
Improving k-Means Clustering Performance with
Disentangled Internal Representations

Abien Fred Agarap
College of Computer Studies

De La Salle University
Manila, Philippines

abien agarap@dlsu.edu.ph

Arnulfo P. Azcarraga
College of Computer Studies

De La Salle University
Manila, Philippines

arnulfo.azcarraga@dlsu.edu.ph

Abstract—Deep clustering algorithms combine representation
learning and clustering by jointly optimizing a clustering loss and
a non-clustering loss. In such methods, a deep neural network
is used for representation learning together with a clustering
network. Instead of following this framework to improve cluster-
ing performance, we propose a simpler approach of optimizing
the entanglement of the learned latent code representation of an
autoencoder. We define entanglement as how close pairs of points
from the same class or structure are, relative to pairs of points
from different classes or structures. To measure the entanglement
of data points, we use the soft nearest neighbor loss, and expand
it by introducing an annealing temperature factor. Using our
proposed approach, the test clustering accuracy was 96.2% on
the MNIST dataset, 85.6% on the Fashion-MNIST dataset, and
79.2% on the EMNIST Balanced dataset, outperforming our
baseline models.

Index Terms—clustering, disentanglement, encoding, internal
representations

I. INTRODUCTION AND RELATED WORKS

Clustering is an unsupervised learning task that groups a
set of objects in a way that the objects in a group share
more similarities among them than those from other groups.
It is a widely-studied task as its applications include but
are not limited to its use in data analysis and visualization,
anomaly detection, sequence analysis, and natural language
processing. Like other machine learning methods, clustering
algorithms heavily rely on the choice of feature representation.
For this reason, the design of preprocessing pipelines and
feature transformations (a.k.a. feature engineering) consumes
a considerable amount of time. In turn, the task of feature
engineering plays a crucial role in the success of machine
learning methods. However, due to its labor-intensive na-
ture, it hinders faster development, autonomous learning, and
reusability across tasks.

We take k-means clustering as an example, which typically
uses the Euclidean distance among points in a given feature
space (e.g. for images, it could be the raw pixels or gradient-
orientation histograms); for difficult image datasets like CI-
FAR10 [1], clustering with Euclidean distance on raw pixels
may be ineffective.

Hence, the move towards automatically learning the best
representation for a given data has gained mainstream attention
since the success of deep learning for computer vision [2]–[4],

where the exceptional gains on benchmark tasks have resulted
from automatically learning better feature representation. The
task of automatically learning feature representation is known
as representation learning.

More explicitly, representation learning is the task of learn-
ing the most salient features of a given data, i.e. features that
imply the underlying structure of the data. It is implicitly
done in a supervised deep neural network by using its hidden
layers to learn and to provide representations for its last layer,
thereby rendering a task such as classification or regression
easier. For instance, data points that are not linearly separable
in the raw feature space may become linearly separable at
the last hidden layer through the composition of feature
representations in the hidden layers. So, by automatically
learning the representations instead of feature engineering, we
are unencumbered of the task to learn the best possible feature
representation for better performance in downstream tasks
such as classification, clustering, and regression. To further
take advantage of representation learning, it may be explicitly
designed to forge representations in favor of a downstream
task such as clustering. In the following subsections, we briefly
discuss related works that use the aforementioned strategy.

A. Deep Embedded Clustering (DEC)

Xie et al. (2016) [5] introduced the Deep Embedded Clus-
tering (DEC), a method that simultaneously learns feature
representations and cluster assignments using a deep neural
network. DEC learns a mapping fθ : X → Z where X is
the original feature space, while Z is the lower-dimensional
feature space. Then, it iteratively optimizes the Kullback-
Leibler divergence to minimize the within-cluster distance of
each cluster in Z. They had a clustering accuracy of 84.30%
on the MNIST dataset [6].

B. Variational Deep Embedding (VaDE)

Another approach to strongly influence learned representa-
tions to favor clustering is the Variational Deep Embedding
(VaDE) by Jiang et al. (2016) [7]. It is an unsupervised
generative clustering approach that employs the framework
of Variational Autoencoder [8], by combining a Gaussian
Mixture Model (GMM) and a deep neural network (DNN).
Specifically, a cluster is chosen by the GMM from which the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

latent representation z is sampled, and then the DNN decodes
z to an observable data x. Their approach had a clustering
accuracy of 94.46% on the MNIST dataset [6].

C. ClusterGAN

Similar to DEC [5] and VaDE [7], ClusterGAN [9] also
uses learned representation for clustering, but their approach
built on the Generative Adversarial Network (GAN) [10]
framework. That is, they incorporated a clustering-specific loss
term to the minimax objective. They had a clustering accuracy
of 95% on the MNIST dataset [6] and 63% on the Fashion-
MNIST dataset [11].

D. N2D: (not too) deep clustering

DEC [5], VaDE [7], and ClusterGAN [9] are all deep
clustering algorithms, i.e. methods that combine a deep neural
network as a data encoder fθ : X → Z, and a clustering
network, that jointly learns a clustering loss and a non-
clustering loss (e.g. minimax objective for GAN). In contrast,
McConville et al. (2019) [12] proposed N2D (Not too Deep)
clustering, wherein they performed manifold learning on the
latent code representation from an autoencoder, and used the
learned manifold for clustering. They found that using UMAP
in their framework achieves the best clustering-friendly man-
ifold of the latent code representation. Using this approach,
they had a clustering accuracy of 94.8% on the MNIST dataset
[6] and 67.2% on the Fashion-MNIST dataset [11].

Similar to N2D [12], we propose a relatively simpler
approach compared to deep clustering algorithms. But we also
use an autoencoder to learn the latent code representation of a
data, then use the said representation for clustering. We draw
our difference on how to learn a more clustering-friendly latent
code representation.

Instead of learning such a representation by using a man-
ifold learning technique such as Isomap [13], t-SNE [14], or
UMAP [15], we regularize the autoencoder reconstruction loss
with the soft nearest neighbor loss [16], [17]. The said loss
function measures the lack of separation of class (or structural,
for unsupervised tasks) manifolds in representation space–in
other words, the entanglement of data points from different
classes or structures.

We focus on minimizing the entanglement of class man-
ifolds in a latent code representation to derive a more
clustering-friendly representation.

Our contributions are as follows:

1) We expand the soft nearest neighbor loss by introducing
an annealing temperature factor, and we use it to learn
a latent code representation that is primed for clustering
(Section II).

2) We present comparatively strong clustering results in
terms of clustering accuracy, normalized mutual infor-
mation, and adjusted Rand index (Section III).

3) A simple yet effective way of clustering on (disentan-
gled) latent code representation (Section III).

II. LEARNING DISENTANGLED REPRESENTATIONS

We consider the problem of clustering a set of N points
{xi ∈ X}Ni=1 into k clusters, each represented by a centroid
µj∈1,...,k. Instead of directly clustering the original features
X , we transform the data with a non-linear mapping Z =
enc(X), where Z is the latent code representation. But to learn
a more clustering-friendly representation, we propose to learn
to disentangle them, i.e. isolate class- or structure-similar data
points, which implicitly maximizes the inter-cluster variance.

A. Autoencoder
An autoencoder is a neural network that aims to find the

function mapping the features x to itself through the use of
an encoder function h = enc(x) that learns the latent code
representation of the features, and a decoder function that
reconstructs the features from the latent code representation
r = dec(h). To learn the reconstruction task, it minimizes
a loss function L(x, dec(enc(x))), where L is a function
penalizing the decoder output dec(enc(x)) for being dissimilar
from x. Typically, this reconstruction loss is the Mean Squared
Error (MSE) 1

n

∑n
i=1 ‖dec(enc(xi))− xi‖22. Then, similar to

other neural networks, it is usually trained with a gradient-
based method aided with backpropagation of errors.

The reconstruction task of an autoencoder has a by-product
of learning good internal representations, and so, we take
advantage of this for clustering, particularly, the latent code
representation z = enc(x) – thus drawing our similarity with
N2D [12]. For our experiments, we used the binary cross
entropy (Eq. 1) as the reconstruction loss.

`rec(x, r) =
1

n

n∑
i=1

−xi log(ri) + (1− xi) log(1− ri) (1)

We used this in lieu of MSE since our features X were
normalized to values [0, 1] ∈ R.

B. Soft Nearest Neighbors Loss
In our context, we define entanglement as how close pairs

of representations from the same class or structure are, relative
to pairs of representations from different classes or structures.
Frosst et al. (2019) [17] used the same term in the same
context. A low entanglement implies that representations from
the same class or structure are closer than they are to rep-
resentations from different classes or structures. To measure
the entanglement of representations, Frosst et al. (2019) [17]
expanded the non-linear neighborhood component analysis
(NCA) [16] objective by introducing the temperature factor
T , and called this modified objective the soft nearest neighbor
loss.

They defined the soft nearest neighbor loss as the non-linear
NCA at temperature T , for a batch of b samples (x, y),

`sn(x, y, T) = −
1

b

∑
i∈1...b

log

∑
j∈1...b
j 6=i
yi=yj

e−
‖xi−xj‖

2

T

∑
k∈1...b
k 6=i

e−
‖xi−xk‖2

T

(2)

where x may be the raw input features or the learned
representations in the hidden layers of a neural network.
We may describe soft nearest neighbor loss as the negative
log probability of sampling a neighboring point j from the
same class as i in a batch b, similar to the probabilistic
sampling by Goldberger et al. (2005) [18]. A low value of
soft nearest neighbor loss is tantamount to a low entanglement
(high disentanglement). In our experiments, we used cosine
similarity instead of Euclidean distance.

1) Temperature: Frosst et al. (2019) [17] described the tem-
perature factor T as a way to control the relative importance
given to the distances between pairs of points, i.e. at low
temperatures, the loss is dominated by small distances while
the actual distances between widely separated representations
become less relevant. Conversely, at high temperatures, the
distances between widely separated points dominate the loss.

2) Annealing Temperature: We build on this idea of the
temperature influencing the importance of distances between
pairs of points, and extend the soft nearest neighbor loss by
introducing an annealing temperature (Eq. 3) instead of a fixed
one,

T =
1

(η + i)γ
(3)

where i is the current training epoch, and we set η = 1 and
γ = 0.55 for our experiments, similar to Neelakantan et al.
(2015) [19]. We show a disentangled latent code representation
learned with the soft nearest neighbor loss, both with fixed
temperature and with annealing temperature, in Figure 1. In
both cases, as we minimize the soft nearest neighbor loss, the
latent code representation becomes more clustering-friendly.
However, with annealing temperature, we gain a lower entan-
glement at an earlier training epoch, thus the disentanglement
of representations starts earlier than with a fixed temperature.

Fig. 1. Comparing the soft nearest neighbor loss with annealing temperature
and with fixed temperature. We sampled and randomly labelled 300 data points
from a Gaussian distribution, and ran gradient descent on them with soft
nearest neighbor loss. The figure at the left shows the initial condition of
the labelled points. We can see the separation of clusters in the latent code
from epoch 20 to epoch 50, rendering the classes more isolated. We present
disentangled representations on benchmark datasets later in the paper. This
figure is best viewed in color.

We also used the lowest soft nearest neighbor loss among
the hidden layers of our autoencoder:

`′sn = argmin `sn(x, y, T) (4)

Using the argmin configuration, we achieved a more stable
computation of the soft nearest neighbor loss during training.

Now that we have defined our contribution, we lay down the
objective function used by our autoencoder to learn the disen-
tangled representations for clustering. We define a composite
loss (Eq. 5) that consists of the autoencoder reconstruction
loss `rec, and the soft nearest neighbor loss `sn, with an
α parameter which directly influences the disentanglement
computation – we set α = 100. Note that our goal is not
necessarily to learn a good reconstruction of the input data,
but to learn a good disentangled representation that we can
use to improve clustering performance.

L(f, x, y) = `rec(x, r) + α ·
∑
i∈k

`sn
(
f i(x), y

)
(5)

Another contribution of this work is the simplicity of
our proposed method. So, unlike DEC [5], VaDE [7], and
ClusterGAN [9] which uses an auxiliary clustering network,
we use a simple k-Means clustering [20] on the disentangled
latent code representations.

Thus far, we have discussed our proposed method of
disentangling learned representations to improve clustering
performance. However, autoencoding and clustering are both
unsupervised learning tasks, while we are proposing to use the
soft nearest neighbor loss, a loss function that uses labels to
illuminate the class similarity structure of internal represen-
tations learned by a neural network. With this in mind, we
formulated two different soft nearest neighbor loss functions:
(1) supervised, and (2) unsupervised. In the unsupervised
setting, we simply perform the same probabilistic sampling
of a neighboring point j to i, but we do not constrain them to
come from the same class.

To simulate the lack of labelled data, we used a small
labelled subset of the benchmark datasets for the supervised
configuration of the soft nearest neighbor loss. The different
soft nearest neighbor loss configurations we used in our
experiments are listed in Table I.

TABLE I
CONFIGURATIONS OF AUTOENCODER (AE) TRAINED WITH SOFT

NEAREST NEIGHBOR LOSS (SNNL)

Shorthand Full SNNL-trained Autoencoder Configuration

SNNL-1 Supervised SNNL-trained AE w/ fixed T
SNNL-2 Unsupervised SNNL-trained AE w/ fixed T
SNNL-3 Supervised SNNL-trained AE w/ argmin and fixed T
SNNL-4 Unsupervised SNNL-trained AE w/ argmin and fixed T
SNNL-5 Supervised SNNL-trained AE w/ annealing T
SNNL-6 Unsupervised SNNL-trained AE w/ annealing T
SNNL-7 Supervised SNNL-trained AE w/ argmin and annealing T
SNNL-8 Unsupervised SNNL-trained AE w/ argmin and annealing T

We use Table I as a lookup table of shorthand to save
space on Tables III, IV, and V. Model configurations labelled
as SNNL 1–4 use a fixed temperature, while those that are
labelled as SNNL 5–8 use our annealing temperature (Eq. 3).
Moreover, model configurations with even numbers use the
unsupervised soft nearest neighbor loss, while the ones with
odd numbers use the supervised version.

Finally, we summarize the details of our proposed method
as follows,

1) Train an autoencoder with the composite loss (Eq. 5)
using a gradient-based method with backpropagation.

2) Use the disentangled latent code representation z =
enc(x) of the autoencoder for k-Means clustering.

III. CLUSTERING ON DISENTANGLED REPRESENTATIONS

To demonstrate the effectiveness of our approach, we con-
ducted experiments on benchmark datasets, and lay down the
clustering performance of the related models on the same
benchmark datasets we used.

A. Autoencoder Model

We used a fully connected network with d − 500 − 500 −
2000 − c − 2000 − 500 − 500 − d̂ units, where d and d̂ (s.t.
d = d̂) refer to the dimensionality of the features, and c
refers to the dimensionality of the latent code representation
– similar to the one used by Salakhutdinov and Hinton (2007)
[16]. The c-latent code layer and d̂-reconstruction layer used
logistic function while the remaining hidden layers used ReLU
function [22]. All hidden layers were initialized with He
initialization [21]. We set c = 70 across all datasets and
models for a more fair comparison. Finally, we trained our
model using Adam [23] with a learning rate of 1× 10−3 for
50 epochs on all our datasets.

B. k-Means Clustering

We ran k-Means clustering, with centroids initialized using
k-means++ [24], on the disentangled latent code representa-
tion from our autoencoder for nine times. The first run started
with 10 iterations, with each run incremented by 10, i.e. the
first clustering ran for 10 iterations, while the ninth ran for
90 iterations. We recorded the clustering performance on the
ninth run for each model on each dataset.

C. Evaluation Metrics

For all the models, we used the number of ground-truth
categories in each dataset as the number of clusters. We used
six different metrics to evaluate the clustering performance
of our baseline and experimental models. For the first three
metrics, the values lie in the interval [0, 1], where values closer
to 1 correspond to a better clustering performance. The values
for the fourth metric lie in the interval [−1, 1], where values
near 1 are better while values near -1 are worse. The last two
metrics are unbounded, but only the first of which implies a
better clustering performance when its values are higher, while
the last metric requires a lower value for better performance.

1) Clustering Accuracy: In clustering, accuracy (ACC) is
defined as the best match between the ground-truth labels and
the predicted clusters [25]. Using the ground-truth labels as
pseudo-cluster labels is known as cluster assumption in the
semi-supervised learning literature [26].

ACC = max
m

n∑
i=1

1{li = m (ci)}

n
, (6)

where li is the ground-truth label, ci is the cluster prediction,
and m ranges over all possible one-to-one mappings between
clusters and labels.

2) Normalized Mutual Information: The Normalized Mu-
tual Information (NMI) is the normalization of mutual in-
formation (MI) score to have its value within [0, 1] ∈ R,
where 0 denotes no mutual information while 1 denotes perfect
correlation. It is formally defined as follows,

NMI =
2I(y, c)

[H(y) +H(c)]
(7)

where y is the ground-truth label, c is the cluster prediction,
H is the entropy, and I is the mutual information between the
ground-truth labels and the cluster predictions.

3) Adjusted Rand Index: The Adjusted Rand Index (ARI)
[27] is the Rand Index (RI) adjusted for chance. RI is the
similarity between two clusterings by considering all pairs of
points and counting pairs assigned to the same or different
clusters in the predicted and true clusterings (see Eq. 8).

RI =
TP + TN

TP + FP + FN + TN
(8)

where TP is the true positive, TN is the true negative, FP is
the false positive, and FN is the false negative. ARI is then
computed from RI by using Eq. 9,

ARI =
RI − E[RI]

max(RI)− E[RI]
(9)

ARI values lie within [0, 1] ∈ R, where 0 denotes random
labelling independently of the number of clusters, while 1
denotes the clusterings are identical up to a permutation.

4) Silhouette Score: The Silhouette Score (SIL) [28] mea-
sures the similarity of examples to their own cluster compared
to other clusters, and it is computed by using Eq. 10,

SIL =
b(i)− a(i)

max [a(i), b(i)]
(10)

where a(i) is the distance between point i and all other points
in its cluster, and can be computed by using Eq. 11,

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j) (11)

where Ci is the predicted cluster for point i, and d(i, j) is the
distance between points i and j.

Then, b(i) is the distance between point i and all other
points in the next nearest cluster, and can be computed by
using Eq. 12,

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j) (12)

Any distance metric may be used, but we used the Euclidean
distance metric in our evaluation.

5) Calinski-Harabasz Score: The Calinski-Harabasz score
[29] (CHS) is defined as the ratio between within-cluster dis-
persion and between-cluster dispersion, and it is computed by
using Eq. 13. A higher CHS implies better cluster separation.

CHS =
Tr(Bk)

Tr(Wk)
× N − k

k − 1
(13)

where Bk is the between-cluster dispersion matrix given by
Eq. 14,

Bk =
∑
q

nq(cq − c)(cq − c)T (14)

and Wk is the within-cluster dispersion given by Eq. 15,

Wk =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T (15)

where N is the number of points in a data, Cq is the set of
points in cluster q, cq is the center of cluster q, c is the center
of C, and nq is the number of points in cluster q.

6) Davies-Bouldin Index: The Davies-Bouldin Index (DBI)
is defined as the ratio of within-cluster distances to between-
cluster distances [30], [31]. A lower DBI implies better cluster
separation. It is computed by using Eq. 16,

DBI =
1

k

k∑
i=1

max
i 6=j

Rj (16)

where R is the average similarity among clusters given by
Eq. 17.

Rij =
si + sj
dij

(17)

where si is the cluster diameter which is the average dis-
tance between each point in cluster i and the cluster centroid,
and dij is the distance between centroids i and j.

D. Datasets Description

We evaluate and compare our baseline and experimental
methods on three image datasets. We list the dataset statistics
in Table II.

TABLE II
DATASETS STATISTICS.

Dataset # Samples Input Dimension # Clusters
MNIST 70,000 784 10

Fashion-MNIST 70,000 784 10
EMNIST Balanced 131,600 784 47

1) MNIST: The MNIST handwritten digit classification
dataset [6] consists of 60,000 training examples and
10,000 test examples – all in grayscale, and of size 28 by
28 pixels. We reshaped each image to a 784-dimensional
vector.

2) Fashion-MNIST: The Fashion-MNIST [11] is a more
challenging alternative to the MNIST dataset, which
consists of 60,000 training examples and 10,000 test
examples – also all in grayscale, and of size 28 by 28

pixels. We reshaped each image to a 784-dimensional
vector.

3) EMNIST Balanced: The EMNIST Balanced is a subset
of the EMNIST handwritten characters classification
dataset [32], that has a 47 balanced classes of handwrit-
ten digits and letters. It has 112,800 training examples
and 18,800 test examples – also all in grayscale, and
of size 28 by 28 pixels. We reshaped each image to a
784-dimensional vector.

For the supervised configuration of the soft nearest neighbor
loss, we simulate the lack of labelled data by randomly picking
10,000 labelled training examples each for the MNIST and
the Fashion-MNIST datasets, and randomly picking 20,000
labelled training examples for the EMNIST balanced dataset,
since it has to be clustered in 47 groups. Despite using a small
subset of labelled training examples, we still used the full test
sets for the clustering task.

On the other hand, we used the full training sets for k-
Means clustering on the original feature representation, and for
the unsupervised learning models (i.e. baseline autoencoder,
SNNL-{2, 4, 6, 8}), and we evaluated them on the full test
sets.

E. Clustering Performance

We evaluate the performance of our experimental method in
its different configurations. For our baseline models, we used
k-Means clustering on (1) the original feature representation,
encoded using principal components analysis (PCA) to 70
dimensions in order to avoid the “curse of dimensionality”
[33], and (2) on the latent code representation from an au-
toencoder trained with reconstruction loss (Eq. 1) only. Then,
we retrieved the reported clustering performance of DEC [5],
VaDE [7], ClusterGAN [9], and N2D [12] from literature as
additional baseline results. We report the average clustering
performance across four runs of each model, as well as their
best clustering performance on each of the benchmark dataset.

We present empirical evidence that consistently shows our
method significantly outperforms all our baseline models on
each of the benchmark dataset we used. Specifically, our
method configurations SNNL-5 and SNNL-7.

1) MNIST: We had the highest average clustering accuracy
of 95.5% on the MNIST dataset using SNNL-7 configuration,
and the highest best clustering accuracy of 96.2% using
SNNL-5 configuration. Meanwhile, for each of our related
models, only their best clustering accuracy was reported. Their
results are as follows: DEC had 84.3%, VaDE had 94.5%,
N2D had 94.8%, and ClusterGAN had 95%. If we follow the
related works to report the best performance, we outperformed
our closest baseline, ClusterGAN, with 1.2% in clustering
accuracy. For the full results of clustering performance on the
MNIST dataset, we refer the reader to Table III.

2) Fashion-MNIST: We had the highest clustering accuracy
of 84.4% (average) and 85.6% (best) on the Fashion-MNIST
dataset using SNNL-5. Meanwhile, our related models had the
following results: ClusterGAN had 63% and N2D had 67.2%.
However, we should note here that N2D was trained on the

TABLE III
CLUSTERING PERFORMANCE ON THE MNIST DATASET.

Method ACC NMI ARI SIL CHS DBI
Average Best Average Best Average Best Average Best Average Best Average Best

Original 0.525 0.547 0.497 0.499 0.367 0.367 0.078 0.078 469.231 471.494 2.605 2.592
SNNL-2 0.549 0.552 0.512 0.52 0.387 0.393 0.086 0.089 443.535 459.947 2.631 2.619
SNNL-4 0.562 0.569 0.516 0.521 0.4 0.409 0.086 0.089 442.462 458.644 2.640 2.583

Baseline AE 0.56 0.576 0.518 0.528 0.399 0.419 0.086 0.088 445.146 457.095 2.638 2.613
SNNL-6 0.562 0.58 0.512 0.53 0.4 0.429 0.084 0.088 437.957 449.735 2.647 2.616
SNNL-8 0.575 0.589 0.528 0.543 0.413 0.433 0.085 0.088 437.458 447.399 2.657 2.636

DEC [5]* – 0.843 – – – – – – – – – –
VaDE [7]* – 0.945 – – – – – – – – – –
N2D [12]* – 0.948 – 0.882 – – – – – – – –

ClusterGAN [9]* – 0.95 – 0.89 – 0.89 – – – – – –
SNNL-1 0.901 0.952 0.862 0.881 0.849 0.898 0.957 0.96 162605.531 214754.189 0.245 0.092
SNNL-3 0.904 0.957 0.860 0.896 0.821 0.908 0.7 0.775 14874.154 24043.605 0.591 0.484
SNNL-7 0.953 0.962 0.891 0.903 0.897 0.918 0.742 0.893 24713.490 44316.457 0.473 0.204
SNNL-5 0.955 0.958 0.890 0.895 0.903 0.911 0.874 0.887 33782.991 39916.318 0.239 0.186

TABLE IV
CLUSTERING PERFORMANCE ON THE FASHION-MNIST DATASET.

Method ACC NMI ARI SIL CHS DBI
Average Best Average Best Average Best Average Best Average Best Average Best

SNNL-8 0.52 0.548 0.561 0.569 0.385 0.395 0.120 0.125 793.908 824.502 2.143 2.103
SNNL-2 0.535 0.553 0.568 0.576 0.397 0.406 0.118 0.123 798.417 833.797 2.141 2.088

Baseline AE 0.540 0.557 0.567 0.581 0.391 0.413 0.119 0.123 806.924 830.819 2.119 2.098
Original 0.518 0.559 0.518 0.531 0.366 0.389 0.186 0.191 1662.815 1673.995 1.61 1.549
SNNL-6 0.553 0.591 0.569 0.579 0.401 0.434 0.116 0.12 796.24 808.859 2.181 2.119
SNNL-4 0.555 0.595 0.574 0.583 0.408 0.436 0.119 0.122 790.444 803.54 2.167 2.11

ClusterGAN [9]* – 0.63 – 0.64 – 0.50 – – – – – –
N2D [12]* – 0.672 – 0.684 – – – – – – – –

SNNL-3 0.672 0.693 0.682 0.691 0.527 0.535 0.575 0.59 10031.276 11013.237 0.666 0.626
SNNL-1 0.741 0.748 0.756 0.763 0.619 0.633 0.963 0.967 212599.963 272354.021 0.331 0.225
SNNL-7 0.832 0.848 0.753 0.765 0.696 0.711 0.665 0.722 10638.715 16001.514 0.692 0.599
SNNL-5 0.844 0.856 0.762 0.767 0.714 0.729 0.672 0.705 9646.826 10823.988 0.628 0.546

entire Fashion-MNIST dataset, i.e. both training and test sets.
For the full results of clustering performance on the Fashion-
MNIST dataset, we refer the reader to Table IV.

3) EMNIST Balanced: We had the highest clustering ac-
curacy of 78.5% (average) and 79.2% (best) on the EM-
NIST Balanced dataset using SNNL-5 configuration, while
our baseline autoencoder had 35.6% (average) and 36.1%
(best). Neither the deep clustering algorithms nor N2D used
the EMNIST Balanced dataset (or any other EMNIST subsets).
For the full results of clustering performance on the EMNIST
Balanced dataset, we refer the reader to Table V.

The full results in Table III, IV, and V not only show that
our experimental methods outperformed our baseline methods,
but also show that the supervised configurations (SNNL-{3,
5, 7}) of the soft nearest neighbor loss performed better
than the unsupervised ones (SNNL-{2, 4, 6, 8}), with the
exception of SNNL-1 on the EMNIST Balanced dataset. This
emphasizes the requisite of labels for the soft nearest neighbor
loss to illuminate the neighborhood structure of a dataset, thus
learning a more clustering-friendly feature representation.

Furthermore, SNNL-{3, 5, 7} also outperformed our base-
line methods in terms of NMI and ARI. Intuitively, having
high NMI and ARI scores for clustering implies that there is
a high number of similar data points in each cluster. In other

words, similar data points have been correctly assigned to their
clusters, which in our case was based on the pseudo-cluster
labels we used. We can also see that SNNL-{1, 3, 5, 7} had
the best scores in terms of SIL, CHS, and DBI. Having a
high SIL score implies that the points in a cluster are more
similar among themselves than they are to the points from a
different cluster. Then, both CHS and DBI measure cluster
separation, i.e. CHS defines better separated clusters through
variance ratios, while DBI defines better separated clusters
through distances among clusters.

Our results support that our method and its variants were
able to learn a more clustering-friendly feature representation
by having better defined clusters and by having correctly
clustered data points, which we visually inspect in the next
subsection.

F. Visualizing Disentangled Latent Representation

We show the resulting disentangled latent representation for
the test set of MNIST, Fashion-MNIST, and EMNIST Bal-
anced datasets in Figure 2. These latent code representations
were obtained after training an autoencoder with SNNL-7
for 50 epochs on a subset of 10,000 training examples each
for MNIST and Fashion-MNIST datasets, and on a subset
of 20,000 training examples of EMNIST Balanced dataset.
However, since the EMNIST Balanced dataset has 47 clusters,

TABLE V
CLUSTERING PERFORMANCE ON THE EMNIST-BALANCED DATASET.

Method ACC NMI ARI SIL CHS DBI
Average Best Average Best Average Best Average Best Average Best Average Best

Original 0.321 0.33 0.418 0.42 0.173 0.176 0.051 0.052 237.078 237.413 2.659 2.636
SNNL-1 0.319 0.349 0.662 0.674 0.335 0.356 0.897 0.902 71353.661 78749.196 1.079 1.069
SNNL-6 0.348 0.352 0.441 0.444 0.193 0.196 0.041 0.041 222.108 225.193 2.712 2.695
SNNL-2 0.343 0.353 0.439 0.442 0.191 0.197 0.037 0.04 223.75 224.457 2.698 2.658
SNNL-4 0.344 0.353 0.438 0.445 0.190 0.196 0.038 0.041 225.839 227.568 2.674 2.641
SNNL-8 0.35 0.356 0.442 0.444 0.195 0.197 0.04 0.042 223.449 225.474 2.692 2.669

Baseline AE 0.356 0.361 0.446 0.449 0.198 0.201 0.042 0.044 224.537 228.909 2.709 2.687
SNNL-3 0.396 0.44 0.667 0.699 0.391 0.438 0.6 0.737 11138.224 16324.421 1.378 1.345
SNNL-7 0.701 0.743 0.753 0.775 0.529 0.634 0.580 0.761 4832.462 7098.482 0.852 0.647
SNNL-5 0.785 0.792 0.776 0.783 0.641 0.655 0.677 0.687 4697.866 5025.238 0.646 0.607

Fig. 2. Three-dimensional visualization comparing the original representation
and the disentangled latent representation of the three datasets. To achieve this
visualization, the representations were encoded using t-SNE with perplexity
= 50 and learning rate = 10, optimized for 5,000 iterations, with the same
random seed set for all computations. However, for clustering, we used higher
dimensionality to achieve better clustering performance. This figure is best
viewed in color.

we only visualized a randomly chosen 10 clusters for easier
and cleaner visualization. We can see in the aforementioned
figure that the latent code representation for each dataset in-
deed became more clustering-friendly by having well-defined
clusters (indicated by the cluster dispersion) and correct cluster
assignments (indicated by the cluster colors).

G. Clustering on Fewer Labelled Examples

In Figure 3, we show that even with fewer labelled training
examples, the clustering accuracy on disentangled latent code
representation is still better than on the original feature repre-
sentation and on the latent code representation from a baseline
autoencoder. We trained an autoencoder with SNNL-1 and
SNNL-5 configurations on randomly picked 1,000 examples,
3,000 examples, and 6,000 examples from the MNIST and
Fashion-MNIST datasets, and treated them as labelled data.
Then we evaluated on the full test sets. In contrast, we used
the full MNIST and Fashion-MNIST sets for both the original
feature representation and the latent code representation from
our baseline autoencoder.

On MNIST, our best model configuration was SNNL-5 that
had a clustering accuracy of 90.85%, 92.95%, and 94.78%
when trained on 1,000 examples, 3,000 examples, and 6,000

Fig. 3. Test clustering accuracy on the MNIST and Fashion-MNIST test sets
when small subsets of labelled data are used for training. Both the original
representation and the baseline autoencoder do not take advantage of the
labelled dataset.

Fig. 4. Normalized mutual information (NMI) on the MNIST and Fashion-
MNIST test sets when small subsets of labelled data are used for training.
Both the original representation and the baseline autoencoder do not take
advantage of the labelled dataset.

examples respectively. Using the same model configuration
on Fashion-MNIST, we had a clustering accuracy of 79.63%,
82.35%, and 83.78% when trained on 1,000 examples, 3,000
examples, and 6,000 examples respectively.

The results in Figure 3 are average clustering accuracy
across four runs of each model on the small labelled subsets of
MNIST and Fashion-MNIST datasets. To support these results,
we can observe the same trend of clustering performance in
terms of NMI in Figure 4. With this, we draw a parallel with

the non-linear NCA [16] performance, where they employed
unsupervised pre-training for kNN classification, and found
an even better test error rate when they fine-tuned on a small
fraction of labelled MNIST dataset – a test error rate of 1%.

We argue that this robustness of clustering performance,
despite smaller labelled subsets were used for SNNL-trained
autoencoders, is due to the soft nearest neighbor loss enabling
the learning of a latent code representation that takes into
account the distances among pairs of points from the same
class or structure relative to points from different classes or
structures. In other words, it brings out the neighborhood
structure of a dataset.

Finally, we were able to further improve the clustering
performance on disentangled latent code representation with
our annealing temperature factor. The intuition as to how this
annealing factor improves the soft nearest neighbor loss builds
on the results in Figure 1, and may be described as follows: as
the training progresses, the data points of similar class or struc-
ture become closer. Hence, there are fewer widely separated
points of the same class or structure as training progresses.
Consequently, this renders the use of high temperatures less
relevant over time, since the class- or structure-similar points
are already becoming entangled – which in turn, makes the
latent code representation disentangled.

IV. CONCLUSION

Compared to deep clustering methods [5], [7], [9], we
employed a simpler approach to cluster the latent code rep-
resentation from an autoencoder. We used a composite loss
of the autoencoder reconstruction loss and the soft nearest
neighbor loss to learn a more clustering-friendly latent code
representation from an autoencoder, thereby improving the k-
Means clustering performance on our datasets. We expanded
the soft nearest neighbor loss by introducing an annealing
temperature factor, which led to an even better disentan-
glement and k-Means clustering performance. We posit that
our annealing mechanism helps by adapting the temperature
needed throughout a training. Using our approach, we had a
clustering accuracy of 95.5% (96.2% on best run), 84.4%
(85.6% on best run), and 78.5% (79.2% on best run) on
the MNIST, Fashion-MNIST, and EMNIST Balanced datasets
respectively, outperforming all our baseline models.

REFERENCES

[1] Krizhevsky, Alex, and Geoffrey Hinton. “Learning multiple layers of
features from tiny images.” (2009): 7.

[2] He, Kaiming, et al. “Deep residual learning for image recognition.”
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016.

[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet
classification with deep convolutional neural networks.” Advances in
neural information processing systems. 2012.

[4] Simonyan, Karen, and Andrew Zisserman. “Very deep convolu-
tional networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556 (2014).

[5] Xie, Junyuan, Ross Girshick, and Ali Farhadi. “Unsupervised deep
embedding for clustering analysis.” International conference on machine
learning. 2016.

[6] LeCun, Yann, et al. “Gradient-based learning applied to document
recognition.” Proceedings of the IEEE 86.11 (1998): 2278-2324.

[7] Jiang, Zhuxi, et al. “Variational deep embedding: An unsupervised and
generative approach to clustering.” arXiv preprint arXiv:1611.05148
(2016).

[8] Kingma, Diederik P., and Max Welling. “Auto-encoding variational
bayes.” arXiv preprint arXiv:1312.6114 (2013).

[9] Mukherjee, Sudipto, et al. “Clustergan: Latent space clustering in
generative adversarial networks.” Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 33. 2019.

[10] Goodfellow, Ian, et al. “Generative adversarial nets.” Advances in neural
information processing systems. 2014.

[11] Xiao, Han, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.” arXiv
preprint arXiv:1708.07747 (2017).

[12] McConville, Ryan, et al. “N2d: (not too) deep clustering via clustering
the local manifold of an autoencoded embedding.” arXiv preprint
arXiv:1908.05968 (2019).

[13] Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. “A global
geometric framework for nonlinear dimensionality reduction.” science
290.5500 (2000): 2319-2323.

[14] Maaten, Laurens van der, and Geoffrey Hinton. “Visualizing data using
t-SNE.” Journal of machine learning research 9. Nov (2008): 2579-2605.

[15] McInnes, Leland, John Healy, and James Melville. “Umap: Uniform
manifold approximation and projection for dimension reduction.” arXiv
preprint arXiv:1802.03426 (2018).

[16] Salakhutdinov, Ruslan, and Geoff Hinton. “Learning a nonlinear embed-
ding by preserving class neighbourhood structure.” Artificial Intelligence
and Statistics. 2007.

[17] Frosst, Nicholas, Nicolas Papernot, and Geoffrey Hinton. “Analyzing
and improving representations with the soft nearest neighbor loss.” arXiv
preprint arXiv:1902.01889 (2019).

[18] Goldberger, Jacob, et al. “Neighbourhood components analysis.” Ad-
vances in neural information processing systems. 2005.

[19] Neelakantan, Arvind, et al. “Adding gradient noise improves learning
for very deep networks.” arXiv preprint arXiv:1511.06807 (2015).

[20] Lloyd, Stuart. “Least squares quantization in PCM.” IEEE transactions
on information theory 28.2 (1982): 129-137.

[21] He, Kaiming, et al. “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification.” Proceedings of the IEEE
international conference on computer vision. 2015.

[22] Nair, Vinod, and Geoffrey E. Hinton. “Rectified linear units improve
restricted boltzmann machines.” Proceedings of the 27th international
conference on machine learning (ICML-10). 2010.

[23] Kingma, Diederik P., and Jimmy Ba. “Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980 (2014).

[24] Arthur, David, and Sergei Vassilvitskii. “k-means++: The advantages
of careful seeding.” Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007.

[25] Yang, Yi, et al. “Image clustering using local discriminant models
and global integration.” IEEE Transactions on Image Processing 19.10
(2010): 2761-2773.

[26] Chapelle, Olivier, Bernhard Scholkopf, and Alexander Zien. “Semi-
supervised learning (chapelle, o. et al., eds.; 2006)[book reviews].” IEEE
Transactions on Neural Networks 20.3 (2009): 542-542.

[27] Hubert, Lawrence, and Phipps Arabie. “Comparing partitions.” Journal
of classification 2.1 (1985): 193-218.

[28] Rousseeuw, Peter J. “Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis.” Journal of computational and applied
mathematics 20 (1987): 53-65.

[29] Calinski, Tadeusz, and Jerzy Harabasz. “A dendrite method for cluster
analysis.” Communications in Statistics-theory and Methods 3.1 (1974):
1-27.

[30] Davies, David L., and Donald W. Bouldin. “A cluster separation mea-
sure.” IEEE transactions on pattern analysis and machine intelligence 2
(1979): 224-227.

[31] Halkidi, Maria, Yannis Batistakis, and Michalis Vazirgiannis. “On clus-
tering validation techniques.” Journal of intelligent information systems
17.2-3 (2001): 107-145.

[32] Cohen, Gregory, et al. “EMNIST: Extending MNIST to handwritten let-
ters.” 2017 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2017.

[33] Bellman, Richard E. Adaptive control processes: a guided tour. Princeton
university press, 2015.

