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Abstract— Clustering based ensemble classifiers have seen a 
lot of focus recently because of their ability to effectively classify 
real-world noisy datasets. One way of incorporating clustering 
in ensembles is to utilize clustering algorithms such as k-means 
to generate a pool of data clusters. This is done to generate a 
random subspace on which base classifiers are trained, as 
opposed to bagging.  One key parameter to clustering 
algorithms is the number of clusters i.e. the number of groups 
the data should be partitioned into; this is commonly known as 
the variable 𝑲. Most of the existing approaches either determine 
the value of 𝑲  through trial and error or use some derived 
formulae-based approach. The problem firstly is that using a 
static value of 𝑲 for different datasets is not ideal and although 
a certain value may work well for one dataset it may not work 
well for others. Secondly, calculating the value of 𝑲  using a 
formulae-based approach using the raw data is not effective 
either as an unbalanced data can have a negative effect on the 
derived value. Therefore, in this paper we first segregate the 
data based on the data classes and then on each data class we 
perform a Silhouette analysis to determine the optimal number 
of clusters each data class should be separated into. The 
generated clusters which are class pure and are balanced by 
adding samples from other classes that are closest to the cluster 
centroid. In this manner we generate a random subspace of an 
augmented data that is composed of class balanced data clusters. 
On all balanced data clusters, a diverse set of base classifiers is 
trained, and an ensemble is formed. The proposed ensemble 
approach is tested on 16 benchmark UCI datasets and results 
are compared with single classifiers, as well as state-of-the-art 
ensemble classifier approaches. A set of non-parametric tests 
are also adopted to further validate the efficacy of the results.  

Keywords—clustering, ensemble classifiers, machine 
learning. 

I. INTRODUCTION

Ensemble classifier is a methodology of combining 
multiple classifiers suitably in order to surpass the 
generalization plateau of single classifiers [1]. That is why 
ensemble classifiers are also used synonymously with 
“committee of experts”. Ensemble classifiers besides being 
accurate are also robust and can classify real-world noisy 
datasets, making them vastly applicable in different areas of 
research/sciences including the financial sector, 
environmental sciences, medicine, transport, and image 
processing [2, 3]. Ensemble classifiers are robust in nature 
because they predominantly benefit from the “perturb and 
combine” strategy [4] and are able to outperform single 
classifiers because their decisions are not based on the 
performance of a single model. Additionally, single classifier 
performing well on one dataset may not perform well on 
others as stated in the “no free lunch” theorem [5].   

Ensemble classifier generation methodology can be 
divided into two parts. Firstly, a given input data is 
“perturbed” or partitioned then base classifiers are trained on 

different parts. A common methodology of perturbing input 
data is random subspace method [6, 7]. Essentially random 
subsamples of the input data are generated with repeating and 
unique records. Another name for this strategy is “bagging” 
[8], where “bags” of input data are generated and base 
classifiers are trained on different bags. The idea behind this 
is that since each base classifier is trained on a separate bag 
this provides a means of controlling the variance of different 
classifiers. We can utilize bagging to generate bags of input 
samples known as attribute bagging or bags of input features 
known as feature bagging [9]. Many ensemble strategies have 
been proposed that utilize these strategies for further details 
readers can refer to [10]. Boosting is another sub-sampling-
based ensemble strategy and many boosting-based ensemble 
classifiers have been proposed in research for further details 
readers can refer to [11-15]. Boosting works by training base 
classifiers on input data samples which were wrongly 
classified by previously trained base classifiers. Random 
Forest (RaF) is another example of an ensemble classifier that 
exploits bagging by training a multitude of Decision Trees 
(DT) on feature sub-samples of the input data [16]. RaF has 
been widely accepted as one of the most versatile and robust 
ensemble classifier that has been able to successfully classify 
noisy datasets and many variations of RaF have been proposed 
in research [17]. 

As for the second part different classifier selection 
methodologies have been incorporated to generate ensemble 
classifiers. Instead of utilizing all trained base classifiers from 
the pool a subset of base classifiers is utilized to generate an 
ensemble that can achieve the maximum generalisation 
performance. Since selecting a subset of classifiers is a 
combinatorial problem and large scale combinatorial 
problems are classified as NP-hard problems [18]. Therefore, 
researchers have proposed either rule-based classifier 
selection methodologies [19] or have utilized various 
optimization algorithms to optimize the pool of classifiers 
[20]. Ensemble classifier methodologies that exploit both the 
feature space and input sample space are classified as hybrid 
ensemble classifier approaches. These approaches exploit 
both input sample space, and feature space; and some  even 
incorporated evolutionary sample selection processes to 
optimize the input space which can maximize the 
classification accuracy of the ensemble [21-23].  

Some authors have utilized clustering as a substitute to 
bagging to generate a random subspace. Such ensemble 
classifiers are categorized as clustering-based ensembles [24-
26]. In clustering-based ensemble classifiers the input data is 
first partitioned into several sparse data clusters and a set of 
diverse base classifiers is trained on each data cluster. This 
way ensemble incorporates diversity in two folds: firstly, since 
a set of diverse base classifier is utilized which contains 
classifiers that are structurally different (for example, 
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Artificial Neural Networks (ANN), Discriminant Analysis 
(DISCR), k-Nearest Neighbour (KNN), Naïve Bayes (NB), 
Support Vector Machine (SVM), etc.) therefore, each 
classifier brings with it different learning capabilities; 
secondly since each set of diverse classifiers is trained on a 
different data cluster using which they learn different aspects 
of the input data and, therefore, are different from each other. 
Another added benefit of clustering-based ensembles is that 
since each data cluster represents a dense local region of the 
decision boundary the classifiers trained on such data clusters 
have local expertise. Essentially this process is the reverse of 
a kernel function, instead of training a complex classifier to 
learn a decision boundary in higher dimensions we can break 
a complex decision boundary into smaller simpler decision 
boundary regions which can be learned by classifiers locally. 
Due to its robustness and versatility many clustering based 
ensemble classifier approaches have been proposed in 
research.  

Although, clustering has been successfully employed by 
ensemble classifiers to either generate a random subspace or 
to group classifiers together from the pool and have proven to 
be very applicable with noisy datasets; there are some lurking 
limitations in clustering-based ensembles that need further 
consideration. Firstly, due to randomness and noise in the 
datasets the data clusters generated might not guarantee a 
noise free data cluster; secondly using a general rule of fixed 
upper bounds of clustering for different dataset is not an ideal 
methodology because datasets have different intrinsic and 
extrinsic characteristics and one rule which may work in one 
instance may not work well in every other instance; thirdly, 
due to class imbalances in the datasets the generated data 
clusters will also be class imbalanced and any base classifier 
trained on such a data cluster will eventually be biased. 
Therefore, in this research we propose a novel ensemble 
classifier approach that generates a random subspace by 
clustering the input data based on their classes. For example, 
if there are two classes in the input data {1, 2} (malignant or 
benign as in case of Wisconsin Breast Cancer dataset) then 
there will be two subsets of feature vectors 𝑥  and 𝑥 , with 𝑥  
being the feature vector belonging to class 1, and 𝑥  being the 
feature vector belonging to class 2. Each vector is then 
clustered to generate a random subspace, but instead of 
generating data clusters incrementally we conduct a Silhouette 
[27] analysis to identify the optimal number of clusters. Very
briefly Silhouette analysis determines how well a data point is
associated to its cluster. For further details readers can refer to
the respective paper. This is done so that only optimal number
of data clusters are generated of each class instead of using a
fixed upper bound that is constant for different datasets.
Additionally, data is clustered based on classes to avoid class
imbalances lurking into data clusters as each data cluster will
now be balanced by adding samples from other classes that
are closest to its centroid. This ensures that class imbalances
are accounted for and generated data clusters are balanced and
suitable for the training of base classifiers. The novel
contributions of this paper are:

 A methodology of determining the optimum number of
data clusters for each data class.

 A methodology of generating balanced data clusters.
 A methodology of generating an ensemble classifier

using all class balanced data clusters.

The rest of the paper is organized as follows: Section II 
discusses the proposed methodology, Section III entails the 

experiments and the results, and Section IV provides 
conclusion and gives future directions.  

II. PROPOSED METHODOLOGY

A. Prilimanaries

To generate data clusters  from the input data consider a
data set 𝑋 = {(x , y ), (x , y ), … , (x , y )}  having feature 
vectors x ∈ ℝ  each associated with a class label y ∈ 1, . . , 𝑉 
where 𝑉  is the number of discrete class labels in a dataset. 
Then clustering is achieved by minimizing the squared 
Euclidean distance from a given centroid 𝑐 given as: 

𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ 𝑒𝑢𝑐 𝑥 , 𝑐∀ ∈   (1) 

where 𝑥 is a feature vector, 𝑘 is the number of data clusters 
and 𝑒𝑢𝑐(𝑥, 𝑐) denotes the squared Euclidean distance given 
as: 

𝑒𝑢𝑐(𝑥, 𝑐) = ∑ (𝑥 − 𝑐 )  (2) 

To validate or assess the quality of generated data clusters, 
also to identify how many data clusters 𝑘 should be generated 
for each data class. Firstly, the dataset is partitioned into its 
various classes as 𝑋 , 𝑋 , … , 𝑋  ∈ 𝑋 where 𝑋 ⊆ 𝑋, then the 
following holds true 𝑋 ∪ 𝑋 , … ∪ 𝑋 = 𝑋  and 𝑋 ∩ 𝑋 =
∅. This is done by performing a Silhouette analysis of each 
subset calculated as: 

𝑠(𝑖) =  

⎩
⎪
⎨

⎪
⎧1 −

( )

( )
, 𝑖𝑓𝑎(𝑖) < 𝑏(𝑖)

0,      𝑖𝑓(𝑎𝑖) = 𝑏(𝑖)
( )

( )
− 1, 𝑖𝑓𝑎(𝑖) > 𝑏(𝑖)

  (3) 

where  𝑎(𝑖) is the similarity of a data point i, and b(i) is the 
dissimilarity of a data point i in a cluster C. For further details 
please refer to [33]. 

The Silhouette score ranges between {-1, 1} with a small 
value of 𝑠 meaning that a datapoint 𝑖 is well matched to its 
given cluster and a larger value meaning otherwise. By 
conducting a Silhouette analysis of each data subset 𝑋  we 
identify the optimum number of data clusters that must be 
generated to partition the data subset efficiently.  

B. Ensemble generation framework

The proposed ensemble framework starts off with a
training input data. The input data is then partitioned into its 
respective classes and optimal number of data clusters are 
generated of each class after conducting a Silhouette analysis. 
The benefit of clustering here is in three folds: firstly, by 
clustering the input data we are breaking a rather complex 
decision boundary into its smaller constituents which is 
essentially the opposite of what a kernel function does. This 
enables us to train simple classifiers with local expertise by 
training them on data clusters which represents dense local 
regions. Secondly, by clustering dataset based on the number 
of classes we are identifying how many variations exists 
between data patterns of each class; put simply, 
metaphorically speaking if we have a dataset of two classes 
cats and dogs then we are identifying how many different 
types of cats and dogs exist and which type of dogs is like cats. 
Lastly by clustering we generate a rich and diverse input space 



that not only enables us to train a multitude of base classifiers 
on a single input data but also provides a mean of managing 
the bias and variance of classifiers in an ensemble. A flow 
chart of the proposed ensemble classifier generation 
framework is given in figure 1. 

Figure 1: Proposed ensemble classifier generation framework 

The generated data clusters of each data class are first 
balanced before they are utilized for training. The balancing 
process ensures that any class imbalances that exists in the 
input data to not lurk into the generated clusters. The 
balancing of generated data clusters is done by adding data 

samples from other input classes that are closest to the cluster 
centroid. For example, if a data cluster 𝐶 having a centroid 𝑐 
belonging to input data class 𝑣 has 𝑛 number of samples in it 
then it is balanced by adding 𝑛 samples of each class in 𝑉 that 
is not 𝑣. This is done by calculating the Euclidean distance of 
each sample from the cluster centroid 𝑐 that does not belong 
to class 𝑣 as: 

𝑑𝑖𝑠𝑡 =  𝑥 − 𝑐    ∀  𝑖 ∈ 𝑉 𝑎𝑛𝑑 𝑖 ∉ 𝑣  (4) 

The Euclidean distances are stored in a vector 𝑑𝑖𝑠𝑡 and the 
vector is sorted in ascending order. The first 𝑛 samples from 
the vector 𝑑𝑖𝑠𝑡  are added to the cluster 𝐶 . The process is 
repeated for data patterns from each class besides 𝑣. At the 
end of balancing, the cluster 𝐶  ideally has 𝑛  number of 
samples from each data class which have some spatial 
dependency with each other.  

A set of diverse base classifiers 𝐵 = {𝜁 , 𝜁 , . . , 𝜁 }  for 
example Support Vector Machine (SVM), Artificial Neural 
Network (ANN), Discriminant Analysis (DISCR), Naïve 
Bayes (NB), K-Nearest Neighbour (KNN), Decision Trees 
(DT), etc. is trained on all balanced data clusters. The type of 
base classifier chosen is independent of this research and any 
combination or type of classifier can be chosen. In future we 
will investigate further what type or number of classifiers can 
maximise the ensemble accuracy. 

A classifier takes in input training data and produces the 
predicted class labels of the unseen test set 𝑇 having feature 
vector 𝑥 and class labels 𝑦. Ensemble classifier is generated 
by utilizing all classifiers in the pool and conducting a 
majority vote to fuse their class decisions. This is done as: 

𝜉 = {𝜁 (𝑥 ), 𝜁 (𝑥 ), . . , 𝜁 (𝑥 )}  (5) 

where 𝑥 is the 𝑖th data pattern from the unseen test set 𝑋 and 
𝜉 is the ensemble 

To get the final predicted output of the ensemble 𝜉 mode 
is taken as: 

𝑦 = 𝑚𝑜𝑑𝑒(𝜉)  (6) 

where 𝑦’ is  a vector of predicted class labels of the ensemble 
and 𝑚𝑜𝑑𝑒  is a mathematical operator that depicts majority 
voting here and it simply returns the most frequent value row 
wise.  

Lastly, the ensemble classifier accuracy is computed using 
the predicted class labels from (6) as follows: 

𝑎𝑐𝑐 =
∑  𝐼(𝑦 , 𝑦 )∈  

𝑛
 (7) 

where 𝐼(𝑦 , 𝑦 ) =  
1, 𝑦 = 𝑦

0, 𝑦 ≠ 𝑦
 

III. EXPERIMENTS

This section details the experiments that were conducted 
to gage the performance of the proposed ensemble classifier. 
The datasets that are used in the experiments are taken from 
University of California Irvine (UCI) benchmark machine 
learning classification datasets repository [28]. A summary of 
these datasets is given in Table 1.  



TABLE 1: UCI BENCHMARK DATASETS USED IN 
EXPERIMENTATION 

Dataset 
Number 

of 
Samples 

Number of 
Columns/Attributes 

Number 
of 

Classes 

Breast 
Cancer 

699 9 2 

Diabetic 768 8 2 

Ecoli 336 7 8 

Glass 214 10 7 

Haberman 306 3 2 

Heart-s 270 13 2 

Hepatitis 155 19 2 

Ionosphere 351 33 2 

Iris 150 4 3 

Liver 345 6 2 

Segment 2310 19 7 

Sonar 208 60 2 

Spectfheart 267 22 2 

Thyroid 7200 21 3 

Vehicle 946 18 4 

Wine 178 13 3 

It can be noted from Table 1, that the datasets chosen have 
mixed attributes ranging from 150 samples to 7200 allowing 
for a thorough analysis of the proposed ensemble classifier. 
Moreover, the same datasets have been used by a number of 
existing researches [19] allowing for comparative analysis. 

The proposed approach is implemented in MATLAB 
2019b [29],  default implementation of base classifiers SVM, 
ANN, DISCR, DT,  NB, and KNN are used without any 
parameter optimization. For clustering input data default 
implementation of K-Means in MATLAB is used. To 
accommodate for randomness a 10-fold cross validation is 
conducted and classification accuracy and standard deviation 
over 10 independent runs is calculated for analysis. For cluster 
validation default implementation of “evalclusters” in 
MATLAB used with “Silhouette” as criterion parameter. The 
range of clusters for each dataset is measured from 2 to 20, 
and the optimal number of clusters identified are used as a 
parameter to K-means.  

The results of the proposed ensemble classifiers are first 
compared with single classifier approaches to evaluate the 
effectiveness of generating an ensemble of structurally 
different classifiers, then the results are compared with 
popular ensemble approaches known as Bagging and 
Boosting. A set of non-parametric signed ranked tests [30] are 
adopted with a significance level of 0.05.  

A. Experiment results

The average classification accuracies of the proposed
ensemble approach on the benchmark datasets over 10 
independent runs with 10-fold cross validation is given in 
Table II. 

TABLE II: CLASSIFICAITON ACCURACIES AND AVERAGE 
CLUSTERS GENERATED PER DATASETS OF THE PROPOSED 

ENSEMBLE CLASSIFIER 

Dataset 
Proposed 
approach 

Std. Dev. 
Avg. clusters 

per class 

Breast Cancer 0.9700 0.011 3 

Diabetic 0.7722 0.035 2 

Ecoli 0.8513 0.034 6 

Glass 0.9673 0.021 9 

Haberman 0.7652 0.035 5 

Heart-s 0.8374 0.008 2 

Hepatitis 0.8625 0.028 6 

Ionosphere 0.9262 0.009 5 

Iris 0.9667 0.033 10 

Liver 0.7246 0.058 2 

Segment 0.9525 0.002 3 

Sonar 0.7945 0.022 3 

Spectfheart 0.8023 0.011 8 

Thyroid 0.9113 0.029 13 

Vehicle 0.8026 0.037 2 

Wine 0.9887 0.015 4 

It can be noted from Table II that for each dataset a 
different number of clusters are generated. This is 
predominantly due to equation (3), as only optimal number of 
clusters are generated for each dataset. This adds to the fact 
that each dataset has different characteristics and using the 
same upper bounds for different datasets is not an ideal 
strategy. 

B. Comparision with single classifiers

The classification performance of the proposed ensemble
classifier is also compared with single classifier approaches. 
For fair comparisons the experiments are run in the same 
environment with 10-fold cross validation and 10 independent 
runs. For base classifiers default implementations are used 
without any parameter optimization.  The results are given in 
Table III with highest classification accuracies given in bold. 
It can be noted that the proposed ensemble outperformed 6 
base classifiers in 10 out of 16 datasets and on average 
achieved performance gains of approximately 2.0% over 
SVM, 5.0% over DT, 12.0% over ANN, 2.0% over DISCR, 
and 6.0% over NB, and KNN. These results are summarized 
in figure 2.  

It can be noted from figure 2, that on average SVM and 
DISCR are the highest performing classifiers with SVM 
being slightly better than DISCR achieving a performance of 
boost of 0.58% over DISCR. Empirically it can be said that 
SVM is the most robust base classifier compared to others. 
Although with parameter optimization the results might differ 
but for default case this holds true.  



TABLE III: CLASSIFICAITON ACCURACIES OF THE PROPOSED ENSEMBLE CLASSIFIER IN COMPARISON WITH SINGLE CLASSIFIERS 

Dataset 
Proposed 
approach 

SVM DT ANN DISCR NB KNN 

Breast 
Cancer 

0.9700 0.9642 0.9434 0.8866 0.9571 0.9648 0.9670 

Diabetic 0.7722 0.7676 0.7046 0.2239 0.7696 0.7364 0.7147 

Ecoli 0.8513 0.7914 0.8116 0.8354 0.8733 0.8307 0.8627 

Glass 0.9673 0.9944 0.9794 0.7561 0.9182 0.9032 0.9757 

Haberman 0.7652 0.7298 0.6778 0.7337 0.7474 0.5120 0.7125 

Heart-s 0.8374 0.8389 0.7533 0.7689 0.8430 0.8011 0.6796 

Hepatitis 0.8625 0.8313 0.8175 0.8113 0.8150 0.8550 0.8113 

Ionosphere 0.9262 0.8701 0.8855 0.9071 0.8613 0.9071 0.8379 

Iris 0.9667 0.9767 0.9427 0.9433 0.9800 0.9580 0.9660 

Liver 0.7246 0.6870 0.6400 0.6832 0.6809 0.6423 0.6649 

Segment 0.9525 0.9626 0.9548 0.9552 0.9155 0.8977 0.9391 

Sonar 0.7945 0.7716 0.7082 0.7736 0.7414 0.7608 0.7817 

Spectfheart 0.8023 0.7741 0.7422 0.0746 0.7520 0.7340 0.7386 

Thyroid 0.9113 0.9307 0.9954 0.9790 0.9374 0.9400 0.9395 

Vehicle 0.8026 0.8009 0.7038 0.7869 0.7771 0.6089 0.6414 

Wine 0.9887 0.9557 0.9099 0.9122 0.9848 0.9770 0.7004 

Figure 2: Comparative analysis of the average classification 
accuracy of the proposed approach and base classifiers 

C. Comparisons with other ensemble approaches

The classification performance of the proposed ensemble
approach is also compared with two state-of-the-art ensemble 
classifiers namely Random Forest and Adaboost. The default 
implementation of ensembles was used in MATLAB with the 
following parameters for Raf: 

 fitcensemble
 Method = bag
 Learners = tree

and for Adaboost: 
 fitcensemble
 Method = AdaboostM2 (for datasets with more

than two classes) 
 Method = AdaboostM1 (for datasets with two

classes) 

The datasets were partitioned using 10-fold cross 
validation and classification accuracies over 10 independent 
runs are reported. The results are given in Table IV, with 
highest accuracies given in bold.  

TABLE IV: CLASSIFICAITON ACCURACIES OF THE PROPOSED 
ENSEMBLE CLASSIFIER IN COMPARISON WITH STATE-OF-THE-

ART ENSEMBLE CALSSIFIERS  

Dataset 
Proposed 
approach 

ADABOOST 
Random 
Forest 

Breast 
Cancer 

0.9700 0.9638 0.9621 

Diabetic 0.7722 0.7301 0.7288 

Ecoli 0.8513 0.7902 0.8310 

Glass 0.9673 0.9053 0.9341 

Haberman 0.7652 0.6676 0.6987 

Heart-s 0.8374 0.8052 0.7785 

Hepatitis 0.8625 0.8650 0.8200 

Ionosphere 0.9262 0.9353 0.9026 

Iris 0.9667 0.9460 0.9327 

Liver 0.7246 0.6951 0.6780 

Segment 0.9525 0.9770 0.9729 

Sonar 0.7945 0.8575 0.7505 

Spectfheart 0.8023 0.8015 0.8005 

Thyroid 0.9113 0.9968 0.9801 

Vehicle 0.8026 0.7461 0.7334 

Wine 0.9887 0.9618 0.9533 
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It can be noted from Table IV, that the proposed ensemble 
outperformed Adaboost, and RaF in 11 out of 16 datasets and 
achieved an average of 1.52% performance gains over 
Adaboost, and 2.71% over RaF.  

The proposed ensemble is also compared with various 
clustering-based ensemble classifiers namely Sacking with 
Logistic Regression (STLR), Classification by Cluster 
Analysis (CBCA), standard classification with Clustering 
(CL), and Stacking with J48 as a combination function 

(STJ48) proposed in [24]. The classification accuracies are 
taken directly from the respective papers and are listed in 
Table V below with highest classification accuracies given in 
bold. It can be noted that on average the proposed ensemble 
approach achieved 7.98% performance gains over STJ48 
having a significance p value of 0.005 at 95% confidence 
(𝑎𝑙𝑝ℎ𝑎 =  0.05), 5.36% over STLR with a p-value of 0.08, 
7.64% over CL with a p-value of 0.005, and 3.68% over 
CBCA with a p-value of 0.28.  

TABLE V: CLASSIFICAITON ACCURACIES OF THE PROPOSED ENSEMBLE CLASSIFIER IN COMPARISON WITH OTHER CLUSTERING 
BASED STATE-OF-THE-ART ENSEMBLE CALSSIFIERS  

Dataset 
Proposed 
approach 

STJ48 
[24] 

STLR 
[24] 

CL 
[24] 

CBCA 
[24] 

Breast Cancer 0.9700 0.9480 0.9600 0.9700 0.9700 

Glass 0.9673 0.6380 0.6240 0.6480 0.6910 

Haberman 0.7652 0.7280 0.7380 0.7310 0.7650 

Heart-s 0.8374 0.7400 0.8420 0.8230 0.8450 

Hepatitis 0.8625 0.7930 0.8330 0.7870 0.8600 

Iris 0.9667 0.9520 0.9450 0.9240 0.9720 

Segment 0.9525 0.9610 0.9650 0.8530 0.9490 

Sonar 0.7945 0.7560 0.8490 0.7560 0.7900 

Spectfheart 0.8023 0.6800 0.6760 0.7350 0.7410 

IV. CONCLUSION

In this paper a novel ensemble classifier approach was 
proposed. The proposed approach utilized clustering to 
generate a pool of data clusters. This is done to “perturb” the 
input data and generate a diverse input space using which a 
pool of diverse base classifiers is trained. Dataset is first 
partitioned based on the number of classes and optimal 
number of data clusters are generated for each subset. The 
optimal number of data clusters are determined by conducting 
a Silhouette analysis. All generated clusters are then balanced 
by adding samples from other classes that are closest to the 
cluster centroids. In this manner we generate an augmented 
and perturbed input space which not only alleviates the class 
imbalance problem but also exploits any spatial dependencies 
that exist in the data.    

From experiments, it was evident that each dataset has 
different characteristic which in turn required a different 
number of optimal data clusters to be generated to achieve the 
highest classification accuracy. It can be noted from figure 3 
that a fixed value of 𝐾 is not an effective strategy as some 
datasets are sparse such as Thyroid with samples spread from 
each other whereas others are dense such as Diabetic in which 
samples are close to each other. The proposed ensemble 
approach not only performed better than other single classifier 
approaches but also performed well in comparison to other 
state-of-the-art ensemble classifier approaches as evident by 
results in Table IV and Table V.  

In future we will run further experiments on more large 
scale real-world and benchmark datasets to further validated 
the efficacy of the proposed approach. We will also test with 
other cluster validation techniques and investigate the effect 
of different validation techniques on the classification 
accuracy of the ensemble.  

Figure 3: Average number of data clusters generated per dataset 
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