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Abstract—Earthquakes are one of the most costly natural
disasters facing human beings, which happens without an ex-
plicit warning, therefore earthquake prediction becomes a very
important and challenging task for humanity. Although many
existing methods attempt to address this task, most of them
use either seismic indicators (explicit features) designed by
geologists, or feature vectors (implicit features) extracted by deep
learning methods, to characterize an earthquake for earthquake
prediction. The problem of combining these two kind of features
to improve final earthquake prediction performance remains
pretty much open. To this end, we propose a deep learning model
named DLEP to effectively fuse the explicit and implicit features
for accurate earthquake prediction. In DLEP, we adopt eight
precursory pattern-based indicators as the explicit features, and
use a convolutional neural network (CNN) to extract implicit
features. Then, an attention-based strategy is suggested to fuse
these two kinds of features well. In addition, a dynamic loss
function is designed to deal with the category imbalance of
seismic data. Finally, experimental results on eight datasets from
different regions demonstrate the effectiveness of the proposed
DLEP for earthquake prediction comparing to several state-of-
the-art baselines.

Index Terms—Earthquake prediction; Feature extraction; Ex-
plicit feature; Implicit feature; Deep learning method.

I. INTRODUCTION

Earthquakes are one of the most devastating natural disasters
in the world, which occur without an explicit warning and
may cause serious injuries or loss of human lives. One of
effective solutions for reducing earthquakes loss is the earth-
quake prediction, which aims to use the known earthquake
data to specify three elements, namely when, where and
the magnitude of the future earthquake. Therefore, effective
earthquake prediction can reduce the earthquake damage to a
large extent, which is of great significance to the country and
society, and there has been an increasing interest and academic
research on predicting seismic events.

In the effort to predict earthquakes such as the magnitude,
time and location of the earthquakes, many researchers at-
tempted to use physical methods to explain and describe earth-
quakes, and studied earthquake precursors through the study
of geology [1]–[3]. In these works, researchers designed many
indicators of earthquake, such as earthquake magnitude and
intensity energy, as the explicit features of seismic events [4],
[5]. The values of these indicators are calculated based on
the data of site investigation, and different feature extraction
methods based on precursory patterns were also proposed [6],

[7], to predict the magnitude of earthquakes in the next period
of time. For example, Zhang et al. [7] recently proposed a
precursory pattern-based feature extraction method to enhance
the performance of earthquake prediction, based on which
the eight mathematical statistic features can be generated as
seismic indicators. The experimental results on two historical
earthquake records demonstrated the effectiveness of their
precursory pattern-based features with the selected CART
algorithm for earthquake prediction. In summary, explicit fea-
tures extracted by humans have strong interpretability from the
theoretical system, and can realistically describe an earthquake
to some context. However, these manually designed features
may fail to fully utilize information contained in seismic
sequences.

To this end, some researchers try to establish the neural net-
work model to predict earthquake without explicitly modeling
features. For example, DeVries et al. [8] proposed a deep-
learning approach to identify a static-stress-based criterion,
which predicted aftershock locations without prior assump-
tions about fault orientation. In addition, Huang et al. [9]
used the convolutional neural networks (CNN) to extract the
implicit features from the geographic images marked with
seismic information for large earthquake magnitude prediction
in Taiwan. The experimental results demonstrated that implicit
features can be used to find feasible solutions for earthquake
prediction problems from another perspective. Although im-
plicit features extracted by deep learning methods can fully
utilize information contained in seismic sequences, they have
weak interpretability from the theoretical system.

In summary, most of the existing works characterize the
earthquake by using either seismic indicators (i.e. explicit
features) designed by geologists or experts, or using feature
vectors (i.e. implicit features) extracted by deep learning
methods. In reality, for more accurate earthquake prediction,
it is necessary and challenging to design novel model that
can combine the advantages of explicit features and implicit
features. Moreover, it is found that there are often serious
category imbalance problem in seismic data, that is, the
earthquakes with relatively high magnitude usually occupy a
small part of the vast majority of seismic data while most of
the earthquake events in the dataset are small-scale.

To solve the above challenges, in this paper, we propose a
novel deep learning model for accurate earthquake prediction,
which can effectively combine the explicit and implicit fea-
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tures as well as deal with the category imbalance problem.
To be specific, the seismic sequence is firstly divided into
many representative learning samples and precursory patterns.
Based on these patterns and samples, the eight mathemati-
cal statistics based earthquake indicators [7] are adopted as
explicit features, while the implicit features are extracted by
CNN with precursory patterns as input. Then, an attention-
based strategy is suggested to combine the advantages of both
explicit features and implicit features well. In addition, due
to the small batch gradient descent method is adopted in
the model optimization, we design a dynamic loss function
to take both the population distribution of the samples and
the distribution of each batch into account, to accommodate
different training data, thus can solve the challenge of category
imbalance in seismic data.

In summary, the contributions of this paper can be summa-
rized as follows:

• We argue that the feature extraction methods used in
previous earthquake prediction methods obtain explicit
features by geologists and implicit features by deep
learning methods individually, and lack a general model
that can combine the advantages of both explicit features
and implicit features.

• We propose a novel deep learning model named DLEP for
earthquake prediction. In DLEP, the explicit features and
implicit features are combined effectively by a suggested
attention-based strategy. Furthermore, a dynamic loss
function is also designed for dealing with the category
imbalance problem of seismic data.

• We evaluate the effectiveness of our model DLEP com-
paring to state-of-the-art baselines, and the experimental
results on eight datasets with different characteristics
demonstrate the promising performance of the proposed
DLEP, which indicates that the idea of fusing both ex-
plicit features and implicit features is an effective solution
for accurate earthquake prediction.

The rest of this paper is organized as follows. Section II
presents the preliminaries and related work. Section III de-
scribes the proposed model DLEP in detail. In Section IV,
experimental results are presented and discussed, followed by
a conclusion and future work in Section V.

II. THE PRELIMINARIES AND RELATED WORK

In this section, some preliminaries about problem definition
and the structure of CNN are firstly described, and some
related work about earthquake prediction is then introduced
in detail.

A. Problem Formulation

Seismic data from around the world are presented as se-
quences of earthquake events, which contains much seismic
information, such as latitude, longitude, magnitude and so on.
In order to obtain the required samples of the training model,
the work in [7] divides the raw seismic data into a set of fixed
day time period N , and then defined the precursory pattern
in each fixed time period. This kind of sequence segmentation
method is simple and easy to understand, however, the result of
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Fig. 1: The definition method of precursory pattern

division depends on the value of time period to a large extent.
In other words, if the value is taken improperly, it is likely
to miss some important information in the seismic sequence.
To this end, we propose a new partitioning method for the
definition of precursory patterns. To be specific, suppose the
historical seismic record is denoted as θ, which is defined as:

θ = {Ei|i = 1, 2, . . . ,m}
Ei = 〈ai1, ai2, . . . , aij , . . . , ait〉

where Ei is the i-th earthquake event and the sequence θ
includes m earthquake events. Besides, aij is the j-th attribute
of the i-th earthquake event and t is the total number of
attributes for describing an event. In real earthquake data,
each event Ei consists of at least two seismic attributes,
such as earthquake magnitude and occur time. Given a fixed
pre-defined N days, the earthquake event with the largest
magnitude that occurred in each N days period is called main
shock. The main shock is denoted as Em

i (1 ≤ i ≤ n), where
n is the total number of main shocks in θ. In addition, the
w events before each main shock Em

i are formed as one
precursory pattern Pi. Formally, the raw sequence θ can be
segmented as a sample set S:

S = {Si|i = 1, 2, . . . , n}
Si = 〈Pi, E

m
i 〉

Pi = 〈Em
i−1, E

m
i−2, . . . , E

m
i−w|i > w〉

where each sample Si consists of the main shock Em
i and its

precursory pattern Pi.
For example, as shown in Fig. 1, suppose N = 6 and w =

4, the first N earthquake events is selected in the raw data
sequence, and the event Em

1 with the largest magnitude is the
main shock in the first N -events. Then, the w events before
Em

1 make up the precursory pattern P1 = {E1, E2, E3, E4}.
Thus, P1 and Em

1 make up the first sample S1. Then, the event
subsequence with length N after the Em

1 is considered as the



second N -event and this period is start from E6. We can find
that Em

2 is the main shock in the second N -events. Similarly,
the w events before Em

2 make up the precursory pattern P2 =
{E7, E8, E9, E10}. Thus, P2 and Em

2 make up the second
sample S2. The remaining samples S3, ..., Sn are obtained in
the similar way. It can be found that our partitioning method is
based on the main shocks and dynamically segments the raw
data sequence to extract precursory patterns and the samples.
The partition result does not depend too much on the value of
N , and strictly keep the events after each main shock makes
higher utilization rate of the raw data.

Based on the above notations, the earthquake prediction
problem is formally defined as:

Definition 1: (Earthquake Prediction) Given the historical
earthquake sequence θ, the pre-defined N days and w events,
the earthquake sequence θ can be segmented into a set of
samples S = {Si|i = 1, 2, . . . , n} and Si = 〈Pi, E

m
i 〉.

Based on S, the task of earthquake prediction is to predict
the magnitude range of the main shock in the future N days-
period.

The main challenge for this task is how to extract and com-
bine the explicit and implicit features for accurate earthquake
prediction. In addition, the other important challenge is that
there usually exists serious category imbalance problem in
seismic data. In Section III, we will propose a deep learning
model that can effectively deal with these challenges.

B. Convolutional Neural Network (CNN)

Note that the CNN is adopted in our model for implicit
feature extracting, therefore, we will introduce the structure
of CNN in this part.

Since LeCun et al. [10] proposed the basic architecture
of CNN, and successfully applied to handwritten numeral
recognition, the CNN began to be widely used in various fields,
such as video surveillance, mobile robot vision, image search
engine and seismic prediction [11]–[14]. The good perfor-
mance of CNN lies that convolutional neurons have excellent
properties, the convolutional kernel is more efficient than the
parametric matrix in the fully connected layer, and does well in
extracting structural characteristics of high-dimensional data.

Typical CNN consists of two parts: feature extractor and
classifier. The feature extractor is used to filter input data
into the “feature map” representing various features and the
classifier is used to process the low dimensional vectors from
the extractor, and estimate the label of the feature. Fig. 2 shows
the calculation process of the convolution layer. In our model,
the CNN extractor is made up of multiple computing layers.
For example, the extractor may include several convolution
layers and optional sub-sampling layers. The convolution layer
receives N feature diagram as input, each feature vector con-
volved through a sliding window with the kernel K ∈ Rk∗k,
to generate a pixel in the output feature diagram. The slide
step of the window equals to S, which is often less than k
(the size of the convolution kernels), and the mappings of M
output features will form the input feature mapping set of the
next convolution layer.

out
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Fig. 2: The structure of CNN

C. Related Work

In the last few decades, many researchers regarded earth-
quake prediction as a purely geological and physical problem.
They tried to discover more effective features and earthquake
precursors to predict the future earthquake with the develop-
ment of physics and geology [1]–[7], [15], [16]. For example,
Zhang et al [7] recently proposed a precursory pattern-based
feature extraction method for earthquake prediction, where
the eight mathematical statistic features can be generated as
seismic indicators (i.e. the time, mean magnitude, seismic root
of seismic energy, b-value, mean square deviation, maximum
difference, and coefficient of variation). Compared with dif-
ferent models such as SVM [17], BP [18] and PNN [19],
their experimental results on two historical earthquake records
demonstrated the effectiveness of their precursory pattern-
based features with the selected CART algorithm for earth-
quake prediction.

Unfortunately, the performance of these methods is usually
limited by the characteristics of seismic zones. For example,
the work in [6] predicted the earthquake events in Chile with
the magnitude larger than 4.4, while the work in [7] only
adopted two zones in China. For other seismic data with differ-
ent properties, previous methods often need some adjustment
or even modify the prediction algorithm. To sum up, these
seismic indicators (explicit features) designed by humans have
strong interpretability from the theoretical system. However,
they may fail to fully utilize information contained in seismic
sequences. For this purpose, people hope to discover the
plentiful features hiding in seismic data.

To this end, some researchers try to establish the neural
network model to learn the implicit features directly from the
data without explicitly modeling features. The theory of deep
learning methods points out another direction for earthquake
prediction. The ability of extracting features automatically
makes it has been widely applied in academic problems such
as image recognition and object recognition. For earthquake
prediction, through the training of neural network, the weight
vector can describe the characteristics of input data to a certain
extent. For example, in work [8], they proposed a deep-
learning approach to identify a static-stress-based criterion,
with the aim to predict aftershock locations without prior
assumptions about fault orientation. Another representative
work is [9], where they extracted features by CNN from the
map marked with the latitude and longitude of seismic data
and used the past 120 days of seismic events to predict the
main shock in Taiwan in upcoming 30 days. Note that implicit
features extracted by deep learning methods can fully utilize
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Fig. 3: The framework of DLEP

information contained in seismic sequences, however, they
have weak interpretability from the theoretical system.

To sum up, most of the above existing works try to use
either seismic indicators (i.e. explicit features) designed by
geologists, or use feature vectors (i.e. implicit features) extract-
ed by deep learning methods to characterize the earthquake
for earthquake prediction. Different from these works, in this
paper, we propose a novel deep learning model by effectively
combining the advantages of both explicit and implicit fea-
tures, thus can greatly improve the performance of earthquake
prediction.

III. THE PROPOSED MODEL DLEP

In this section, we first introduce the general framework of
the proposed model DLEP, then give the suggested attention-
based strategy for fusing explicit and implicit features, and
finally present the proposed dynamic loss function for dealing
with the category imbalance problem of seismic data.

A. Overall Framework of DLEP

Fig. 3 gives the general framework of the proposed DLEP,
which consists of four steps: data preprocessing, feature ex-
traction, feature fusion and prediction. In the first step of
data preprocessing, we use the proposed segment method
introduced in Section II-A to extract precursory patterns and
training samples. In the second step of feature extraction,
we adopt the eight mathematical statistics-based earthquake
indicators [7] based on the obtained precursory patterns as the
explicit feature vector, denoted as EF . The eight indicators
are the time, mean magnitude, seismic root of seismic energy,
b-value, mean square deviation, maximum difference, and
coefficient of variation. In addition, we use CNN to extract
implicit vector based on the obtained samples, denoted as IF .
In the third step of feature fusion, we suggest an attention-
based strategy in Section III-B by using the parameter matrices
U and V to weight the EF and IF respectively. Then, the

fusion vector will be input into the full-connected layer to get
the output. During the training phase, the category imbalance
problem caused by data distribution tends to cause the model
to converge to the local minimum, which is solved by the
dynamic loss function proposed in Section III-C. Finally, the
model outputs the magnitude range of main shock. More
specifically, previous experiments have proved that the ReLU
activation function is effective in the CNN, and the softmax is
often adopted in the fully-connected layer as the activation
function, thus we choose them in our model. To enhance
the generalization performance of our model, similar to the
work in [20], [21], we also adopt dropout layer and batch
normalization layer in our model.

From the above explanation of DLEP, it can be found that
the proposed attention-based strategy and the dynamic loss
function are two important parts in DLEP. In the following,
we will illustrate them in detail.

B. Attention Mechanism
In the overall procedure of DLEP, the main challenge is the

combination of explicit and implicit features. In this paper,
we find that the eight explicit features proposed in [7] and the
implicit extracted by CNN have some differences in properties,
cannot be simply joined together. Moreover, the CNN has the
properties of parameter sharing, which means that it is hard for
CNN to focus on the weight of seismic data at different times.
But in fact, whether it is an explicit or implicit feature vector,
the importance of each dimension is different, such as the
indicator of seismic root of seismic energy often more decisive
than mean square deviation in prediction [7]. Therefore, we
should not only weight the explicit and implicit features, but
also weight each dimension within the vectors. Inspired by
the forget gate in long-short term memory(LSTM) [22], we
suggest an important attention-based strategy to improve the
accuracy and robustness of the prediction task.

To be specific, the attention is used to dynamically weight
different features. As shown in Fig. 4, we first simply splice
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the two feature vectors (i.e. explicit feature vector (EF ) and
implicit feature vector (IF )) and return the fusion vector Fc,
whose mathematical expression is given as follows:

Fc = [EF, IF ]

where EF ∈ Rd1 with length d1 and IF ∈ Rd2 with
length d2 are the feature vectors which extracted from [7] and
CNN respectively, Fc ∈ Rd1+d2 is the merged vector. In the
strategy of attention, given the pre-defined parameter matrix
U ∈ R(d1+d2)∗d1 and V ∈ R(d1+d2)∗d2 , we can get the weight
vectors, U ∈ Rd1 and V ∈ Rd2 , which defined as:

U = sigmoid(Fc ·U)

V = sigmoid(Fc ·V)

where the U, V are the two parameter matrices, and the
sigmoid(x) = 1

1+e−x is the sigmoid function, which is used
to process the input vector by dimensions. Note that in the
weight vector U ∈ Rd1 (V ∈ Rd2), each dimension represents
the weight of the corresponding dimension of the explicit
(implicit) feature vector EF ∈ Rd1 (IF ∈ Rd2 ). Then, the
weight vectors U and V will be returned, multiplied by the
corresponding EF and IF , and the final fusion feature vector
FF is obtained as:

FF = [EF · U, IF · V ]

It can be found that the suggested attention mechanism con-
siders not only the equality of weights caused by parameter
sharing problem of CNN in feature extraction, but also the dy-
namic weights between different features. Thus, the attention-
based strategy enhance the generalization ability of our model
synchronously, which allows the model to handle seismic data
from vastly different seismic zones.

C. Dynamic Loss Function

In the fully-connected layer of DLEP, the category im-
balance of raw data will seriously affect model prediction
performance. We find that the earthquakes with a magnitude of
less than 4.0 account for around 50.44% of all the earthquake
events and 86.64% of those with magnitudes less than 5.0
in the seismic data from Sichuan province of China, and the
similar situation occurs in other seven seismic datasets adopted
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Fig. 5: The structure of Dynamic Loss Function

in our experiments. Thus, it is difficult to predict large earth-
quakes. To this end, in this paper, we design a new dynamic
loss function in fully-connected layer to accommodate the
particularity of seismic data.

Specifically, the aim of our dynamic loss function is to
weight different samples with different weights according to
the distribution characteristics of the training samples. Note
that we use the small batch gradient descent method to train
the model, therefore, the overall distributions of the sample and
the batch should be both considered in loss function. If only
the overall distribution of the sample is considered, then there
exists difference between the distribution of overall samples
and each batch, leading to gradient oscillation of the model.
Otherwise, if only the batch distribution is considered, then
the model can hard to converge. Therefore, we set a weight
parameter λ between the two distributions of the sample and
the batch, our dynamic loss function can adaptively modify
the parameter value according to the characteristics of different
sample set. Formally, our dynamic loss function can be defined
as follows:

wi = λ ∗ bci + (1− λ) ∗ ci

and

bci =
batch size

Z ∗ batch numi
, Z =

N∑

i=0

batch size

batch numi

ci =
data num

Z ′ ∗ class numi
, Z ′ =

N∑

i=0

data num

class numi

where batch num and class num are the ratio of the number
of samples in each batch and the total sample set respectively,
batch size and data num are the sum of the number of
samples in batches and sample set respectively, and Z and Z ′

are the normalization coefficient respectively. For example, As
shown in Fig. 5, suppose batch size = 16, bacth num0 = 10,
class num0 = 8 and λ = 0.8, according to the above equation,
the weights w0, w1, w2, w3 and w4 are 0.0374, 0.2177, 0.3134,
0.3134, 0.1180 respectively. Finally we can get the weight ratio
w0 : w1 : w2 : w3 : w4 = 4 : 22 : 31 : 31 : 12.

Based on this dynamic loss function, our training process
considers the sample distribution of each batch and the whole,
and the function can effectively guide the small batch gradient
descent algorithm to train the model, and finally converges to
a better classification model.



TABLE I: The characteristics of eight seismic data sets.

Region Latitude Longitude Instances Countries Label-1 Label-2 Label-3 Label-4 Label-5 Instance numbers in each label
Sichuan 28-36N 98-106E 906 China [3.0,4.0) [4.0,4.5) [4.5,5.0) [5.0,5.5) [5.5,max) 457 / 214 / 114 / 54 / 67
Xinjiang 35-50N 75-95E 1027 China [3.0,4.0) [4.0,4.5) [4.5,5.0) [5.0,5.5) [5.5,max) 123 / 335 / 316 / 142 / 111

Qinghai-Tibet 26-39N 73-104E 1021 China [3.0,4.0) [4.0,4.5) [4.5,5.0) [5.0,5.5) [5.5,max) 172 / 208 / 230 / 157 / 254
Shadong-Jiangsu 29-38N 114-124E 658 China [3.0,4.0) [4.0,4.5) [4.5,5.0) [5.0,5.5) [5.5,max) 481 / 100 / 49 / 15 / 13

Japan 31-38N 136-143E 1096 Japan [3.0,4.8) [4.8,5.3) [5.3,5.8) [5.8,6.3) [6.3,max) 136 / 416 / 317 / 139 / 88
Philippines 11-19N 115-124E 1052 Philippines [3.0,4.8) [4.8,5.3) [5.3,5.8) [5.8,6.1) [6.1,max) 67 / 392 / 359 / 112 / 122

Chicago 38-47N 82-93W 610 USA [3.0,3.2) [3.2,3.5) [3.5,4.0) [4.0,4.5) [4.5,max) 276 / 99 / 140 / 73 / 22
Los Angeles 30-40N 115-125W 1182 USA [3.8,4.0) [4.0,4.5) [4.5,5.0) [5.0,5.5) [5.5,max) 417 / 409 / 196 / 118 / 42

IV. EXPERIMENTS

In this section, we first present experimental settings, in-
cluding datasets, comparison algorithms and the evaluation
metrics. Then, we show the experimental results and analysis.

A. Experimental Settings

1) Data preparation: In this paper, we adopt eight popular
seismic zones1 with different characteristics as our datasets to
test the performance of the comparison algorithms. Specifical-
ly, the eight zones are Sichuan Province, Xinjiang Province,
Qinghai-Tibet plateau, Shandong-Jiangsu Province, Japan, the
Philippines, Chicago and Los Angeles. Table I gives the main
characteristics of eight seismic data sets, including the number
of instances, corresponding longitude and latitude of different
regions, belonged countries, the range of earthquake categories
and the number of instances in each category. For each dataset,
we manually divide the magnitude range into five labels. It
is noted that the dividing threshold for each label is slightly
different for each dataset, with the aim to get the balanced
number of instances for each label. Based on this, we can
regard the prediction of earthquake magnitude range as a
classification problem.

We use K-fold cross-validation [23] to evaluate the predic-
tion results and k is set to 10 in our experiments, which means
that each dataset is divided into 10 parts, nine of which are
used as training data, the remaining one as testing data for 10
times.

TABLE II: The main referring parameters used in the DLEP.

Parameters Value Annotation
Epochs 65 The number of iterations of the entire model

Batchsize 24 The number of training samples per batch
Indim1 600 The number of neurons in explicit feature layer
Indim2 600 The number of neurons in implicit feature layer

lr 0.00025 Learning rate

2) Comparison Algorithms: In order to verify the validity
of our model DLEP, we select three state-of-the-art earthquake
prediction methods and two variants of DLEP.

• 2016N: The method was proposed in 2016 [24]. It extract-
ed the earthquake indicators before the main shock, and
proposed a three-layer feedforward BP neural network to
predict earthquakes in the Himalayas.

• 2018CNN: The method was proposed in 2018 [9]. It
adopted the model structure of the CNN, and the data
before the main shock was removed and marked on the

1https://earthquake.usgs.gov/earthquakes/search/

map by latitude and longitude, different magnitudes were
marked with different colors and ranges. Finally, the
obtained samples were extracted by CNN and used in
the earthquake prediction task.

• 2019F: The method was proposed in 2019 [7]. In this
method, the original seismic data was segmented ac-
cording to fixed pre-defined N days, and the precursory
pattern was defined based on this. Then, eight features
were extracted from the original data, and used the CART
for classification.

• DLEP(-Att): In order to show the effectiveness of the
proposed attention-based strategy in DLEP, we compare
DLEP with one variant of DLEP, namely DLEP(-Att).
DLEP(-Att) is the same as DLEP without using the
proposed attention-based strategy.

• DLEP(-Dyn): In order to show the effectiveness of the
proposed dynamic loss function in DLEP, we compare
DLEP with one variant of DLEP, namely GTEA(-Dyn).
GTEA(-Dyn) is the same as DLEP without using the
proposed dynamic loss function.

For fair comparisons, we adopt the recommended param-
eters values for all the comparison algorithms, which were
suggested in their original papers. For the proposed DLEP
and two variants DLEP(-Att) and DLEP(-Dyn), the main
referring parameter settings are given in the Table II. It is
worth mentioning that these parameters are just referring
values, the real parameters for different dataset may be slightly
different. Specifically, in our experimental process, we adopt
Bayesian search [25] to conduct hyperparametric search in
each experiment, ensuring that each model could achieve the
optimal performance of their existing structures.

3) Evaluation Metrics: In this paper, two well-known met-
rics ACC and MAUC are used to evaluate the performance
of comparison algorithms.

ACC is commonly used to show the classification perfor-
mance of various classifiers, which is defined as follows:

ACC = (TP + TN)/(TP + TN + FP + FN)

where TP is means true positive, FP means false positive,
TN means true negative and FN means false negative.

MAUC is a popular evaluation indicator for evaluating
multi-classification problems [26], which is defined as follows:

MAUC =
2

c ∗ (c− 1)

∑

i<j

Aij +Aji

2

where the Aij is the AUC value [27] between class i and
class j, which is calculated based on the i-th and j-th column



TABLE III: The experimental results of comparison methods in terms of ACC and MAUC on eight datasets.

Region ACC MAUC
2016N 2018CNN 2019F DLEP 2016N 2018CNN 2019F DLEP

Sichuan 57.71 38.41 52.32 81.23 61.00 51.23 71.81 90.07
Xinjiang 32.71 34.38 68.76 77.52 55.39 50.87 74.19 92.42

Qinghai-Tibet 34.15 31.85 62.47 75.69 57.33 49.98 68.19 91.41
Shadong-Jiangsu 67.08 82.03 54.85 84.13 86.64 50.00 67.64 71.55

Japan 52.68 28.33 68.16 79.42 69.20 50.10 73.59 90.23
Philippines 74.37 32.45 71.41 77.83 66.42 50.41 63.52 89.46

Chicago 47.42 40.07 76.08 76.36 56.84 51.04 60.23 85.02
Los Angeles 35.26 35.48 56.36 79.88 58.68 50.67 72.67 89.81

in M ∈ Rn∗c, and n and c are the number of instances and
classes respectively.

For both ACC and MAUC, the larger value indicates the
better performance for classification.

B. Experimental Results

TABLE IV: The experimental results of DLEP and its two
variants DLEP(-Att) and DLEP(-Dyn) in terms of MAUC

on eight datasets.

Region MAUC
DLEP DLEP(-Att) DLEP(-Dyn)

Sichuan 90.07 77.04 55.58
Xinjiang 92.42 78.86 60.84

Qinghai-Tibet 91.41 79.21 88.07
Shadong-Jiangsu 71.55 60.29 52.79

Japan 90.23 79.65 76.87
Philippines 89.46 80.63 78.54

Chicago 85.02 77.19 51.27
Los Angeles 89.81 80.78 75.43

1) Effectiveness of The Proposed DLEP: Table III presents
the experimental results of comparison methods in terms
of ACC and MAUC on eight datasets, where the best
performance for each dataset is marked with bold. From this
table, it can be found that the proposed DLEP gets the best
ACC among comparison algorithms on all datasets. The good
performance of DLEP is attributed to the fact that DLEP can
effectively combine the advantages of both explicit features
and implicit features for earthquake prediction, while 2016N
and 2019F are only use explicit features, and 2018CNN only
use implicit features. We can also find that baseline methods
tend to work well with certain datasets, but badly with others.
For example, the ACC of baseline 2018CNN on Shandong-
Jiangsu dataset works well and reaches 82.03%, however, for
dataset Japan, it works badly and just reaches 28.33%. This is
mainly due to the huge geological differences in the zones,
which indicates that the generalization ability of DLEP is
better than that of other baseline models.

Similarly, it can also be found in Table III that the proposed
DLEP obtains the best MAUC among comparison algorithms
on seven datasets, and get the second best on the remaining one
dataset (Shandong-Jiangsu dataset). Let us take a close look
at Shandong-Jiangsu dataset, the MAUC of 2016N reaches
the best 86.64% while that of DLEP reaches the second best
71.55%. But compared to the ACC value under the same
conditions, 2016N just reaches 67.08% while DLEP reaches
84.13%. The reason behind this is that 2016N can predict

earthquakes with lower magnitude well on Shandong-Jiangsu
dataset. Therefore, the effectiveness of the proposed model
MOEA-DIM compared with baselines is verified.

2) Effectiveness of The Proposed Strategies used in DLEP:
In this section, we will verify the effectiveness of the proposed
strategies used in MOEA-DIM, that is, the attention-based
strategy for fusing both explicit and implicit features and a
dynamic loss function for dealing with the category imbalance
of seismic data. Table IV shows the experimental results of
DLEP and its two variants DLEP(-Att) and DLEP(-Dyn) in
terms of MAUC on eight datasets. Note that the dynamic loss
function is designed to improve the MAUC, it is meaningless
to show ACC of DLEP without dynamic loss function. In
addition, the metric of MAUC is relative better than ACC
used in our problem, which is a multi-classification problem.
Thus, we give the comparison results focused on metric
MAUC.

It can be observed from this table that the proposed DLEP
is greatly better than DLEP(-Att), about 14% improvement. In
order to better show that advantages of the proposed attention-
based strategy, we adopt t-SNE [28] to visualize the feature
layer after attention in the overall procedure of DLEP, and the
results are shown in Fig. 6. Due to space limitation, we only
show the results on two datasets, Sichuan and Qinghai-Tibet,
the similar results can also be found on other datasets. From
this figure, we can find that DLEP with the strategy of attention
can increase the distance between samples of different labels
in the sample space, making them easier to be distinguished.
In addition, we can find that the proposed DLEP is greatly
better than DLEP(-Dyn), about 29% improvement. It can be
concluded that DLEP with both the proposed attention-based
strategy and the dynamic loss function can greatly improve the
final prediction performance, therefore the effectiveness of the
proposed two strategies are verified.

V. CONCLUSION AND FUTURE WORK

In this paper, we argued that the feature extraction methods
used in previous work obtain either explicit features designed
by geologists, or implicit features extracted by deep learning
methods, and lack a general model that can fuse the advantages
of both explicit and implicit features. To this end, a deep
learning model named DLEP is proposed to combine the ex-
plicit and implicit features for accurate earthquake prediction.
In our model, eight precursory pattern-based indicators were
adopted as the explicit features, while a convolutional neural
network (CNN) was adopted to extract implicit features. After
that, an attention-based strategy was suggested to fuse these



Fig. 6: The visualization results on Sichuan (left part) and Qinghai-Tibet (right part) datasets. Noting that the practical
significance of horizontal and vertical axis cannot be explained, this figure only represent the distribution of samples in the

sample space.

two kinds of features well. Moreover, a dynamic loss function
was also designed to solve the category imbalance problem of
seismic data. Finally, compared with several state-of-the-art
baselines, the experimental results on eight datasets with dif-
ferent characteristics demonstrated the promising performance
of the proposed DLEP for accurate earthquake prediction. It is
worth noting that in the proposed DLEP, the explicit features
and implicit features are only adopted from existing work, in
the future, we would like to design or extract more effective
explicit features and implicit features to further improve the
earthquake prediction performance.
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