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Abstract—Hashing-based multimedia retrieval are facing the
problem of the dramatic increase of data, especially new unseen
categories. It is time-consuming, expensive, and sometimes im-
practical to label new samples and retrain the hashing model.
Recently, several zero-shot hashing methods are proposed to
generate the hash function with good generalization for un-
seen classes, via exploring semantic information and similarity
relationship. However, the performance of existing solutions is
still not satisfying. Therefore, we propose a modified two-stage
framework, called Visual-to-Semantic Hashing (VSH). To fully
exploit the semantic information, visual feature is firstly mapped
to the semantic space, and then generate its hash codes. To
transfer supervised knowledge from seen classes to unseen classes,
a margin-based ranking loss is employed to learn the semantic
structure. To boost the discriminability of semantic mapping, a
classification module is adopted to distinguish between different
semantic mapping vectors. Plenty of experiments demonstrate
that the proposed VSH is superior to state-of-the-art methods.

Index Terms—Hashing, zero shot, cross-domain, multimedia
retrieval

I. INTRODUCTION

Due to the dramatic increase of the scale of multimedia data,

hashing-based method have attracted more and more attention

in the field of multimedia retrieval [1]. The aim of hashing

methods is to encode the images into binary codes, named

hash codes [2]. Through learned hash function, the whole

image data is projected into a discrete binary space, so called

hamming space. Compared with the real-value calculation,

hamming distance can be efficiently calculated in a very short

time owing to its binarization and low bits.

Generally, hashing methods mainly fall into two categories:

unsupervised hashing [3]–[5] and supervised hashing [6]–

[8]. The unsupervised hashing often takes into account the

distribution and manifold structure of the samples, while the

latter makes full use of the semantic information, like class

label or pair-wise relation to learn similarity-preserving hash

codes. Due to lack supervised knowledge and intrinsic seman-

tic property, unsupervised hashing methods usually have lower

performance than supervised hashing methods. Additionally,

with the rapid development of deep neural network, deep
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Fig. 1. Illustration of zero-shot hashing. The key of hashing is to learn the
mapping between visual feature space and hamming space. The red rectangle
in visual space represent unseen class(”dog”). For zero-shot hashing, the hash
function learned from seen classes should generalize well for unseen classes.

hashing approaches [10], [18]–[20] have been proposed with

significant improvements. However, these supervised hashing

methods require manual labels. It has a potential problem that

hashing model is unable to produce accurate hash codes when

a new category appears without supervised label.

Moreover, labelling new samples and retraining the hashing

model can be time-consuming, expensive, and sometimes

impractical. Therefore, this is a demand to seek a training

mechanism, which makes the learned hash function can be

effectively generalizable to unseen classes. The detailed de-

scription is shown in the figure 1. The hash function, mapping

the data samples into the hamming space, is learned from the

seen classes (e.g. horse, cat and car). For a new unseen class

(never appear in the training phase), zero shot hashing needs

to generate codes, that not only are closer to the cat than to

the car, but also maintain differentiation among all classes.

The main reason why existing methods can’t work well is

that these model only learn the hash function in train set and

has no access to new concepts or related information. To solve

above problems, zero-shot learning (ZSL) [25] are employed

for hash function learning. The aim of zero-shot learning is to

learn a general mapping from the feature space to a high-level

semantic space, where the relationships of seen classes and

unseen classes are well characterized and thus seen supervised

knowledge can be transferred to unseen classes. Two semantic

spaces are widely used in the literature, i.e. class-attributes

labeled by experts and word vectors extracted from natural
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language processing models. The semantic space bridges the

semantic gaps between low-level visual features and high-

level semantics. Inspired by the success of zero-shot learning,

zero-shot hashing is firstly introduced by [13]. Transferring

Supervised Knowledge (TSK) is the pioneer method, which

projects independent data labels (0/1-form label vectors) into

semantic embedding space. Similar to zero-shot learning, the

main framework of TSK is to project the hash codes into

a semantic space. The obtained hash function are able to

transfer supervised knowledge from seen classes to unseen

classes. Guo et al. [14] propose a novel deep hashing method,

named Discrete Similarity Transfer Network (SitNet). SitNet

introduces the semantic embedding scheme via enforcing the

hash codes to capture the semantic similarity relationship

among different categories. Both the core architecture of two

methods above is to learn a mapping from hash codes to

semantic space. However, they ignore the control of hash

code distance explicitly. In other words, if two classes are

close in the semantic space, they may even be closer in

the hamming space, which may makes it indistinguishable

for hash codes of unseen classes and their similar training

classes. Recently, Attribute-Guided Network (AgNet) [15] is

proposed for cross-modal zero-shot hashing. Different with

above methods, AgNet consists of two stages. First, visual

features and word vectors are embedded into a common at-

tribute space respectively. Then, visual hash codes and textual

hash codes are generated by attribute similarities and inter-

modal similarities loss. Although AgNet pays more attention

to maximize the distance between classes, it views semantic

mapping as a classification problem and adopt binary cross

entropy for attribute transfer learning in first stage, which is

proved to have a poor generalization performance for zero-

shot learning [12]. The attribute learning will greatly affect

the generation of subsequent hash codes, especially for unseen

classes.

To address the issues above, we proposed a novel zero-shot

hashing method, named visual-to-semantic hashing (VSH).

In order to enhance the measurement of hash codes in ham-

ming distance, we project visual features into semantic space.

Different with AgNet, margin-based ranking loss is employed

to learn semantic structure among seen classes. For the image

retrieval task, we aim to search the closest samples around

query samples rather than recognize the specific category.

So as to enhance the differentiation of vectors, classification

module is applied to make the vectors of same categories close

and make the vectors of different categories far away in the

semantic space. Additionally, we map the learned semantic

vector to the hamming space to learn similarity-preserving

binary-like image representations. Hash codes are achieved

by measuring the network outputs to pull the codes of similar

images together and push the codes of dissimilar images away

from each other. Our contributions are summarized as below:

• A modified two-stage zero-shot hashing framework is

proposed, which firstly maps visual feature to semantic

space and then output hash codes according to learned

semantic vectors. The hash function learned with seman-

tic information has significant performance on unseen

classes.

• To fully exploit the semantic information, a margin-based

ranking loss is employed to learn the semantic structure,

which is able to transfer supervised knowledge from seen

classes to unseen classes. To boost the discriminability of

semantic mapping, a classification module is introduced

to distinguish between different semantic mapping vec-

tors.

• A learning scheme is adopted to pull the codes of similar

images together and maximize the hamming distance

between the codes of different categories so as to enlarge

the hamming distance explicitly.

The paper is organized as follows. A brief review of zero-shot

hashing is presented in Section 2, together with related works.

Section 3 reports our algorithm framework. Experiments and

discussion are shown in Section 4 and Section 5 concludes

this paper.

II. RELATED WORK

A. Traditional Hashing

Recently, lots of hashing methods have been proposed to

improve the performance on image retrieval, because of their

fast retrieval efficiency and low storage on large-scale multi-

media data. At the beginning, researchers hashed the data into

hamming space by several random function, such as a family

of methods called Locality Sensitive Hashing [17]. However,

because of lack prior knowledge, LSH methods usually require

hundred of bits to achieve satisfied performance. Therefore,

data-dependent methods have become more and more popular.

Spectral Hashing [3] explores the data distribution and view

hash learning as a graph partitioning question. Iterative Quan-

tization Hashing (IQH) [5] finds a rotation of zero-centered

data of samples, so as to minimize the quantization error from

mapping the data to hamming space. [6] proposed a Semi-

Supervised Hashing (SSH) framework that minimizes empir-

ical error over the labeled set and an information theoretic

regularizer over both labeled and unlabeled sets. Recently,

deep neural network has also been introduced to deep hashing

methods to improve the representational ability. CNN Hashing

(CNNH) [18] firstly replaced hand-crafted feature vectors with

deep CNN extracted feature. The hash codes are learned from

similarity matrix decomposition. Then, deep deep network is

employed to learn target hash codes for input images. Deep

Supervised Hashing (DSH) [9] used an end-to-end training

way, which directly quantize the outputs of image based on

discriminability terms.

B. Zero-Shot Hashing

Inspired by zero-shot learning on image classification, Yang

et al. firstly introduced the zero-shot hashing question [13],

which learnt the hash function only from seen classes and

can generalize well for unseen classes. They used a NLP

model to transform seen labels into a semantic-rich embedding

space, where each label is represented by a real-valued vector.
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Fig. 2. Overview of the proposed hashing framework VSH. Visual features are extracted from image embedding network, which is pre-trained on ImageNet-
1K. Visual-semantic network embeds the inputs of visual features into semantic space. Two Additional module are employed behind visual-semantic network.
The hashing module aims to output binary hash codes, and the classification module improves the discrimination of vector in semantic space so as to generate
high quality hash codes. The squares in semantic space represent target semantic vectors extracted from word2vec model and the circles represent mapping
vectors of visual features.

Through this semantic space, the structure of all classes can

be well captured. Then, low-level visual features are projected

into the semantic space, which makes the supervised knowl-

edge transferred to unseen classes. Furthermore, a semantic

alignment strategy is proposed to aligns the initial embedding

space with the distributional properties of low-level visual

feature. Discrete Similarity Transfer Network (SitNet) [14]

was proposed to learn the semantic similarity for zero shot

learning. Similar with the TSK, they also map the learned hash

codes to semantic space, and adopt a multi-task architecture to

exploit the supervised information for seen concepts and learn

discriminative hash codes simultaneously. Ji et al. consider

investigating ZSH in a cross-modal retrieval setting [15]. They

propose a two-stage learning scheme, which embed the visual

features and textual features into a shared binary attribute

space and then encodes the visual and textual vectors in

attribute space into hamming space, respectively. Liu et al.

proposes a general Cross-modal Zero-shot Hashing (CZHash)

solution [22]. CZHash first quantifies the composite similarity

between instances using label and feature information. Then,

binary hash codes are obtained based on the category attribute

spaces and quantification hash functions. Shen et al. projects

both visual features and textual features into an intermediate

unified hamming space [21]. However, the proposed method

mainly aims to solve zero-shot classification task and the

retrieval settings is different with above methods. Lai et

al. take a two-streams network for zero-shot hashing [16],

which the first stream operates on the labelled images of

the seen classes while the second stream operates on the

unlabelled images. The main difference between TZSH and

other methods mentioned is that unlabelled images from the

target classes are available with transductive setting.

III. THE PROPOSED APPROACH

A. Problem Definition

In this section, we first introduce the definition of zero-

shot hashing similar as [13], [14]. Given a training set Dtr =
{(xi, yi, ci)}Ni=1, xi ∈ Rd and yi ∈ Y tr denote the visual

feature and the label of the i-th image respectively, and Y tr

denotes the one-hot code ({0, 1}L) label set of training class

with L be the number of seen classes. Additionally, ci ∈ RQ

denotes the semantic vector of the i-th image, and ci = c� is

the i-th image belongs to class � (� ∈ {1, · · · , L}). Define

Ctr = {c1, · · · , cL} ∈ RQ×L as the semantic vectors of

training set. For instance, word vectors (extracted from natural

language processing method) and attributes (labeled manually

by experts) can be chosen as semantic vectors. In most

cases, attributes yield better performance than word-vector

embeddings. However, in our work, the word vectors which

are pre-trained on GoogleNew300 is selected as semantic

space because of its convenience and universality. For zero-

shot hashing setting, testing instances are sampled from new

categories, shareing no common label with training set. The

hash function is defined as a map from the visual features to

a H-bit hash code f : Rd → {−1,+1}H. Based on supervised

knowledge of the semantic space, the learned hash function

f should not only preserve similarity among seen classes, but

can transfer to unseen classes.

B. Network Architecture

The overall framework of the proposed VSH framework is

illustrated in Figure 2. The visual features are extracted via

a image embedding network like ResNet-101, which is pre-

trained on ImageNet-1K. Following the setting [13], [15], the

parameters of image embedding network are fixed and aren’t

updated in training phase. Then, the Visual-semantic Transfer

Network (VTNet) consists of a full connection layer with Q
output units, embeding the visual features into the semantic

space S, where semantic similarity relationships between



different categories are characterized. Based on the semantic

space, the supervised knowledge can be transferred from

seen classes to unseen classes. Two additional fully-connected

layer named hashing module and classification module, are

employed behind visual-semantic network. The former aims

to generate hash codes from the learned semantic structure,

and the latter improve the separability between categories in

semantic space, which is intrinsically equivalent to the target

hash codes.

C. Objective Function

To sum up, a novel two stage network architecture is

proposed to learn compact hash codes in zero-shot setting. In

the first stage, we design the objective functions for VTNet,

which aims to map the visual feature space into the semantic

space. Consider that hashing is a ranking problem in itself,

we study the ranking loss to learn similarity structure between

seen classes and unseen classes. Additionally, due to the two

stage architecture, the performance of VTNet will directly

affect the quality of generated hash code. In order to obtain

more discriminative vectors in semantic space, a margin-based

ranking loss is employed to learn generalization model. Given

a training set of instances and their corresponding semantic

vectors, the VTNet is modeled with the margin-based objective

function:

Lt =
N∑
i=1

max

(
0,m+

∥∥s�i − c�i
∥∥2 − min

�j �=�i

∥∥s�i − c�j
∥∥2) ,

(1)

where s�i is the i-th predicted vector of visual feature in

semantic space, c�i is the target semantic vector, and m is a

margin parameter to control the distance between two similar

classes. Frome et al. [23] demonstrates that margin-based loss

can obtain better results in zero-shot learning, while some

other loss functions, such as mean square error (MSE), yield

about half the accuracy of the rank loss model. In zero-shot

hashing, MSE loss makes the model more focused on the

learning of seen categories and hurts the generalization for

unseen classes.

Furthermore, the margin-based ranking loss only aims to

metric distance between different target semantic vectors.

There is a potential issue that two predicted semantic vectors

from different categories may be close to each other. We add

the classification module to alleviate this phenomenon and

make predicted vectors from same categories compact. The

cross entropy loss is defined as:

Lce =

N∑
i=1

yi log pi, (2)

where pi is the classification probability of i-th image.

According to the predicted semantic vectors of visual fea-

tures, the core algorithm is to generate compact hash codes B.

The similar image should be naturally encoded to similar bi-

nary codes. Meanwhile, the codes of dissimilar images should

be as far as possible [9]. Based on the above considerations,

the objective function is designed to make hash codes of same

category close together and push the hash codes of different

categories away from each other. Then, the loss is defined as:

Lh =

N∑
i,j

sij ∗ ‖bi − bj‖2 + sij ∗max
(
0, λ− ‖bi − bj‖2

)

+ α
(‖|bi| − e‖1 + ‖|bj | − e‖1

)
,

(3)

where sij is equal to 1 if i-th image and j-th image are belong

to same categories; sij is equal to 0 if i-th image and i-th
image are belong to different categories; λ denotes a margin

parameter; α is penalty parameter; e ∈ R
H denotes the all

one vector. The first and second terms control the distance

relationships between similar images and dissimilar images.

The third penalty term drives the algorithm to produce binary-

like vectors.

Finally, super parameters m and λ influence the algorithm

performance. The detailed procedure of our proposed VSH
algorithm is proposed in Algorithm 1, and the overall loss

function can be formulated as

Lall = Lt + Lce + Lh. (4)

Algorithm 1 Procedure of VSH.
Input: The training dataset Dtr = {(xi, yi, ci)}Ni=1; The set of

word vectors Ctr; The retrieval database XP ; The unseen

query set XQ;

Output: MAP and Precision@R;

1: Mapping visual feature xi into semantic space, with

distance between word vector ci and Ctr;

2: Maximizing the distance from predicted semantic vectors

and learning hash function f ;

3: Calculating the hash codes BP for XP with f ;

4: Calculating the hash codes BQ for XQ with f ;

5: Calculating MAP and precision@R with the hamming

distance between BP and BQ

6: return MAP and Precision@R;

IV. EXPERIMENTS

A. Platform

Our experiments are perfromed on a linux 64-bit sys-

tem, with Intel(R) Xeon(R) E5-2680 v2 @2.80GHz×6 CPU,

GeForce GTX1080Ti GPU and 128G RAM. The code is

implemented in Python and Matlab. We utilize PyTorch to

train all models.

B. Dataset

In our experiments, we employ four popular image datasets,

i.e., AwA, aPY, CUB and ImageNet.

• Animals with Attributes (AwA) [25] consists of 30, 475
images from 50 animal categories, which each category

is provided by 85 associated class-level attributes. This

is the first dataset with attributes for zero-shot learning.

• Attribute Pascal and Yahoo (aPY) [26] has 15, 339 images

coming from Yahoo and Pascal VOC 2008. It has 32
classes annotated with 64 attributes.
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Fig. 3. Mean Average Precision on AwA, aPY and CUB datasets.
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Fig. 4. Precision on AwA, aPY and CUB datasets.

• Caltech-UCSDBirds (CUB) [27] is a fine-grained dataset,

which consists of 11, 788 images from 200 different types

of birds annotated with 312 class attributes.

• ImageNet [28] is a large-scale image dataset organized

according to the Word-Net [29] hierarchy. The subset

of ImageNet for the Large Scale Visual Recognition

Challenge 2012 (ILSVRC2012), which covers over 1.2
million images with 1, 000 object categories, is adopted

in our experiments.

C. Experimental Setting and Comparison

Supervised Discrete Hashing (SDH) [8] and Deep Super-

vised Hashing (DSH) [9] are selected as two superior tradi-

tional hashing methods. Zero-shot Hashing with Transferring

Supervised Knowledge (TSK) [13] and Discrete Similarity

Transfer Network (SitNet) [14] are choosen as two single-

modal zero-shot hashing methods. Besides, Attribute-Guided

Network (AgNet) [15] is a typical cross-modal zero-shot

hashing approach. These five state-of-the-art methods above

are compared with our proposed VSH as the baseline.

For comparison, we adopt the ResNet101 [24], which is

pre-trained on ImageNet-1K, to extract the fully connected

layer as visual features. Each category is embedded into a

300-dimention word vector, extracted from word2vec model.

For experimental normalization in zero-shot learning, [12]

provides related data features and the proposed splits (PS),

which guarantees that there is no intersection between the test

categories and the pre-train categories.

It is noticed that we only use seen classes for training

and all evaluations are taken on unseen classes. We employ

two widely used evaluation metrics in our experiments. The

first is mean average precision (MAP), reflecting the whole

ranking results of retrieval. The second is precision at top-

rank 100/50(precision@100/precision@50). For CUB dataset,

the average number of each category is too small. So we

only apply precision@50. In the actual application of image

retrieval, top rank results embody the effectiveness of the

model.

In order to train our model, xavier uniform [30] is used

to initialize the network parameters. Adam [31] is adopted to

optimize model. The initial learning rate is set to 0.001 and

the weight decay parameter is 0.0001. The mini-batch size is

set to 128. To ensure the same training data and test data for

all approaches, we fix random seed to 1. The m, α and λ are

set to 1, 0.001 and 2 ∗H respectively.

D. Results on AwA, aPY and CUB Datasets

AwA dataset: AwA dataset contains 50 animal categories

and total 30, 475 images. For fair comparison, 40 classes are

selected as seen classes while the rest 10 classes are used as

unseen classes. We randomly choose 10, 000 samples from

seen classes to train the model. 1000 images from the unseen

classes are selected as query samples. All images expect query

samples form retrieval database.

The comparison results are shown in Fig. 3(a) and Fig. 4(a).

Our method yields the highest accuracy and beats all the

baselines. With the increase of code length, the MAP per-

formances of all methods keep improving, which is similar to

the phenomenon in the precision@100. Our approach gains

23.2% in 32 bits, which has an improvement against AgNet

by 18.1% in the same length.
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aPY dataset: This dataset consists of 15, 339 images from 32
classes, i.e., ”aeroplane”, ”dog” and etc. Taking the limitation

of dataset size into consideration, we only randomly select

5, 000 samples from 20 seen classes as training data and 500
images from 12 unseen classes as query data. The remaining

unseen class images together with all seen class images

regarded as the retrieval database.

Fig. 3(b) and Fig. 4(b) shows the performances of all

comparing approaches. Because the data size is small and the

semantic similarity of categories is distinguished widely, all

the algorithms achieve good results. Further, the performances

of zero-shot hashing are generally better than that of traditional

hashing methods. In the worst case, our algorithm is two

percentage points higher than the second best method.

CUB dataset: CUB comprises of 11, 788 images, which are

collected from various categories of bird. More specially, we

select 150 classes and 4, 000 images to train the model. In

addition to, we select 50 classes and 4, 00 images for test.

The remaining test images together with the images of seen

categories are combined to form the retrieval database.

The performances of VSH and the comparative methods on

CUB dataset are reported in Fig. 3(c) and Fig. 4(c). Compared

with above two datasets, all the measures decline. It is mainly

because that CUB is a fine-grained dataset and all vectors in

semantic space are close to each other, which leads to the

reduction in the discrimination of hash codes. Our approach

has the best result in precision@50 and achieves a slightly

inferior performance on 32 and 48 bits.

E. Results on ImageNet Dataset

ImageNet is a large-scale dataset and contains 1.2 million

images from 1,000 categories. Following the setting of [12],

100 classes are selected to evaluate the model. In this section,

we aim to explore the effect of the number of seen categories

on zero-shot hashing. Precisely, the number of seen classes

varies from 20 to 80. Relatively, the number of unseen classes

varies from 80 to 20. 375 images per category are chosen to

form training set. It is noticed that ImageNet don’t include

class attributes. Thus, we select the most similar work SitNet

as our baseline.

We compare the proposed method with SitNet as shown in

Fig. 5. As we can see, with the increase in number of seen

classes, the MAP keep rising. In other words, it is convenient

to transfer semantic knowledge from seen classes to unseen

classes when the number of seen classes is large. Moreover,

our algorithm is superior to SitNet in all different numbers of

the seen classes.

V. CONCLUSION AND FUTURE WORKS

A modified two-stage zero-shot hashing framework, named

visual-to-semantic hashing(VSH), is proposed in this paper.

VSH can learn semantic structure knowledge and output the

hash codes effectively. Compared to existing method, VSH

utilize a margin-based ranking loss to transferable semantic

structure from seen to unseen classes, and adopt a classi-

fication module to increase the discriminability of semantic

mapping for different semantic mapping vectors. The experi-

ment results show that our algorithm can learn discriminative

hash codes and achieve better performance. In the future,

we will explore the relationship between hash codes and

semantic vectors to seek better mapping patterns, which can

better transfer semantic knowledge among classes and learn

semantic-preserving hash codes.
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