMETERS AND THEIR CORRESPONDING CLASSIFICATION ACCURACIES FOR DIFFERENT DATASET

Dataset MNIST Fashion-MNIST CIFAR-10 CIFAR-100

Optimizer Hyperparameters

Learning Rate 0.001 0.001 0.001 1
Rho 0.95 0.9 0.9 0.9
Epsilon 1e-6 1e-6 1e-8 1e-6
Decay 1e-8 1e-6 1e-6 1e-6
Type RMSprop RMSprop RMSprop Adadelta

Noise Layer
Hyperparameters

Standard deviation - 0.2 - -
Location No Noise After 1st Dense No Noise No Noise

Batch Normalizer
Hyperparameters

Momentum, conv. 0.95 0.95 0.85 0.95
Momentum, dense 0.95 0.85 0.95 0.95
Epsilon 1e-2 1e-2 1e-3 1e-3
Center False False True False
Scale False False False False

Whetstone Sharpener Schedule
Hyperparameters

Start Epoch 30 20 30 30
Duration 6 4 4 4
Intermission 4 5 2 5

CNN Architecture
Hyperparameters

Conv. layer 1, filter size 7 3 3 3
Conv. layer 2, filter size 5 3 5 5
Conv. layer 3, filter size 3 5 5 5
Conv. layer 1, # of features 128 128 64 128
Conv. layer 2, # of features 128 128 256 256
Conv. layer 3, # of features 256 512 512 512
Dense layer, # of features 256 512 512 1024

Accuracy 99.6% 93.68% 83% 53.42%

systems in the future. The best results on the different datasets
are shown with different parameters in Table IV. We anticipate
that further optimizing the network architecture will be able to
improve the performance of Whetstone on different datasets.
In future work, we plan to use an optimization approach such
as MENNDL [19] to further optimize the architecture (the
number and type of layers) of these networks. Whetstone’s
simple modifications to neural network design should allow
us to search for topologies including sharpening activations
within the MENNDL framework to better understand when
sharpening is useful and hopefully discover higher perfor-
mance network designs that may better leverage binarized
operations.

In [47], Whetstone is deployed on SpiNNaker [48], with
slight drop in accuracy due to issues with input/output encod-
ing. Here, we optimize the network using Whetstone, but we
do not map the resulting networks to a neuromorphic hardware
implementation, such as SpiNNaker [48] or Loihi [49]. As
observed in [47], several other hyperparameters such as in-
put/output encoding, different network topologies and training
parameters will have an effect on this mapping performance.
In the future, we plan to include how the network performs on
real neuromorphic hardware as part of our training objectives
in the hyperparameter and network architecture optimization
process.

Finally, as we consider mapping onto real neuromorphic
hardware, there are often other important performance con-
siderations beyond accuracy on the task at hand. For ex-
ample, size, area, and energy efficiency are often important
considerations for real deployments of neuromorphic systems.
As such, it is important to train with those objectives in
mind. In previous work, we have extended the Bayesian
optimization approach [5], [9] and the fitness function used

within MENNDL [50] to incorporate multiple objectives. In
future work, we plan to apply this approach to the Whetstone
algorithm in order to optimize networks that are both more
accurate, but also more efficient.

ACKNOWLEDGMENT

The research was funded in part by Center for Brain-
Inspired Computing Enabling Autonomous Intelligence (C-
BRIC), one of six centers in JUMP, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA, the
National Science Foundation, Intel Corporation and Vannevar
Bush Faculty Fellowship.

This material is also based in part upon work supported
by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under contract
number DE-AC05-00OR22725, and in part by the Laboratory
Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525.

REFERENCES

[1] J. B. Aimone, K. E. Hamilton, S. Mniszewski, L. Reeder, C. D.
Schuman, and W. M. Severa, “Non-neural network applications for
spiking neuromorphic hardware,” in 3rd International Workshop on Post-
Moore’s Era Supercomputing (PMES 2018), Dallas, TX, 2018.

[2] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.



TABLE V
COMPARISON OF THE SNN CLASSIFICATION ACCURACIES ON MNIST, FASHION-MNIST, CIFAR-10, AND CIFAR-100 DATASET

Model Network Architecture Method Accuracy (%)

MNIST Fashion
MNIST CIFAR-10 CIFAR-100

Shrestha et al. [31] 6-layer CNN Temporal credit assignment
for backpropagating (BP) error 99.36 - - -

Rueckauer et al. [32] 8-layer CNN Offline, ANN-to-SNN conversion 99.44 - 90.85 -
Hunsberger et al. [33] AlexNet Offline, ANN-to-SNN conversion 99.12 - 83.54 55.13
Lee et al. [34] ResNet-11 Spike-based backpropagating 99.59 - 90.95 -
Hao et al. [35] 3-layer FF SNN Symmetric STDP Rule 96.73 85.31 - -

Shrestha et al. [36] 4-layer NN Error Modulated STDP
with symmetric weights 97.3 86.1 - -

Jin et al [37] 6-layer CNN Direct macro/micro BP 99.49 - - -
Sengupta et al. [38] VGG-16 Offline, ANN-to-SNN conversion - - 91.55 -

Machado et al. [39] 3-layer NatCSNN Two-phase (unsupervised STDP,
ReSuMe supervised) - - 84.7 -

Wu et al. [40] CIFARNet SNN and ANN with shared weights - - 91.54 -
Roy et al. [41] VGG-9 StochSigmoid XNOR-Net - - 87.95 55.54
Xing et al. [42] Inception-v4 Homeostasis-based conversion - - 92.49 70.4
Hu et al. [43] ResNet-8 ANN-to-SNN conversion 99.59 - - -
Hu et al. [43] ResNet-44 ANN-to-SNN conversion - - 91.98 68.56
Guerguiev et al. [44] ConvNet + LIFNet Regression discontinuity design - 91.81 76.2 -
Thiele et al. [45] Direct spike gradient 99.52 - 89.99 -
Wu et al. [46] 8-layer CNN Error BP through time - - 90.53 -
Severa et al. [7] VGG-like Whetstone (Sharpened ANN) 99.53 - 84.67 -
Severa et al. [7] 6-layer CNN Whetstone (Sharpened ANN) 99.53 93.2 79 38
Hyperparameter Optimized
Whetstone (this work) 6-layer CNN Bayesian hyperparameter

optimized Whetstone 99.6 93.68 84.36 53.42

[3] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in science conference. Citeseer, 2013,
pp. 13–20.

[4] J. M. Hernández-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman,
and Z. Ghahramani, “A general framework for constrained bayesian
optimization using information-based search,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 5549–5601, 2016.

[5] M. Parsa, A. Ankit, A. Ziabari, and K. Roy, “Pabo: Pseudo agent-based
multi-objective bayesian hyperparameter optimization for efficient neural
accelerator design,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[6] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[7] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone,
“Training deep neural networks for binary communication with the
whetstone method,” Nature Machine Intelligence, vol. 1, no. 2, p. 86,
2019.

[8] M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok,
and K. Roy, “Bayesian-based hyperparameter optimization for spiking
neuromorphic systems,” in 2019 IEEE International Conference on Big
Data (Big Data). IEEE, 2019, pp. 4472–4478.

[9] ——, “Bayesian multi-objective hyperparameter optimization for ac-
curate, fast, and efficient neural network accelerator design,” 2020, p.
submitted.

[10] P. Date, J. A. Hendler, and C. D. Carothers, “Design index for deep
neural networks,” Procedia Computer Science, vol. 88, pp. 131–138,
2016.

[11] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[12] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
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