
Lightweight Crypto-Assisted Distributed Differential
Privacy for Privacy-Preserving Distributed Learning

Lingjuan Lyu
The Department of Computer Science

National University of Singapore
Singapore

lyulj@comp.nus.edu.sg

Abstract—The appearance of distributed learning allows mul-
tiple participants to collaboratively train a global model, where
instead of directly releasing their private training data with the
server, participants iteratively share their local model updates
(parameters) with the server. However, recent attacks demon-
strate that sharing local model updates is not sufficient to
provide reasonable privacy guarantees, as local model updates
may result in significant privacy leakage about local training data
of participants. To address this issue, in this paper, we present
an alternative approach that combines distributed differential
privacy (DDP) with a three-layer encryption protocol to achieve
a better privacy-utility tradeoff than the existing DP-based
approaches. An unbiased encoding algorithm is proposed to cope
with floating-point values, while largely reducing mean squared
error due to rounding. Our approach dispenses with the need for
any trusted server, and enables each party to add less noise to
achieve the same privacy and similar utility guarantees as that
of the centralized differential privacy. Preliminary analysis and
performance evaluation confirm the effectiveness of our approach,
which achieves significantly higher accuracy than that of local
differential privacy approach, and comparable accuracy to the
centralized differential privacy approach.

Index Terms—Privacy-preserving, distributed learning, dis-
tributed differential privacy, encryption.

I. INTRODUCTION

Collaborative learning is motivated by the need to train a
more accurate global model on massive data collected from
multiple parties, as insufficient local training data may end up
with worse models with poor generalizability. In traditional
centralized deep learning, participants pool their data into a
trusted server to train a global model. The assumption of a
trusted server that stores data in the clear is ill-suited for many
applications as it constitutes a single point of failure for data
breaches, and saddles the trusted curator with legal and ethical
obligations to keep the user data secure [1]. Hence, parties
should be prevented from sharing their private data in the clear
for legal reasons. To alleviate this problem, distributed deep
learning appears. Decomposing and parallelizing computation
among different parties who share the common goals in building
global model could help reduce the demand for resources on
the centralized server. Another more important reason is the
growing privacy and confidentiality challenges, as data collected
by participants commonly contain sensitive information, which
could be used for unintended purposes, posing immediate or
potential privacy risks. Dean et al. [2] firstly introduced the

concept of distributed deep learning, where instead of explicitly
sharing training data, parties collaboratively train a global
model by sharing local model updates with a parameter server
(PS), while updating their local models by downloading the
most-updated parameters from the PS. In particular, a special
case is federated learning, which is tailored to deal with non-
independent and identically distributed (non-IID), unbalanced
and massively distributed data in mobile application [5].

Considering the ever increasing privacy issues, multiple
trusted server based mechanisms have been developed to
ensure privacy [6], [7]. For instance, McMahan et al. [7]
adopted differential privacy by enabling the trusted server
to add tailored noise to the weighted-average of user updates
to guarantee user-level privacy. However, the default trusted
server is entitled to see all users’ update clearly, which is not
preferred when the server is untrusted. This is because directly
releasing local model updates may result in significant privacy
leakage about local training data [8], either to a eavesdropper,
or to a central server [7]. For instance, as demonstrated by
Aono et al. [9], even a small portion of original gradients may
reveal information of local data, and thus the server can extract
individual data with non-negligible probability in the case of
only one neuron, and even for general neural networks with
regularization, the gradients can still reveal label information
of the original data. As a result, when the server is untrusted,
we cannot rely on the server with the task of noise generation.
Neither can we entrust any single participant with this task,
since the designated participant knows the noise and hence can
deduce from the output the true aggregate as well.

Without an untrusted server, Shokri et al. [4] proposed to
blur local model gradients by adding noise using differential
privacy. However, their privacy bounds are given per-parameter,
the large number of parameters prevents their technique from
providing a meaningful privacy guarantee. An alternative secure
aggregation protocol was proposed by Bonawitz et al. [10],
which is proved to be secure in the honest-but-curious and
active adversary settings, and the security is maintained even
if an arbitrarily chosen subset of users dropout at any time. In
particular, secure multiparty computation (SMC) is leveraged
to compute the sum of local model updates from individual
users’ devices in a secure manner, which comes at the cost
of extra computation and communication overheads. Aono
et al. [9] used the additively homomorphic encryption to

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

preserve the privacy of gradients and enhance the security
of the system. However, their protocol not only brings a
large communication and computational overhead, but also
is not resistant to the collusion between the server and multiple
users. More recently, Truex et al. [11] recommended a hybrid
approach to privacy-preserving federated learning. However, it
is unclear how they feed the floating-point model updates into
the Paillier cryptosystem while maintaining utility, and their
adopted Paillier cryptosystem is much more expensive than
the symmetric key based encryption. We also remark that most
randomization-based schemes did not give theoretic privacy
bounds [12], [13], thus not preferred.

To address all these issues, we propose a new privacy-
preserving distributed learning approach using lightweight
crypto-assisted distributed differential privacy. To summarize,
the main contributions of this paper include:
• We propose a novel approach for privacy-preserving

distributed learning, it combines distributed differential
privacy with encryption to remove the reliance on any
trusted party, and offer desirable utility and privacy.

• For the encryption part, we provide an efficient three-layer
encryption protocol to ensure both individual privacy and
server obliviousness. To cope with floating-point value,
we propose an unbiased encoding algorithm, which largely
reduces mean squared error due to rounding.

• Experimental results demonstrate that our approach deliv-
ers comparable performance to the centralized DP model,
and yields significantly better results than the local DP
model, thus confirming the effectiveness of our approach.

II. PRELIMINARIES

A. Differential Privacy

As defined in Definition 1, differential privacy (DP) bounds
the effect of the presence or the absence of a record on the
output likelihood within a small factor ε. The additive term δ
allows that the unlikely responses do not need to satisfy the
pure ε-DP criterion.

Definition 1. For scalars ε > 0 and 0 ≤ δ < 1, mechanism
M is said to preserve (approximate) (ε, δ)-differential privacy
if for all neighbouring pairs D,D′ ∈ Dn and measurable
S ∈ R,

Pr{M(D) ∈ S} ≤ exp(ε) · Pr{M(D′) ∈ S}+ δ .

Local Differential Privacy (LDP). Compared to the central-
ized setting, the local version of DP offers a stronger level of
protection, because each user individually applies a randomized
algorithm M to obtain a perturbed response before submitting
to an untrusted server. Crucially, the randomized algorithm M
guarantees differential privacy independently of the server and
the other users, even if they collude [14].

However, LDP comes at the cost of utility, since every user
independently adds noise to ensure LDP, the effect of noise
adds up when aggregating their results. While noise of scale
(standard deviation) Θ(1) suffices for CDP, Duchi et al. [15]
proved that the error of LDP must blowup by at least Θ(

√
n)

(n is the number of users), and often by an additional factor
growing with the data dimension. This gap is essential for
eliminating the trust in the centralized server, and cannot be
removed by algorithmic improvement [16]. The most recent
works introduced amplification by shuffling to lower the privacy
cost of LDP algorithm when viewed in the central model of
DP [17], [14]. LDP with shuffling yields a trust model which
sits in between the central and local models for DP.

Distributed Differential Privacy (DDP). The notion of
DDP reflects the fact that the noise in the target statistic is
sourced from multiple parties. Given that the server evaluates a
function h : Dn → R on randomized statistics of n parties , and
a set of compromised parties K, we let rK := {ri : i ∈ K}
and denote K̄ be the complement of K, i.e., uncompromised
set K̄ = {1, 2, ..., n} \K. A formal DDP definition adapted
from [18] is given as follows.

Definition 2 ((ε, δ, γ)-Distributed DP). Let ε > 0, 0 ≤ δ < 1
and 0 < γ < 1, We say that the data randomization
procedure M with randomness over the joint distribution of
r := (r1, · · · , rn) preserves (ε, δ, γ)-distributed differential
privacy (DDP), with respect to the function h and under γ
fraction of uncompromised parties if the following conditions
hold: For any neighbouring databases D,D′ ∈ Dn that differ
in one record, for any measurable subset S ⊆ R, and for any
subset K̄ of at least γn honest parties,

Pr(M(D) ∈ S|rK) ≤ exp(ε) · Pr(M(D′) ∈ S|rK) + δ.

In the above definition, DDP is parameterized by a proba-
bility γ, and is conditioned on the randomness rK from the
compromised parties, i.e., it ensures that if at least t = γn
participants are honest and uncompromised, we can still
accumulate noise of a similar magnitude as that of the CDP.

DDP achieves a middle ground between CDP and LDP, in
terms of both privacy and utility. Approaches to DDP that
implement an overall additive noise mechanism by summing
the same mechanism run at each party (typically with less
noise) necessitates mechanisms with stable distributions (like
Gaussian distribution, Binomial distribution)—to guarantee
proper calibration of known end-to-end response distribution—
and cryptography for hiding all but the final result from
participants, as evidenced by [18], [19], [20], [21], [11].DDP
utilizes this nice stability to permit each party to randomise
its local statistic to a lesser degree (σ√

n
) than would LDP (σ).

In summary, the goal of DDP is to both avoid the trust on any
third party (trusted server in CDP and trusted shuffler in LDP
with shuffling), and achieve better utility than LDP. On the
other hand, if the server colludes with all the parties except
the victim, the privacy guarantee would downgrade to LDP.

In particular, crypto-assisted DDP differs from LDP with
shuffling in two major ways: (1) shuffler model results in

an approximate DP guarantee (ε

√
log 1

δ

n , δ) which incurs an

expected error of O(ε
√
log 1

δ). In practice, δ has to be smaller
than 1

n in order to offer a meaningful privacy guarantee. In
contrast, our crypto-assisted DDP can achieve the same order

of accuracy guarantees as that of the CDP model; (2) the line
of work in LDP with shuffling all require an additional trusted
shuffler that receives user messages and permutes them before
they are handled to an untrusted server, limiting its practicality
as trusted shuffler is notoriously difficult to achieve in practice.
Moreover, it is still unclear whether LDP with shuffling can
be adapted to the iterative deep learning process.

Privacy Accountant. In terms of privacy leakage, as deep
learning needs to iterate over the training data and apply
gradient computation multiple times during the training process,
each access to the training data incurs some privacy loss
from the overall privacy budget ε. The repeated applications
of additive noise mechanisms follow from the composition
theorems and their refinements [22]. The task of keeping track
of the accumulated privacy loss in the course of execution of
a composite mechanism, and enforcing the applicable privacy
policy, can be performed by the privacy accountant.

Abadi et al. [6] first proposed moments accountant to provide
a tighter bound on the privacy loss compared to the generic
strong composition theorem. It keeps track of a bound on
the moments of the privacy loss random variable to compute
the spent privacy over the course of training. Another more
state-of-the-art privacy accountant is Rényi Differential Privacy
(RDP), which generalizes pure differential privacy and is closely
related to the moments accountant. As defined in Definition 3,
RDP is stated in terms of the Rényi divergence. RDP supports
exact numerical computations for a finite number of orders,
avoiding the need to specify a discrete list of moments ahead
of time as required in the moments accountant approach of [6],
and privacy bounds are tighter than those provided by Abadi
et al. [6]. Hence, we choose to use RDP as a more natural
analysis framework.

Definition 3 ((α, ε)-RDP [23]). A randomized mechanism f :
D → R is said to guarantee (α, ε)-RDP, if for any adjacent
D,D′ ∈ D it holds that

Dα(f(D)||f(D′)) ≤ ε

B. Homomorphic Encryption

Additive homomorphic encryption allows the calculation
of the encrypted sum of plaintexts from their corresponding
ciphertexts. It ensures that the server can only decrypt the sum
of all the received ciphertexts, but cannot access any of them.
Specifically, Vernam cipher or one-time pad (OTP) has been
mathematically proved to be completely secure, which cannot
be broken given enough ciphertext and time. Therefore, we use
simple but provably secure OTP for additively homomorphic
encryption that allows efficient aggregation of ciphertexts [24],
[25], the ciphertexts refer to the encrypted gradients in the
context of sharing gradients in distributed learning. The main
idea of forming the ciphertext is to combine the keystream with
the plaintext digits. Meanwhile, rather than XOR operation
typically found in stream ciphers, which is unsecured under
the frequency analysis attacks, our encryption scheme uses
modular addition (+), and is hence very efficient [24]. The
security relies on two important features: (1) the keystream

changes from one message to another; and (2) all the operations
are performed modulo a large integer M [24].

III. PROPOSED APPROACH

Threat Model. In distributed learning system, insider attacks
represent those launched by the data owners (participants) as
well as the server, while outsider attacks include those launched
by the eavesdroppers to the communication channel or the users
of the final model when deployed as a service.
• Insiders. For insider in the distributed system, we consider

the commonly used semi-honest or honest-but-curious
adversarial model, where the parties or the server may
attempt to learn or infer sensitive information from
the honest parties, without deviating from the protocol.
Moreover, a subset of parties may collude with the server
to infer private information of other parties.

• Outsiders. We also consider potential attacks from ad-
versaries outside of the system. Our work ensures that
any adversary monitoring communications during training
process cannot infer any private information about the
participants. We also consider users of the final model as
potential adversaries. The final model can be deployed as
a service, while resisting to these adversaries.

Central
server

w’=w+aggregate(∆w)1 + ∆w)2 +⋯+ ∆w)n)

TE(M(∆w)1))

Party 1 Party 2 Party n

w’w’w’

TE(M(∆w)2)) TE(M(∆w)n))

Fig. 1: DDP mechanism (M) combined with three-layer
encryption (TE): distributed learning without a trusted server.
(∆w̃j : noisy local model updates).

A. System Setup

We consider the scenario where multiple parties each owns
different groups of individuals with similar features, i.e.,
horizontal distributed learning. For example, different hospitals,
each holding the same kind of information for different patients,
can collaboratively train a global model on the union of their
patients, while ensuring privacy for each patient. Consequently,
hereafter, instead of training a centralized model to solve the
task associated with the whole database D ∈ Rr×d,Y ∈ Rr,
the whole database D is partitioned into n disjoint subsets,
{D1,D2, ...Dn} that are held by n parties who are unwilling to
make their training data, model parameters or model predictions
public or share them with others. Here r refers to the total
number of training records in D, Di and Y i represent the
training data and labels of party i respectively. Individual
models are trained separately on each subset {Di,Y i}. The

key component in our system is to protect individual privacy
by combining DDP with an efficient three-layer encryption
protocol (DDP+TE). Figure 1 shows an outline of an epoch
of training in the distributed system without a trusted server.
During each epoch of local training, each participant adds an
appropriate amount of noise according to the privacy budget
allocated to that step, the sensitivity of the gradients, and
the trust level γ in the system. The noisy response is finally
encrypted using our three-layer encryption protocol and sent to
the server. Homomorphic property allows the server to correctly
aggregate individual responses, and expose the updated global
model to all participants. The detailed process of privacy-
preserving distributed learning between the server and parties
is given in Algorithm 1, where we use Enc, Senc, and Aenc
to refer to homomorphic encryption, symmetric key encryption,
and asymmetric/public key encryption, respectively. For privacy
accountant, the server uses RDP to keep track of the spent
privacy budget during distributed training process.

Algorithm 1 Privacy-Preserving Distributed Learning
Input: Set of parties P ; number of honest, non-colluding parties
t = γn; noise parameter σ; learning rate η; sampling probability
q; loss function L; clipping value c; number of epochs E; public
key pk.

Role: Party j
Downloads w from server and replaces local model wj with w;
for t ∈ [1/q] do

Takes a random sample Lt with probability q = Lt/|Di|;
for x ∈ Lt do

Computes gradient: ∆wj ← ∇wjL(wj , x);
Clips gradient: ∆wj ← ∆wj/max(1, ‖∆wj‖/c);

end for
Adds noise: ∆ŵj ← 1

|Lt|
∑
x∈Lt∆wj +N (0, c2 ∗ σ

2

t
I).

wj ← wj − η ∗∆ŵj

end for
∆w̃j ← wj −w
Encrypts ∆w̃j with its keystream kj as cj = Enc(∆w̃j , kj),
and re-encrypts the encrypted gradients cj with a fresh symmetric
encryption key fsk as Senc(cj , fsk), the symmetric encryption
key of the second layer is encrypted in the third layer by
the server’s public key pk as Aenc(fsk, pk). Finally, the two-
layer encrypted gradients Senc(cj , fsk) and the encrypted fresh
symmetric encryption key Aenc(fsk, pk) are sent to the server.

Role: Server
Initializes global parameters w;
for e ∈ [E] do

Server uses the paired secret key sk to decrypt the received
Aenc(fsk, pk) as fsk, then uses fsk to decrypt the received
Senc(cj , fsk) as cj = Enc(∆w̃j , kj), finally decrypts the sum of
all cj using homomorphic property and updates global parameters as:
w′ = w +Dec(

∑
j∈PEnc(∆w̃j , kj),−k0) = w +

∑
j∈P∆w̃j .

Sends w′ to all parties for the next epoch of training.
Computes the overall privacy cost (ε, δ) given σ, q, e.

end for

B. Three-layer Encryption Protocol

Sharing gradients can prevent direct exposure of the local
data, but may indirectly disclose local data privacy. To further
avoid privacy leakage from gradients and facilitate gradients
aggregation, we develop an efficient three-layer encryption

protocol, which can be combined with DDP to ensure individual
privacy and maintain utility. As the released gradient vector
is high-dimensional, directly encrypting gradient vector using
public key cryptography (asymmetric encryption) like Paillier
is both computation and communication expensive. Therefore,
we instead use the a more simple but provably secure technique
called OTP for the purpose of homomorphic encryption. In
more details, in our three-layer encryption protocol, the first
layer protects local model gradients by using an efficient
additive homomorphic encryption scheme, and the second layer
and the third layer constitute a hybrid cryptosystem.

The First Layer: Additive Homomorphic Encryption.
The detailed procedure for homomorphic encryption is pre-
sented in Algorithm 2. In practice, if p = max(xi), M is derived
as M = 2dlog2(p×n)e. All computations in the remainder of this
paper are modulo M unless otherwise noted. A pseudorandom
keystream k can be generated by a secure pseudo random
function (PRF) by implementing a secure stream cipher, such
as Trivium [26], keyed with each party’s keystream ki with
a unique message ID and the server’s keystream k0. For
encryption purpose, the secret keys are pre-computed through
a trusted setup, which can be performed by a trusted dealer or
through a standard SMC protocol, but the generated keystreams
cannot be used more than once. The trusted setup generates
non-zero random shares of 0, such that each participant j ∈ P
obtains a keystream kj , and the server obtains the capability
k0 needed for decryption of the aggregate in each epoch, i.e.,∑
j∈P kj + k0 = 0. Homomorphic encryption ensures server

obliviousness by capturing the following security notions:
• The server knows nothing but the sum of all the received

gradients in each epoch.
• If a set of compromised participants and the server form

a coalition against the remaining participants, i.e., the
compromised participants can reveal their gradients, noise
values and keystreams to the server as a form of auxiliary
information, then the server can inevitably learn the sum
of gradients of the remaining participants. In this case,
the server learns no additional information.

The Second and Third Layers: A Hybrid Cryptosystem.
In our three-layer encryption, the second layer is a data
encapsulation scheme, which is a symmetric-key cryptosystem;
and the third layer is a key encapsulation scheme, which
is a public-key cryptosystem. For the second layer, a fresh
symmetric encryption key fsk will be generated and used
to re-encrypt the ciphertext of the first layer, and then the
fresh symmetric key is encrypted by using the server’s public
key pk in the third layer. In this way, the encryption of
high-dimensional data becomes very effective, and the server
could be authenticated as well: only the server who has the
corresponding secret key sk paired with the public key pk
can decrypt the two-layer encrypted gradients, preventing the
success of eavesdropping attack.

C. Unbiased Encoding

Like most cryptographic techniques, our encryption protocol
requires all the original floating-point values to fall into a

Algorithm 2 Homomorphic Encryption Scheme

Setup
1: A trusted dealer randomly generates n + 1 keystreams:
k0, k1, . . . , kn ∈ [0,M − 1], such that k0 +

∑
j∈P kj (mod

M)= 0, where M is a large integer, and n = |P |.
2: Party j obtains keystream kj , and the server obtains the
capability k0.

Enc(m, k)
1: Represent message m as integer m ∈ [0,M − 1].
2: Let k be a randomly generated keystream, where k ∈
[0,M − 1].
3: Compute c = Enc(m, k) = m+ k.

Dec(c, k)
1: Dec(c, k) = c− k.

AggrDec(k0)
1: Let cj = Enc(mj , kj), where j ∈ P .
2: Server uses −k0 =

∑
j∈P kj to decrypt the aggregation of

other parties as follows: Dec(
∑
j∈P cj ,−k0) =

∑
j∈P cj −∑

j∈P kj =
∑
j∈Pmj .

integer-valued discrete group. For this purpose, we first need
to map floating-point values to the integer domain through
scaling and rounding, then convert to floating-point values
through unscaling after decryption. In more detail, scaling and
rounding operations are firstly applied to the privatized local
model updates by each party, while unscaling is applied by the
server after the decryption of the sum of the privatized local
model updates is derived, hence we explicitly define scaling
and rounding operations as SR and unscaling operation as U.

However, rounding may affect the precision of the float value,
thus affecting utility, especially aggregating multiple values
with reduced precision. The most common practice to encode
a float value x with precision s is called Scaling, Rounding,
Unscaling (SRU) algorithm [25], where x 7→ bsxe

s . However,
in SRU, the error of a scalar is upper-bounded by 1

2s , then the
error of the aggregate is upper-bounded by n

√
d

2s , where n and
d represent the number of parties and the size of the locally
released vector [27]. It may result in a large error when both n
and d are large. To alleviate this issue, we propose an unbiased
encoding algorithm, where the operation of rounding is replaced
with randomized rounding. As shown in Algorithm 3, each
scalar x ∈ R is first scaled and rounded as x̄ = bsxc+ Ber(sx−
bsxc), where Ber(sx − bsxc) refers to a Bernoulli random
variable which takes the value 1 with probability p = sx−bsxc.
Finally, x̄ can be unscaled by dividing by the same scaling
factor s. Theorem 1 states that this algorithm is an unbiased
encoding, followed by the detailed proof. This ensures that
E[x̄/s] = E[x] and that the mean squared error (MSE) due
to rounding (which equals the variance) is at most 1

4s2 . From
Theorem 1, it then follows that E[

∑
j∈P x̄j/s] = E[

∑
j∈Pxj],

i.e., the sum of real scalars is also unbiased in expectation and
MSE of the sum over n scalars due to rounding is at most n

4s2 ,

and MSE of the sum over n vectors (suppose each vector is
composed of d scalars) due to rounding is at most n

√
d

4s2 . In our
case, each x is an element of the locally computed floating-
point model updates, d is the size of local model updates, and
n = |P | is the number of parties. After the server decrypts the
sum of the privatized local model updates, it unscales the sum
back to the unbiased floating-point vector with precision s.

Algorithm 3 Unbiased Encoding
Input: scaling factor s, scalar x
Scaling and Randomized Rounding: x 7→ x̄ = bsxc+ Ber(sx−
bsxc)

Unscaling: x̄ 7→ x̄
s

.

Theorem 1. (Unbiased encoding for scalar x). For a specific
scaling factor s and any scalar x ∈ R, the encoding in
Algorithm 3 is unbiased in expectation, and the mean squared
error (MSE) due to rounding is at most 1

4s2 .

Proof. For any scalar x ∈ R and scaling factor s ∈ R+, the
expectation of the difference between the encoded scalar E[x̄/s]
and the scalar x can be expressed as:

E[x̄/s− x] = E[{bsxc+Ber(sx− bsxc)}/s− x]

= E[bsxc+Ber(sx−bsxc)−sxs] = bsxc+sx−bsxc−sx
s = 0

where the second last equality follows from the property of
Bernoulli distribution: E[Ber(p)] = p. For MSE,

E[(x̄/s− x)2] = E[({bsxc+Ber(sx− bsxc)}/s− x)2]

= E[(bsxc+Ber(sx−bsxc)−sx)2]
s2

let p = sx− bsxc, then above expression reduces to:

E[(Ber(p)− p)2]

s2
=

E[(Ber(p))2 − 2pBer(p) + p2]

s2

=
p− p2

s2
≤ 1

4s2

where the last equality follows from E[(Ber(p))2] = p and
E[Ber(p)] = p, and the last inequality follows from the
maximum value of f = p− p2 equals 1/4 when p = 1/2.

In terms of utility analysis, it is apparent that MSE is
inversely proportional to the scaling factor s, where s = 10N

considers N digits to the right of the decimal point. Therefore,
the higher s, more precision is kept. To avoid the utility
degradation due to rounding, we choose a large scaling factor
as s = 105 in all experiments, the upper bound of the MSE of
the sum of the privatized local model updates n

√
d

4s2 becomes
negligible even when n = 1000, and d = 106. In contrast,
normal SRU without unbiased encoding [27] results in a
relatively large MSE, as n

√
d

2s >> n
√
d

4s2 . In terms of privacy
analysis, applying scaling and rounding to the private data
will not diminish its privacy guarantee according to the post-
processing property of DP [22]. Moreover, rounding provides
the covertness property by making the perturbed floating-point
values as integers.

D. System Robustness

In distributed system, it might happen that, one or more
participants might fail to respond or dropout the participation
at some point before the completion of the given training
epoch [10]. This would introduce two effects: first, differential
privacy may not be guaranteed any more, since the sum of the
noise will not meet the required level σ. Second, the server will
not be able to decrypt the correct aggregate statistics, since k0+∑
j∈P kj = 0 will not hold any more. Fault tolerance requires

the server to be resilient to party failures, i.e., server can still be
able to estimate the correct aggregate of the remaining parties
even when an arbitrary subset of parties (unknown in advance)
fail. Notice that all the existing fault tolerance schemes come
with a trade-off [21], [18], [28]. In this section, we further
extend our scheme to resist party failures by introducing setup
extension and sanitization extension.

Setup Extension. The failure or dropout of any party can
be detected as the server will not receive its message ID.
Then the failed ID will be reported to the trusted third party,
who initializes the trusted setup and issues certificates to all
the parties including the server in the system. To deal with
party failure and ensure the correctness of decryption, the
trusted third party will update the keystream kept by the server
as the negative sum of the remaining parties. Therefore, the
corresponding keys of the non-responding parties will not be
included during decryption at the server. Hence, our solution
requires setup only once if there are no party failures or dropout,
otherwise, one extra setup is needed only between the trusted
third party and the server.

Sanitization Extension. In order to resist the failure or
dropout of n− t parties, each party should follow the strategy
below to inject noise into individual training process: If at
least t = γn honest participants out of the total n participants
participate in the protocol, then we can distribute the noise
generation task amongst these t participants. Our construction
guarantees that, with high probability, the noise introduced by
the honest participants can account for party failures, dropout,
and collusion. Each honest party samples ri from a Gaussian
distribution of standard deviation σi = σ√

t
instead of σ√

n
, then

the total noise in the aggregated gradients still satisfies the
expected standard deviation σ, i.e., ri is chosen from a Gaussian
distribution that is sufficient to guarantee differential privacy,
hence the aggregation remains differentially private. Note that
in this case each party may add extra noise to the aggregation in
order to ensure differential privacy even if less than n−t parties
fail, dropout, or collude. Clearly, this extra noise increases the
error if all n parties operate correctly and add their noise shares
faithfully. In the worst case, if every participant believes that
the other n− 1 participants are compromised, each participant
would need to add sufficient noise to ensure LDP of its own
gradients, resulting in a large error in the aggregated gradients.

Our three-layer encryption protocol also allows the server to
verify the authenticity of the received message (authentication)
and check that the received message is intact (integrity), thus
preventing an outsider from injecting fake packets.

IV. EXPERIMENTS

For local model training, we follow the same privacy strategy
used in the centralized training approach [6]. Each party is first
initialized with the same model structure with same parameters.
Each party will then conduct one full epoch of learning locally.
At the end of each lot (several batches), Gaussian noise is
introduced according to the norm clipping bound c and the
noise parameter σ. Norm clipping bounds the influence of each
individual example on the gradient, i.e., sensitivity is bounded.
After each party completes one epoch of local training with 1

q

lots, where q = L/N is the sampling probability per lot, each
party sends its encrypted local gradients to the server. The
server then decrypts the sum of all the received gradients, and
updates the global model by integrating the average of local
updates for the next epoch of local learning at each party.

Dataset and Model. We evaluate our approach on two
standard image-classification datasets, MNIST and CIFAR-10
for fair comparison with [6]. MNIST dataset is for handwritten
digit recognition, which consists of 60,000 training examples
and 10,000 testing examples. Each example is a 28x28 grey-
scale image, with 10 possible digits [“0”-“9”] locating at the
center of the image1. We use a model structure similar to that
in [6], i.e., a feedforward neural network with 2 hidden layers
of ReLU units and a softmax layer of 10 classes with cross-
entropy loss. The first layer (PCA layer) contains 60 units and
the second layer contains 1000 units. We set the norm clipping
to 4.0, learning rate to 0.1 and sampling probability q to 0.01.

CIFAR-10 consists of color images classified into 10 classes
and partitioned into 50,000 training examples and 10,000 test
examples2. Each example is a 32x32 RGB image. We use the
same model structure as that in [6], which consists of two
convolutional layers followed by two fully connected layers.
The convolutional layers use 5x5 convolutions with stride 1,
followed by a ReLU and 2x2 max pools, with 64 channels
each. The output of the last convolutional layer is fed into
a fully connected layer with 384 units, and another one of
the same size. As is standard for image datasets, we use data
augmentation during training. For each training image, we
generate a new distorted image by randomly picking a 24x24
patch from the image, randomly flipping the image along the
left-right direction, and randomly distorting the brightness and
the contrast of the image. For all datasets, we randomly and
equally split all training data among all parties.

Baseline Comparison. We compare our approach
(DDP+TE) with the following baselines: (1) Centralized
non-private (CNP): in this approach, all the data is centrally
held by the server and no privacy is considered in the learning
process. (2) Centralized DP (CDP): while all the data is still
centrally held by the server, the server now conducts deep
learning with differential privacy. This is representative of the
scenario in [6]. (3) Local DP (LDP): this approach excludes
cryptosystem but requires each party to add enough noise of

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/∼kriz/cifar.html

level σ to individually ensure local differential privacy before
sharing their local model updates with the server.

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

90

Ac
cu

ra
cy

[%
]

DDP+TE
CNP
CDP
LDP

Fig. 2: Model convergence on MNIST dataset (DDP+TE adopts
10 parties and σ=4, all DP models adopt (ε, δ) = (2, 10−5)).

Note that the distributed non-private model achieves similar
or even better results than the centralized non-private model [4],
so we omit the comparison with the distributed non-private
model.Figure 2 shows the training process of all approaches
on MNIST dataset across 100 epochs, for DDP+TE, we set
10 parties with the total noise level σ = 4 (the medium noise
setting in [6]). It can be observed that our approach achieves
an accuracy of 0.95 in this setting. While this is lower than
the CNP approach where an accuracy of approximately 0.98 is
achieved, but our approach approximates CDP approach and
significantly outperforms the LDP approach which only reaches
0.86. Additionally, we observe a large variation in the accuracy
curve of the LDP approach as updates are overwhelmed by
noise. We additionally experiment with σ = 10 and σ = 2 as
was done in [6]. When σ = 10, (ε, δ) = (0.5, 10−5), accuracies
of CDP, LDP and our DDP+TE correspond to 0.90, 0.72, and
0.89. When σ = 2, (ε, δ) = (8, 10−5), accuracies of CDP, LDP
and our DDP+TE become 0.97, 0.93 and 0.97 respectively. We
can thus conclude that our approach yields the most gain with
larger σ values which translates to tighter privacy guarantees.

2 10 50 70 100
Number of parties

30

40

50

60

70

80

90

Ac
cu

ra
cy

[%
]

DDP+TE
CNP
CDP
LDP

Fig. 3: MNIST accuracy for different number of parties and
different approaches (all DP models adopt (ε, δ) = (2, 10−5)).

Figure 3 demonstrates the viability of our approach in highly

distributed environments while highlighting the shortcomings
of the LDP approach. As the number of parties n increases,
the noise in the LDP approach increases proportionally while
our approach maintains consistent accuracy. We find that with
as few as 10 parties, the accuracy of LDP begins to drop
significantly. This result can be easily explained by the fact that
LDP results in the noise in the aggregated gradients increasing
linearly with the number of parties. In contrast, our DDP+TE
is nearly independent with the number of parties. We also
evaluated our approach in a more severe setting with only
half of the parties as honest, while the other half semi-honest
and may collude with the server. In this case, t = n/2, and
each party has to add noise with standard deviation σi = σ√

t
.

Our approach again consistently outperforms LDP. Specifically,
after 100 epochs, our approach reached an accuracy of 0.91,
while the LDP achieves only 0.77.

Similarly, for CIFAR-10, we follow the same setting in [6],
i.e., δ = 10−5, c = 3 and σ = 6, and deploy 10 parties
for distributed learning. As shown in Table I, when ε = 2,
accuracies of CDP, our DDP+TE and LDP become 0.67, 0.66
and 0.51 respectively; when ε = 4, accuracies of CDP, our
DDP+TE and LDP become 0.70, 0.69 and 0.53 respectively;
when ε = 8, accuracies of CDP, our DDP+TE and LDP become
0.73, 0.72 and 0.58 respectively. Overall, we have demonstrated
that our approach provides significant accuracy gains compared
with LDP, and also scales well.

TABLE I: Accuracy on MNIST and CIFAR-10 under varying
privacy budget ε and different privacy models.

Accuracy MNIST CIFAR-10
ε =0.5 ε =2 ε =8 ε =2 ε =4 ε =8

CNP 0.98 0.98 0.98 0.86 0.86 0.86
CDP 0.90 0.95 0.97 0.67 0.70 0.73
DDP+TE 0.89 0.95 0.97 0.66 0.69 0.72
LDP 0.72 0.86 0.93 0.51 0.53 0.58

Complexity Analysis. The main communication cost occurs
when each party sends its encrypted gradients to the server,
resulting in d ciphertexts, where d is the size of the released
gradients (the encrypted symmetric key size is negligible com-
pared with the encrypted gradients). Therefore, our encryption
scheme using stream ciphers and hybrid encryption is relatively
efficient compared with the asymmetric encryption, because
encrypting a short plaintext (i.e., the symmetric key fsk)
requires only one asymmetric operation, while encrypting a
longer message (millions of gradients) would in theory require
many asymmetric operations.

For example, for training MLP models (with 117,040
parameters each represented by 4 bytes) on MNIST dataset [4],
each party needs to send and download 117,040 × 4 bytes
= 0.468 MB of message in each epoch. For encryption part,
each party needs to send an encrypted message consisting of
two parts: the gradients encrypted with kj and fsk, and the
encrypted fsk. As symmetric key encryption, such as AES-256,
does not increase the size of the message (apart from potentially
a few extra bytes for padding), the encrypted gradients in
our scheme is of the same size (i.e., 0.468 MB). If we

choose RSA-2048 for the asymmetric key encryption, we only
introduce an additional 256-byte message (encrypted symmetric
key), which is negligible. In terms of the computation cost
spent on encryption, we tested the performance in a local
machine with 2.7 GHz Intel Core i7 processor and 16 GB
2133 MHz LPDDR3 memory. The time spent on the first
layer of encryption using stream cipher is negligible, as
modular addition (+) is very efficient [24]. The second layer
of encrypting a 0.468 MB message with AES-256 takes ∼7.5
ms, and the third layer of encrypting a 256-bit message using
RSA (of key size 2048 bits) takes ∼4 ms, hence each party
takes total ∼11.5 ms on the encryption of local gradients in
the system, which is pretty fast.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel approach that combines
DDP with an efficient three-layer encryption protocol to achieve
a better privacy-utility tradeoff than the existing approaches.
An unbiased encoding algorithm is proposed to cope with
floating-point values, while largely reducing mean squared
error due to rounding. Using our approach, each user can add
less noise while preserving individual privacy and maintaining
utility without the need for a trusted server. Preliminary analysis
and performance evaluation confirm the effectiveness of our
approach, which achieves higher accuracy than that of the
local DP model, and yields similar accuracy as that of the
centralized DP model. Complexity analysis also validates the
applicability of our approach. We expect to extend our approach
to various machine learning models and applications. Applying
more advanced techniques to further improve performance is
another interesting direction. We also expect to adapt LDP
with shuffling to the iterative distributed learning process, and
conduct deeper comparison.

REFERENCES

[1] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanava-
jjhala, and Somesh Jha, “Outis: Crypto-assisted differential privacy on
untrusted servers,” arXiv preprint arXiv:1902.07756, 2019.

[2] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
et al., “Large scale distributed deep networks,” in Advances in neural
information processing systems, 2012, pp. 1223–1231.

[3] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola,
“Parallelized stochastic gradient descent,” in Advances in neural
information processing systems, 2010, pp. 2595–2603.

[4] Reza Shokri and Vitaly Shmatikov, “Privacy-preserving deep learning,”
in Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security. ACM, 2015, pp. 1310–1321.

[5] H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Aguera
y Arcas, “Federated learning of deep networks using model averaging,”
arXiv preprint arXiv:1602.05629, 2016.

[6] Martı́n Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang, “Deep learning with differential
privacy,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 308–318.

[7] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang,
“Learning differentially private recurrent language models,” in Proceed-
ings of the 5th International Conference on Learning Representations,
2018.

[8] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov, “Exploiting unintended feature leakage in collaborative
learning,” arXiv preprint arXiv:1805.04049, 2018.

[9] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al.,
“Privacy-preserving deep learning via additively homomorphic encryption,”
IEEE Transactions on Information Forensics and Security, vol. 13, no.
5, pp. 1333–1345, 2018.

[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth, “Practical secure aggregation for privacy-preserving machine
learning,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 1175–1191.

[11] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou, “A hybrid approach to privacy-
preserving federated learning,” in Proceedings of the 12th ACM Workshop
on Artificial Intelligence and Security, 2019, pp. 1–11.

[12] Lingjuan Lyu, Yee Wei Law, Sarah M Erfani, Christopher Leckie, and
Marimuthu Palaniswami, “An improved scheme for privacy-preserving
collaborative anomaly detection,” in 2016 IEEE International Conference
on Pervasive Computing and Communication Workshops (PerCom
Workshops). IEEE, 2016, pp. 1–6.

[13] Lingjuan Lyu, James C Bezdek, Yee Wei Law, Xuanli He, and Marimuthu
Palaniswami, “Privacy-preserving collaborative fuzzy clustering,” Data
& Knowledge Engineering, vol. 116, pp. 21–41, 2018.

[14] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim, “The privacy
blanket of the shuffle model,” in Annual International Cryptology
Conference. Springer, 2019, pp. 638–667.

[15] John C Duchi, Michael I Jordan, and Martin J Wainwright, “Local privacy
and statistical minimax rates,” in 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science. IEEE, 2013, pp. 429–438.

[16] TH Chan, Kai-Min Chung, Bruce M Maggs, and Elaine Shi, “Foundations
of differentially oblivious algorithms,” in Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, 2019, pp. 2448–2467.

[17] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Abhradeep Thakurta, “Amplification by shuffling:
From local to central differential privacy via anonymity,” in Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2019, pp. 2468–2479.

[18] Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song,
“Privacy-preserving aggregation of time-series data,” in Annual Network
& Distributed System Security Symposium (NDSS). Internet Society.,
2011.

[19] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor, “Our data, ourselves: Privacy via distributed noise
generation,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2006, pp. 486–503.

[20] Gergely Ács and Claude Castelluccia, “I have a dream!(differentially
private smart metering).,” in Information hiding. Springer, 2011, vol.
6958, pp. 118–132.

[21] Vibhor Rastogi and Suman Nath, “Differentially private aggregation
of distributed time-series with transformation and encryption,” in
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 735–746.

[22] Cynthia Dwork and Aaron Roth, “The algorithmic foundations of
differential privacy,” Foundations and Trends R© in Theoretical Computer
Science, vol. 9, no. 3–4, pp. 211–407, 2014.

[23] Ilya Mironov, “Renyi differential privacy,” in Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th. IEEE, 2017, pp. 263–
275.

[24] Claude Castelluccia, Einar Mykletun, and Gene Tsudik, “Efficient
aggregation of encrypted data in wireless sensor networks,” in Mobile
and Ubiquitous Systems: Networking and Services, 2005. MobiQuitous
2005. The Second Annual International Conference on. IEEE, 2005, pp.
109–117.

[25] Lingjuan Lyu, Karthik Nandakumar, Benjamin Rubinstein, Jiong Jin,
Justin Bedo, and Marimuthu Palaniswami, “PPFA: Privacy preserving
fog-enabled aggregation in smart grid,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 8, pp. 3733–3744, 2018.

[26] Christophe De Canniere and Bart Preneel, “Trivium,” in New Stream
Cipher Designs, pp. 244–266. Springer, 2008.

[27] Lingjuan Lyu, Privacy-preserving machine learning and data aggregation
for Internet of Things, Ph.D. thesis, The University of Melbourne, 2018.

[28] T-H Hubert Chan, Elaine Shi, and Dawn Song, “Privacy-preserving
stream aggregation with fault tolerance,” in International Conference on
Financial Cryptography and Data Security. Springer, 2012, pp. 200–214.

