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Abstract—Finding a free path without obstacles or situation
that pose minimal risk is critical for safe navigation. People who
are sighted and people who are blind or visually impaired require
navigation safety while walking on a sidewalk. In this paper we
develop assistive navigation on a sidewalk by integrating sensory
inputs using reinforcement learning. We train the reinforcement
model in a simulated robotic environment which is used to
avoid sidewalk obstacles. A conversational agent is built by
training with real conversation data. The reinforcement learning
model along with a conversational agent improved the obstacle
avoidance experience about 2.5% from the base case which is
78.75%.

I. INTRODUCTION

The main goal of this research is building navigational
assistance on sidewalks for people who are blind or visually
impaired. Avoiding obstacles or finding a free path with min-
imal risk of collision is an essential part of a safe navigation.
Most of the reported literature assume static and intransient
natural obstacles to build simplified navigational assistance.
Such an approach is not suitable for a complex dynamic world
full of uncertainties in the form of the transient obstacles, (e.g.,
puddle, scooter, and pothole) and activities (i.e., people riding
bike, walking with pet, meeting and greeting etc.).

Image-based obstacle avoidance has been very popular in
the past [1], [2]. This solution depends the visible light.
However, for the visually impaired, it is difficult to capture a
machine interpretable image. Besides, the diurnal cycle poses
an additional layer of difficulties in classifying or annotating
the image [3]. Even perfect “image annotation or classifica-
tion” based systems are not suitable in rendering meaningful
feedback to navigate a complex and dynamic world. More
than often such a system induces higher cognitive load or
ambiguities in the mind of users. To avoid such a problem, we
present a novel approach to solve the navigation in a complex
and dynamic world full of uncertainties.

We approach the problem from a point of view that is based
on the concept of “free path”, which poses minimal or no
threat (i.e., risk of collision). Instead of modeling only the
obstacles, we integrate sensory inputs in a reinforcement learn-
ing (RL) to develop an assistive solution to safely navigate
on a sidewalk. We use a simulated environment along with

a conversational agent to demonstrate the utility of a safer
navigational system.

To implement our idea we use the concept of point cloud
(PC). PCs are a set of data points in space [4] and usually
constructed using range sensors (e.g., Intel RealSense, Mi-
crosoft Kinect). PCs contain both RGB and depth information
(RGB-D). In addition, PCs are robust against variation in
diurnal cycle and lighting conditions. There are a number of
range sensors (i.e., https://rosindustrial.org/3d-camera-survey)
available for building PC effectively. Some of those are bulky,
less energy efficient and some are smaller as well as energy
efficient.

II. RELATED WORKS

Assistive technology solutions for the visually impaired
drew the attention of researchers as a prominent research
area in the mid-90s. Researchers have conducted studies and
developed applications to improve the mobility of the visually
impaired. Generally, two types of applications are available
for visually impaired, a) sensor based and b) computer vision
based.

A. Sensor based techniques

Most of the sensor based applications directly or indirectly
use sensor data.

1) Directly using sensor data: Drishti [5] and GuideCane
[6] used GIS information hosted on a central server. They
continuously queried the server for GPS information to fa-
cilitate navigation. GuideCane used an ultrasonic sensor and
embedded computer to detect obstacles, but the field of view
of the sensor was very narrow. To circumvent the problem,
Shoval, Ulrich, and Borenstein (2003) proposed an array of
ultrasonic sensors mounted on a belt [7]. However, the belt
became too bulky, along with being power and resource
hungry. GuideCane therefore, along with other smart cane
projects, focused on obstacles that are of head-height to make
it lighter [8]–[10]. There is a talking navigation cane that
allows voice command and provides navigation information
via audible messages and haptic feedback [11]. They used the
GPS to accomplish the localization of the user. A beacon-
based navigation system is more accurate and provides far
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better navigation help. But the deployment of several beacons
is an expensive task and needs an expert for the imple-
mentation [12]. Recently WiFi-based positioning has drawn
attention [13], [14]. This type of positioning and navigation
system determines the approximate position of cellular devices
by using radio frequency (RF) signals and a triangulation
mechanism. It depends on the signal strength and phase, signal
transmission time and angle of arrival along with channel state
information. Indoor environments are complicated because of
multiple access point transmission. Signals are affected by
the adjacent and co-channel interference [15]. That is why
this method is less reliable both indoors and outdoors. One
system using this approach is ppNav, a mobile app which helps
navigate based on a previous navigator’s trace. It constructs
trace from ubiquitous WiFi signal along with visual features
[16]. Chen reported a mobile robot navigation algorithm which
fuses the odometry and compass data. They used an extended
Kalman filter algorithm for the fusion [17].

2) Modeling obstacle from sensor data: Probabilistic
inertial-visual odometry (PIVO) was developed for an
occlusion-robust navigation system [18]. In this work, the
Inertial Measurement Unit (IMU) sensors and the monocular
camera information are fused to construct odometry. The
application is robust even if the camera is covered for an
extended amount of time. However, this is not usable by the
visually impaired people because the camera and the IMU
sensors have to be at a specific orientation. [19] constructed
the model of left turn, right turn, and stairs from IMU data.
This model they have used to perform wayfinding.

B. Computer vision techniques

There are applications to utilize the computer vision tech-
niques along with sonar, IMU, and LiDAR sensor data. Some
applications capture video and use traditional computer vision
techniques to identify obstacles. Others uses deep neural
network to model the obstacles.

1) Direct use of computer vision: In [20] Michels et al.,
they used ground truth laser distance data to train depth
estimator. The output of the estimator becomes input for a
controller trained by reinforcement learning.

2) Modeling obstacle from computer vision: Ahmed et al.
constructed a sidewalk image dataset and trained different deep
neural networks to identify the obstacles [1]. Once an obstacle
is identified, the audible label of that obstacle is played to
the visually impaired as feedback. This approach suffers from
inefficient feedback to avoid the obstacle. Moreover, it works
only with daylight with a drawback of the diurnal affect.

To provide efficient feedback for obstacle avoidance, Ahmed
et al. applied image captioning [2]. The generated caption of
the image is played as feedback. In this approach, the caption
does not always contain sufficient information so that it can
be avoided. In addition, the diurnal cycle affects the image as
well as the caption.

III. REINFORCEMENT LEARNING FOR MODELING
FREE-PATH

Researchers are spurred to improve the mobility of the visu-
ally impaired by devising an obstacle avoidance mechanism.
There are vision-based solutions to model the obstacles [21],
[22]. The obstacles are modeled using a traditional computer
vision algorithm or a modern deep neural network (DNN)
[23]. Both traditional and DNN algorithms have a limited
capacity of modeling dynamic nature and a huge number of
obstacles. Dynamic nature refers to stationary and moving
obstacles along with their sizes, shapes, motion speed, and
colors. The dynamic number refers to the unknown number of
obstacles. Any object that blocks the mobility of the people is
an obstacle. The convolutional neural network (CNN) is one
of the popular object recognition models and is heavily used;
[1], [3] it is inspired by ImageNet [24] Large Scale Visual
Recognition Challenge (ILSVRC).

There is research to combine camera and Inertial Mea-
surement Unit (IMU) sensors 1 with improving the model
of obstacles. In this approach, the system becomes too com-
plex. Simple sensor-based algorithms are prevalent nowadays
to reduce complexity. Yang, Wang, Lin, Bai, Bergasa, and
Arroyo (2018) proposed pairs of sensors for this purpose [25].
RealSense R200 and IMU are mounted on smart glass at eye-
level and RealSense RS410 at waist level. This system is
efficient to detect low-lying obstacles. Wang, Yang, Hu, and
Wang described stixel representations of a 3D world combined
with pixel-wise semantic segmentation for navigation aid [26],
[27].

The technologies mentioned in related work in the above
para graphs are limited to a certain class of obstacles. For
example, the CNN based models are capable of recognizing
only the classes of obstacles that belong to the training set.
Moreover, the model has to see the obstacle beforehand. To
overcome the shortcomings and to simplify the navigation on
a sidewalk, the novel idea in this research is “free-path.” The
idea of free-path is to find a safe area on a sidewalk instead
of trying to model the dynamic environment of obstacles. We
utilized a RealSense D435 depth camera as well as the custom
LiDAR to collect PC of the sidewalk. The PC is then used to
model the free-path using reinforcement learning.

Another aspect is that the position of the dynamic obstacles
has to be communicated to the visually impaired. This group
would take necessary action based on that. In a situation with
a dynamic obstacle, the outcome of actions performed by
visually impaired people is delayed. For example, to avoid a
bike rider, the visually impaired may stop and stand to the side
or keep walking in a certain direction. They do not know if the
bike rider is avoided until they pass. In this case, her beginning
actions (e.g., stopping, standing aside, or walking) are delay
rewarded. To model this behavior, the RL is a perfect fit for
both static and dynamic obstacles. The reason is explained

1This is an electronic device that measures and reports orientation, velocity,
and gravitational forces through the use of accelerometers and gyroscopes and
often magnetometers



Fig. 1. Optimal turn decided by RL model.

with an example. Let us say a biker is approaching a user in a
crossing pattern from left to right as in figure 1 (a). A model
without RL will see an immediate empty space in front and
will decide that as a free path, whereas the biker will reach
that space after some time. On the other hand, the model with
RL takes the movement of the biker into account and decides
to move left instead of going forward as seen in figure 1 (b).
In this research, we choose RL to teach the robot the dynamic
and static nature of the obstacles.

IV. DEFINITION OF FREE-PATH

Generally, the sidewalk consists of static and dynamic
obstacles. The dynamic obstacles have motion. The visually
impaired person walking on the sidewalk has motion as well.
The mean comfortable walking speed of adults between 20
and 70 years of age ranges approximately from 100 cm/s to
150 cm/s [28].

Suppose χ = (M,d) is a discrete metric space from eu-
clidean space Rn, where M ⊂ Rn is the set of points and d is
the distance metric. The density of M in the ambient euclidean
space may not be uniform due to perspective distortion. There
exists a set of functions f that takes χ as input and produces
clusters satisfying a set of constraints (e.g., points at a given
neighborhood distance or color) [29]. In this research n = 3,
meaning the spaced is three dimensional.

In the given χ the free path is defined as f(χ) = φ which
indicates there is no obstacle along the direction of interest.
Let us assume that f(χ) = C, where C is a set of clusters in
χ. The threat level t is inversely proportional to the distance
of the cluster ci ( C ∈ {c1, c2, ..., ci}), that is t ∝ 1

di
[30],

[31].

V. BUILDING RL MODEL

In order to build an RL model, there has to be an agent
and environment. The agent placed in this environment can
learn from the interaction with the environment. Building a
real environment, especially a sidewalk, to train an agent
is expensive. Moreover, there must exist a practical way
of implementing the punishment mechanism every time the
agent makes mistakes. To understand the complexity of a
real sidewalk and to study the feasibility of the system, the
simulated environment is extremely suitable. It is easy to

program and modify, and various types of agents can be placed
in the environment. In addition to that, implementing different
algorithms as well as training and testing models is much
easier than the real environment. Based on this reasoning, we
selected the simulation to train the RL model and the real
environment to test it.

The RL model is trained in the Gazebo [32] simulation
environment. We placed a robot on a virtual sidewalk, where
there are obstacles (e.g., curb and grass beside the sidewalk,
pothole, cone, fire hydrant, electric scooter, electric pole,
dumpster, and tree). The RL algorithm stays in Robot OS
(ROS). In this setup, we let the robot walk on the sidewalk
with 10, 000 episodes and 1, 000 steps in each episode. The
physics engine of the Gazebo environment makes it easy
to detect collisions, falls, displacements, and other physical
measurements. It also provides a way to set the base speed of
the robot. We set the base speed equal to the mean walking
speed of men. Whenever the robot collides with an obstacle
or falls down by going off of the sidewalk, it gets penalized
by one, and the simulation resets and the robot starts from
the initial position. There are rewards of +1 for actions
which do not cause collisions or falls. We present a depiction
of a metaphor between the simulated sidewalk and the real
sidewalk in figure 2. Once the RL model is built, then it was
transferred to the device for the testing and evaluation.

We named the combination of free-path finder and con-
versational agent as “Augmented Guide (AG)” because it
helps people to find free-path through the RL model and
it keeps people informed about the ambiance through the
conversational agent.

(a) Gazebo simulation (b) What robot sees

(c) Real sidewalk (d) What AG sees

Fig. 2. Analogy with AG and Gazebo simulation.

The following aspects solve the free-path problem using RL
• Different actions yield different rewards. For example,

when trying to avoid an obstacle in a sidewalk, going
left may lead to an avoidance, whereas going right may
cause collision.

• Reward for an action is conditional on the state of the



environment. In figure 1, going left may be ideal at a
certain position in the path, but not at others.

• Rewards are delayed over time. This just means that even
if going left (Fig 1) is the right thing to do, we may not
know it until the obstacle is completely out of sight.

We have defined the environment, state, action, and reward
in terms of sidewalk in the following manner.

Environment: The sidewalk environment consists of static
and dynamic obstacles. The static obstacle does not move
whereas the dynamic obstacle moves. The sidewalk has a curb
and it has brick pavement. There is grass beside the sidewalk
which is different in color than the sidewalk itself.

State: The state space is a set of all possible relative
positions of agents and the obstacles on the sidewalk. That
is why the number of states is infinite. The agent finds useful
information from the states to make the right action.

Action: There are five actions namely stop, left, forward,
right, and backward. The agent encounters infinite number of
states and takes one of these actions in the action space set.

Reward: If an action performed by the agent causes colli-
sion, then the reward is −1. The agent keeps getting +1 as a
reward until there is no collision.

With the above environment, the Gazebo simulation is cre-
ated. We implemented three algorithms, Q-learning, SARSA,
and the Deep Q-learning network (DQN). The optimal param-
eters found for those algorithm are listed in table I.

TABLE I
PARAMETERS FOR THE LEARNING ALGORITHMS

Parameters Q-learning SARSA DQN
learning rate 0.5 0.5 0.001
discount factor 0.9 0.9 0.95
exploration probability 0.1 0.1 0.1
exploration decay 0.99 0.99 0.99

VI. ACTIVE INTERFACE: CONVERSATIONAL AGENT

In daily life, any matter not apparent to the user becomes
more transparent through conversation. That is why the teach-
ers request that students ask questions, and the managers ask
the employee to ask questions. Through conversation, the real
scenario becomes evident.

In this research, we are adopting this concept. The user
communicates with the agent, and the agent talks about what
it sees ahead. Through the conversation, the ambiance becomes
more apparent to the user. The agent mentions any obstacle on
the walkway to the user. How to avoid that obstacle depends on
the user. The AG device will not command to do a particular
action. Instead, the user decides the next action based on the
conversation. This conversational agent is an active interface.

For the basic understanding of the conversational agent, we
introduce few keywords from the literature.

Intent: The intent is the end meaning of what the user is
trying to say. For example, if the user says, “Find the fire
hydrant” the intent can be classified as to find the obstacle.

Entity: An entity is to extract useful information from the
user input. From the example above, “Find the fire hydrant”

Fig. 3. Block diagram of Rasa NLU and Rasa Core.

the entities extracted should be the name of the obstacle. The
name, for example, is a fire hydrant.

Stories: Stories define the sample interaction between the
user and the conversational agent connecting intent and action
performed by the agent. In the example above, the agent got
the intent of finding the obstacle and entities like the name
of the obstacle, but still, there is an entity missing, how far
should it look? That would create the next action from the
agent.

Actions: Actions are the operations performed by the agent.
It could be either asking for some more details to get all the
entities, integrating with some APIs, or querying the RL model
to get any information.

Templates: The templates are the sample replies from the
agent which can be used as actions.

The conversational agent, a software system, enables a user
to talk with it in natural language. RASA, an open-source
machine learning framework, serves as the engine of the
conversational agent. It is easy to customize. We can build,
deploy, or host RASA internally in our server or environment
with complete control. Confidential conversation data cannot
be shared with a third party. The majority of the conversational
agent’s tools available are cloud-based and provide software as
a service. We cannot run them internally in our environment,
and we need to send data to the third party. With RASA, there
is no such issue.

The RASA is comprised of two main components Rasa
NLU and Rasa Core. Rasa NLU is a library for natural
language understanding (NLU), which does the classification
of intent, extracts the entity from the user input and helps
the agent to understand what the user is saying. Rasa Core,
on the other hand, is a conversational agent framework with
machine learning-based dialogue management capabilities. It
takes the structured input from the NLU and predicts the next
possible best action using a probabilistic model like long short-
term memory (LSTM) recurrent neural network. Rasa NLU
and Rasa Core are independent, and we can use NLU without
Core, and vice versa. But using both NLU and Core enhances
performance. A block diagram of RASA is shown in figure 3.

Three types of files are necessary to train Rasa NLU, NLU
training file, Stories file, and Domain file. The training file



contains some training data with user inputs along with the
mapping of intents and entities present in each of them. The
more varying examples we provide, the better the agent’s NLU
capabilities become. The Stories file contains sample future
interactions between the user and the agent. Rasa Core creates
a probable model of interaction from each story. The Domain
file lists all the intents, entities, actions, templates, and more
information. The conversational data obtained from the WoZ
experiment is converted to text and processed to create the
above-mentioned training files. The training files are stored in
the markdown format. The samples form an NLU file which
is presented in listing 1.

## i n t e n t : g r e e t
− hey
− h e l l o
− a r e you t h e r e ?
− a r e you r e a d y ?
− r e a d y ?

## i n t e n t : g r e e t a s k
− Yes ready , a r e you r e a d y ?
− Ready , want t o s t a r t ? .
− I am here , s t a r t wa lk ing ?

## i n t e n t : g r e e t n o r m a l
− yes
− yap
− l e t ’ s go

## i n t e n t : f i n d o b s t a c l e
− Find [ o b s t a c l e ] ( o b s t a c l e ) ?
− What i s [ t h e r e ] ( o b s t a c l e ) ?
− What i s [ t h a t ] ( o b s t a c l e ) ?
− Do you s e e [ a n y t h i n g ] ( o b s t a c l e ) ?
− [ There ] ( o b s t a c l e ) ?
− [ Here ] ( o b s t a c l e ) ?
− Thi s [ way ] ( o b s t a c l e ) ?
− That [ way ] ( o b s t a c l e ) ?

## i n t e n t : f i n d d i s t a n c e
− [ Where ] ( d i s t a n c e ) ?
− How [ f a r ] ( d i s t a n c e ) ?
− How long t o [ r e a c h ] ( d i s t a n c e ) ?
− I s i t [ c l o s e ] ( d i s t a n c e ) ?
− I s i t ve ry [ c l o s e ] ( d i s t a n c e ) ?

## i n t e n t : bye
− bye , l e t me know
− bye now
− i am here , bye

Listing 1. Samples from an NLU file.

Once the RL model is trained, AG integrates that model.
Through this RL model the device sees obstacles and recom-
mends an action. The AG does not dictate the turn or move;

Fig. 4. Block diagram of AG.

it gives the ambient information about the obstacle, and the
person decides which direction to move.

Fig. 5. Working principal of augmented guide for visually impaired.

VII. AUGMENTED GUIDE (AG)

AG contains two essential modules free-path finder and
conversational agent. The free-path finder module uses RL
to find the obstacle-free path, and the CA helps the visually
impaired be informed about the ambiance through active
conversation.

There are camera and LiDAR sensors connected to the
computing engine (e.g., Raspberry Pi, Jetson Nano) in the AG.
The upgraded version of AG uses only the RealSense depth
camera, which provides both RGB and LiDAR data, to make it
lighter and smaller in size. The block diagram of AG is shown
in figure 4 and the working principal is shown in figure 5.

VIII. EVALUATION

In the Gazebo simulated training environment, the robot
is equipped with the depth camera. From this depth camera,
the robot can sense depth, color, and texture from the RGB
sensor. Figure 6 shows sample pictures from the depth camera.
The blobs in the pictures are laser beams which form PC.
Picture (a) is a depth image taken during the daytime, (b) is
an infrared image also taken during the daytime, and (c) is an
infrared image taken at night. The PC is the input to RL both



on the real sidewalk as well as in simulation. The base moving
speed of the robot is set to the mean walking speed of men to
make the simulation close to the real sidewalk. The lighting
condition is set to ambient light, which gives an illusion of
daylight. We were also able to set the wind speed of the
ambient environment. There were ways to create a sidewalk
with a slippery surface, with ice, snow, and slope. However,
to avoid the extreme complexity of the implementation, we
skipped these aspects within this research scope.

(a) (b) (c)

Fig. 6. Sample pictures obtained from depth camera.

In the training environment, we examined the learning
of the three algorithms. The same sidewalk was used for
training all of these. Q-learning, State-Action-Reward-State-
Action (SARSA), and Deep Q-Network (DQN) belong to the
list of training algorithms. The Q-learning algorithm is off-
policy meaning it learns based on the action obtained from
another policy e.g., greedy approach. Whereas the SARSA
algorithm is on-policy that learn based on the action performed
by the current policy instead of the greedy approach. Both
Q-learning and SARSA are not generalized because these
algorithms have to experience a state before learning. That
is why these are not generalized and performs poorly in a
huge number of states.

Within 200 episodes, the DQN learned best among the three,
and SARSA learned better than the Q-learning. Figure 7 shows
these findings. The derivative of the learning curve of the
reward increased over the number of episodes. In other words,
we can say that the more interaction the robot makes with the
obstacles, the more it learns to avoid them. That is why the
reward increases after a couple hundred episodes.

Fig. 7. Learning score comparison of Q-learning, SARSA, and DQN.

The testing environment of the RL model is the real

sidewalk. A visually impaired person volunteered to test the
prototype. The IRB approval of the blind-ambition umbrella
project is used for this testing as it involves human subjects.
Five hundred feet of the u-shape sidewalk was selected for the
evaluation of the prototype. There were trees, an electric pole,
a pothole, a dumpster, an iron fence, a visible curb, a bollard,
and a fire hydrant on this sidewalk. We manually placed a
couple of electric scooters, yellow construction cones, and
water to form a puddle. The user was mostly happy about
being aware of upcoming objects ahead of time. He could
quickly point to any direction and ask “What is there?” and
receive names of the segmented objects. The obstacles which
stand above the ground were found easily, but the ground
level obstacles such as the pothole and puddle was hardly
found. On a narrow sidewalk, the RL got confused with the
sidewalk fence (not the construction fence) as an obstacle.
Though there are limitations, according to the volunteer, the
overall performance of the assistive device was found to be
satisfactory.

RASA [33] framework is the base engine for building a
conversational agent. To train it, it requires conversational
data, which we have obtained from the WOZ experiment on
the sidewalk. We carefully annotated the spoken sentences
of the visually impaired into proper intent, and we identified
the entities and actions from those. Executing actions requires
developing a service engine. An entity is passed as a parameter
to the action. The RASA stack provides a light-weight SDK
for this purpose. We used this SDK to develop the action end-
point.

The input and output of the conversational agent is text.
From an audio input device, the speech is converted to text
and fed into the agent. The reply from the agent was again
converted back to speech and sent to the audio output device.
We have used the speech-to-text engine for the speech to
text conversion, and it generated words with correct spelling.
Because the RASA stack always receives words with correct
spelling, we did not have to train it with incorrectly spelled
words. For example, we avoided training the conversational
agent with the variation of “hi”, “hey”, or “hai”.

The Bluetooth headset acts as an audio input and output
interface. This device connects to the prototype of the assistive
device and provides a partial scope of the private conversation.
That is, people may hear what the visually impaired person is
asking for, but they cannot hear what the device is replying.

We show the basic block diagram (see Figure 4) of the pro-
totype. The user has the option to ask the AG to take a picture
and segment it. Amazon Rekognition does the segmentation of
images in AG. The text-to-speech and speech-to-text service
is used from Google. Of course, to use the Google and AWS
services, there is a need for internet connectivity.

Table II contains the results obtained from a test simulation.
In the testing phase, we let the robot walk from one side to the
other side of the sidewalk 10, 000 times which is the number
of episodes. The robot found the construction cone most of the
time but failed to see the pothole. It is reasonable, because the
pothole is on the ground whereas the construction cone, fire



hydrant, stopper, and electric scooter stand above the ground.
Among the above ground level obstacles, the AG is less able
to detect the electric scooter than other obstacles. This less
detection is due to the size and shape of the scooter.

For comparison, we selected the base case as 78.75% “in
field obstacle detection accuracy” from [2]. We used the AG
on the real sidewalk and found that the average accuracy
measured is about 81.29%. The obstacle avoidance experience
improved about 2.5%. It detected and talked about various
obstacles. Few important obstacles are shown in Figure 8.

TABLE II
OBSTACLES AVOIDANCE RESULTS IN SIMULATION AND REAL WORLD

Obstacle Image % simulation % sidewalk

Pothole 55 52

Construction
Cone 91 92

Fire hydrant 92 93

Electric Scooter 74 71

Electric Pole 78 79

Dumpster 93 94

Tree 87 89
average 81.428 81.285

The AG got confused with the obstacle in Figure 9. The
real obstacle is the electric scooter but it was talking about
the fence as an obstacle as well.

IX. CONCLUSION

In this research, we built an assistive technology prototype
device. The purpose of this prototype is to augment the means
of avoiding obstacles for the visually impaired. The obstacles
include both static and dynamic nature, and the device is useful
during a walk on the sidewalk.

We developed the free path approach instead of modeling
the various obstacles. Reinforcement learning served as an
essential tool for free path modeling. Also, to communicate
the free path to the user, we incorporated the conversational
agent trained on the RASA stack.

For modeling the free path, we created the simulated side-
walk and the 3D models of obstacles in Gazebo. We placed
a robot in the environment, which learned to avoid obstacles

(a) carb (b) fence (c) scooter

(d) scooter (e) dropbox (f) stopper

Fig. 8. Example obstacles detected by the assistive device

Fig. 9. AG got confused where scooter and sidewalk fence were together.
It reported fence as obstacle instead of scooter.

through RL. When the RL was stable, we incorporated it into
the AG.

The conversational agent is trained with the Wizard of OZ
conversation data. This conversation is the starting point of
the agent learning to talk. The user asks the agent about
the ambient environment. The agent then talks back to the
user with the necessary information. RASA collects that
information from AWS, API, and the RL model. From this
information about the ambient environment, the user decides
to take necessary actions.

We observed some limitations of the assistive prototype
system during the training and testing. One of those is that the
Gazebo obstacles are a purely mathematical model. It means
that the physics engine sees a tree as a box even though the
tree has a particular shape. During testing, we found that this



limitation did not matter much because the input to the RL
was PC. The conversation tool sometimes takes a long time
to respond. It could be dangerous in a situation where time
is crucial, e.g., an oncoming car while crossing the road. The
use of the WiFi network is another limitation. It could be
solved by keeping the models and services all in the computing
device, but that requires higher computing, storage, and battery
capacity. As a trade-off, the WiFi is used. Also, the most
critical obstacle, according to Ahmed et al., is the “slope”
[1]. Our assistive device can not detect slope.
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