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Abstract—Causal question answering is a task of answering
causality related questions. The questions are referred to as
binary causal questions when the questions e.g., “Could X
cause Y?” can be answered by yes/no answers. Answer to the
previous question is yes if X is a cause of Y , and otherwise no.
The binary causal question answering systems can be used to
validate causal relationships, which can be particularly useful
for decision making. For example, it could be useful for the
tourism authorities to know the answer to the question “Could
growing social tension cause reduction in tourism?”. We aim to
automatically answer such binary causal questions by developing
a machine learning model. However, training a machine learning
model to detect causal relationships is challenging due to the
lack of large and high quality labeled datasets. In this paper,
we propose a transfer learning-based approach which fine-tunes
pretrained transformer based language models on a small dataset
of cause-effect pairs to detect causality and answer binary
causal questions. The proposed approach achieves performance
comparable to a number of benchmark approaches on five
benchmark test datasets extracted by human experts conditioned
on the same small training dataset.

I. INTRODUCTION

Binary causal questions ask whether there is a relationship
between a candidate cause and a candidate effect. For example,
in the following question “Could Australian bushfire cause a
jump in carbon concentrations in the atmosphere?”1, “Aus-
tralian bushfire” is a candidate cause and “a jump in carbon
concentrations in the atmosphere” is a candidate effect. If there
exists a causal relationship between the candidate cause and
the candidate effect, the answer to the above binary causal
question is either yes or no. The automatic answering of
such binary casual questions might play an important role in
everyday decision making and reasoning. It can be explored as
an important tool by the decision makers to assess the situation
and take informed decision. Additionally, a binary causal
questions answering model may be used to discover new and
previously unknown pairs of cause and effect as exemplified

1“The devastating bushfires in Australia are likely to cause a
jump in carbon concentrations in the atmosphere this year, a fore-
cast suggests, bringing the world closer to 1.5C of global heating.”
- https://www.theguardian.com/environment/2020/jan/24/australian-bushfires-
will-cause-jump-in-co2-in-atmosphere-say-scientists

Could	climate	change	cause	arson?
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Fig. 1: An illustrative example of binary causal question
answering (QA) model

and illustrated in Fig. 1 for “Could Wuhan coronavius cause
pneumonia?”2 and “Could climate change cause arson?”3.

Answering causal questions is a trivial skill of human
beings and often a human can answer causal questions without
much effort as humans acquires knowledge about causality
from the very beginning of their life through day-to-day life
experiences and continuous learning. However, this trivial task
for human is quite challenging for computers. To answer
binary causal questions automatically, appropriate background
knowledge (labeled training dataset) on causality is crucial,
which is often hard to achieve. In the literature, there exists a
number of approaches [1]–[11] to solve the automatic causality
detection problem. The approaches apply various techniques
such as linguistic rules [1], association rule mining [2], [3],
causal network analysis [4], [5], and recently, application
of neural network-based algorithms [6]–[11]. The rule-based
approaches are often domain specific and not generalizable.
The causal network-based approaches rely on exact word
matching and neural network-based approaches require large
training datasets. In general, the supervised machine learning-
based approaches for causality detection require large and
high quality labeled datasets to train. Unfortunately, high
quality training data is often either expensive to acquire or
not available. Also, when the training dataset becomes large,
training machine learning models on such large datasets be-

2“So far, we know the new Wuhan coronavirus causes pneumonia and there-
fore places an extra burden on hospitals.”-http://theconversation.com/should-
we-be-worried-about-the-new-wuhan-coronavirus-130366

3“Victoria police say there is no evidence any of the devastating bushfires
in the state were caused by arson.”-https://www.theguardian.com/australia-
news/2020/jan/08/police-contradict-claims-spread-online-exaggerating-
arsons-role-in-australian-bushfires
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comes computationally expensive. These drawbacks limit the
applicability of such approaches. Hence, a machine learning
approach that requires relatively small dataset to train, but
still contains enough background knowledge on causality and
achieves reasonably comparable performance is desirable.

In this paper, we aim to answer binary causal questions
by applying transfer learning based approach as it allows us
to utilize existing generalized background knowledge for our
task specific needs by fine-tuning the model with a relatively
small training dataset. We apply pretrained transformer based
language models such as Bidirectional Encoder Representa-
tion from Transformers (BERT) and its variants to exploit
the already learned model weights to solve the problem of
large dataset requirements. In particular, we found that the
WordPiece tokenization [12] technique used in BERT models
is effective to deal with the exact word matching problem
in our task. We also proposed an approach to automatically
extract a training dataset consisting of cause and effect pairs
from news articles by applying causal cue words and then
use this dataset to fine-tune the models for our binary causal
question answering task. We list our contributions as given as
below:

1) we propose a transfer learning-based approach that ap-
plies BERT language models to answer binary causal
questions;

2) we also propose an automatic approach to collect quality
training dataset from news articles to fine-tune the BERT
models to detect causality; and

3) we perform extensive experiments to show the effective-
ness of the proposed approach.

The rest of the paper is organized as follows. Section II
reviews the existing state-of-the-art approaches. Section III
presents our approach. Section IV discusses the experimental
results. Finally, Section V concludes the paper.

II. RELATED WORK

Causality detection from text and question answering are
both active research areas. The causality detection approaches
that are relevant to our problem includes linguistic rules-based
approach, graph-based approach, machine learning-based ap-
proach and very recently neural network-based approach.

A rule-based approach on causality detection is proposed
by Radinsky et al. [1] that automatically generates a set of
rules that are applied to detect causal relationship. However,
the rules are dependent on the grammatical correctness of
sentences, which is not always available or sometimes missing
in open texts. Background knowledge is often useful to detect
causality. The graph-based approaches [4], [5] encode back-
ground knowledge in causal network and use that knowledge
to detect causality. Luo et al. [4] propose a graph-based
approach that collects a set of causal sentences from web using
a set of causal cue words. Sentences are then split into causal
phrases and effect phrases. A Cartesian product between the
words in a causal phrase and the corresponding effect phrase
is taken to prepare a list of word pairs. The first word in the
pair comes from the causal phrase and the other word comes

from the effect phrase. The pairs are then used to build a
directed causal graph. The nodes in the graph correspond to
the words and the edges represent a causal relation. Each edge
contains a weight. For example, a directed link from node A to
node B represents the number of times the word A were used
as a cause and B as an effect. These values are then used to
calculate the combined causal scores of candidate cause-effect
pairs. However, this approach cannot capture the multi-word
expression as it tokenizes every word in a phrase [5]. Also,
this approach cannot detect causality if either of the words on
a pair is missing in the causal graph.

A causal questions answering method is proposed in [8] that
aims to rerank answers to the causal questions using embed-
dings. This approach collects causal pairs from free text and
then converts them into causal embeddings. Both causal and
effect embeddings are then passed to two separate Convolu-
tional Neural Networks (CNN). The outcomes of the CNNs are
Max Pooled and then merged together by calculating cosine
similarity. The Softplus activation function is used in the final
layer with a single node to detect causality. Since this approach
is trained solely on the training data, it requires a large training
data for training. Dasgupta et al. [6] propose a neural network-
based approach to extract cause, effect and causal connectives
in a sentences. The approach uses both word features and
linguistic features to train a Bidirectional Long Short-Term
Memory (Bi-LSTM) model to detect causality. The input to the
model is a combination of word vectors and linguistic vectors.
The authors used a pretrained GloVe model to convert each
word into a 300-dimensional vector. The linguistic features
are composed of both syntactic features and semantic featuers.
The syntactic featuers include part-of-speech tags, dependency
relationship, and positions of noun and verbs. The semantic
features includes nine noun hierarchy in WordNet proposed
in [13] along with the grammatical structure of the sentence.
Finally, the trained model is used to label each word whether
the word is a cause, an effect, a causal connective or none.
However, none of the above approaches targets automatic
binary causal question answering task.

To the best of our knowledge, there exists one work
on binary causal question answering task and the approach
is called Natural Language Model - Bidirectional Encoder
Representation from Transformers (NLM-BERT), which is
proposed by Hassanzadeh et al. [7]. The authors assume that
the relationship between cause and effect is unidirectional.
More specifically, if (X, Y) is a causal pairs and “X may
cause Y” is true, then it is less likely that “Y may cause X”
will be true. The authors collected a corpus of 17 million
(17M) causal sentences and converted them into vectors using
a pretrained BERT model. For a candidate (X, Y) pairs, it finds
10 closest sentences (k-nearest neighbor approach) for both “X
may cause Y” and “Y may cause X”. Then it calculates the
average cosine similarity for both of the cases. Two threshold
values are used to finally derive the yes/no answer for “Could
X cause Y?”. The main drawback of this approach is that the
threshold values are not previously known and varies from
test dataset to another test dataset. Also, it requires expert



TABLE I: List of causal cue words used to prepare the training dataset (adapted from [9], [10])

affect because causes due to if induce owing to results from
affected by because of causing effect of if..., then induced reason for so that
affects bring on consequently for this reason alone in consequence of inducing reason of that’s why
and consequently brings on coz gave rise to in response to lead to reasons for the result is
and hence brought on coz of give rise to inasmuch as leading to reasons of thereby
as a consequence cause decrease given rise to increase leads to result from therefor
as a consequence of caused decreased by giving rise to increased by led to resulted from thus
as a result of caused by decreases hence increases on account of resulting from

knowledge to set the correct threshold values.
In this paper, we propose a transfer learning-based approach

to deal with the above mentioned challenges of automatic
answering binary causal questions. We propose to use a
pretrained BERT model similar to Hassanzadeh et al. [7]
that comes with a rich linguistic information. Unlike the
approach proposed by Hassanzadeh et al. that applies k-
nearest neighbour-based cosine similarity calculation on large
dataset, we fine-tune the BERT model with a relatively small
training dataset to contextualize the model for the binary
causal question answering task. In our approach, we also avoid
the manual threshold selection for the test datasets - threshold
selection is not dependent on test dataset. Once our model is
fine-tuned on the training dataset, it can be applied for each
of the test datasets without the need of selecting any dataset
specific thresholds.

III. OUR APPROACH

In this section, we describe our transfer learning-based
approach to answer binary causal questions. At first, we extract
and prepare a training dataset from news articles and then we
fine-tune BERT models on this training dataset. The fine-tuned
BERT model is then used to answer binary causal questions.

A. Extraction of Training Data

We apply a semi-supervised approach to prepare the training
dataset. In our approach, we extract a set of causal and non-
causal pairs from one million news articles [14]. To get the
causal pairs, we extract the sentences that contain at least one
causal cue words e.g., causes, due to, and because of (see
the complete list as given in Table I). Then we extract causal
pairs such as (X,Y ) from the sentences using those causal
cue words where X corresponds to the causal phrase and
Y corresponds to the effect phrase. In our training dataset,
we label each of these pairs as causal. We also extract non-
causal training data from the same news articles dataset. To
avoid any data overlap with the causal pairs, we extract the
sentences that do not contain any causal cue words. We divide
each sentence into half to prepare the non-causal pairs (X,Y ),
where X represents the first half and and Y represents the
second half of the sentence. Each of these pairs of data is
labeled as not causal as we assume that these sentences should
not contain any causality.

Table II illustrates the training dataset statistics which
includes the total number of pairs, vocabulary size and the
size of the phrases. One prominent characteristic that is visible

TABLE II: Training dataset statistics

Name Causal Non causal
Number of pairs 100000 100000
Vocabulary size 27206 63471
Longest phrase size 55 189
Shortest phrase size 1 2
Average phrase size 3.5 9.23

from the table is that the non-causal pairs in the training
dataset are around 3 times longer than the causal pairs. Also,
the non-causal pairs contains more unique vocabulary than
the causal pairs, i.e., there are 27206 and 63474 unique
words in the causal and non-causal pairs, respectively. This
is because, we applied linguistic rules such as “X causes Y”
and “Y because of X”, to extract the causal phrase X and
the effect phrase Y from the sentence while discarding other
non-relevant words. However, the full sentences are split into
halves without removing any word to prepare the non-causal
pairs (X,Y ) so that both X and Y contain linguistic flows.
Fig. 2 illustrates a few lexical frequencies of the causal phrases
in the training dataset. We notice from Fig. 2(a) that the most
frequent five causal cue words are if, because, cause, due to,
and because of. Fig. 2(b) and Fig. 2(c) display the top causal
bigrams and effect bigrams, respectively. The causal bigrams
are extracted from the causal phrases and similarly, the effect
bigrams are extracted from the effect phrases. Intuitively,
the frequent causal bigrams such as risk uncertainty, new
information and uncertainty factors are part of causes in the
causal relationships. Similarly, the frequent effect bigrams
such as actual results, differ materially and result differ are
the part of effects in the causal relationships. Fig. 3 and Fig.
4 illustrate the word co-occurrence heatmaps of the causal
phrases and the effect phrases respectively, which also support
the bigrams figures described above. We find that the dataset
prepared by following the above approach is good enough
to train a transfer learning model to achieve a comparable
performance to the state-of-the-art approaches.

B. Pair-to-Sentence Conversion

After collecting the training dataset (refer to Section III-A)
that contains both causal and non-causal pairs, we fine-tune
a pretrained BERT model (pretrained on large dataset to
capture general linguistic features) on this dataset. To do so,
we first convert each causal pairs (X,Y ) into a sentence by
following the Hassanzadeh et al. [7]’s technique and represent
the pair as “X may cause Y”. For example, the pair (Australian
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Fig. 2: Top 15 causal cue words, causal and effect bigrams
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Fig. 4: Heatmap of effect words

fire, a jump in carbon concentrations in the atmosphere) is
represented as “Australian fire may cause a jump in carbon
concentrations in the atmosphere”.

C. Fine-tuning BERT Model

BERT [15] is a powerful transformer-based language model.
Recently, it has been used to build the state-of-the-art models
for at least eleven natural language processing tasks. The
BERT model is trained on a large dataset of BooKCorpus
[16] (16GB) and English Wikipedia text. A pretrained BERT
can capture the bidirectional representation of a sentence
as it applies a deep bidirectional encoder mechanism. The
power of BERT relies on the captured language representation
during the pretraining phase. Though BERT model is trained
for generic tasks such as context word and next sequence
prediction, the model can also be fine-tuned to transfer its
rich linguistic knowledge for more task specific needs. We
believe that the rich linguistic knowledge patterns captured by
BERT can be utilized to detect causality too. Hence, we apply
a pretrained BERT model to answer binary causal questions
by fine-tuning the model on our training dataset.

Before we perform the fine-tuning of the BERT model, each
of the training pairs are converted into a sequence such as “X
may cause Y” as described in Section III-B. The sequence
is then passed to the BERT tokenizer which preprocesses the
sentence into a format that is compatible to the BERT model.
More specifically, the BERT tokenizer tokenizes each sentence
into wordpieces [12] and each wordpiece is encoded with their
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corresponding dictionary indexes. The word dictionary is also
prebuilt during the pretraining phase. The encoded wordpiece
sequences are then passed to the BERT model for fine-tuning.
Once the fine-tuning is done, the model is then used on the
test datasets for evaluation.

The overall workflow of our proposed BERT-based transfer
learning approach for binary causal question answering frame-
work is depicted in Fig. 5.

IV. EXPERIMENTS

In this section, we describe our evaluation datasets and
their source and attributes. We also discuss the benchmark
approaches such as CausalNet approach [4] and NLM-BERT
[7] that we have implemented to compare with our approach.
The NLM-BERT model [7] was based on 17 million causal



TABLE III: Sample items from the SemEval dataset

Causal Non causal
X Y X Y
generator energy protein researchers
lamp light rocks pile
collision fire copper tissue
attack sorrow article criticisms
unemployment alcoholism drum ear
gun beam work difficulties

TABLE IV: Sample items from the NATO-SFA dataset

X Y Label
currency appreciation
against US dollar

lower demand for USD causal

country in state of war fair justice system non causal
Technological
dependencies

Vulnerabilities causal

Fair burden sharing increased cost of doing
business

causal

weakening economic envi-
ronment

foreign data providers dom-
inate market

non causal

Climate Change New opportunities causal

sentences and the two thresholds of the model are test dataset
dependent as we discuss in Section II. In this paper, we
improve the NLM-BERT model by proposing an approach for
threshold selection that is not test dataset dependent, but can be
learned from the training dataset. We have also implemented
CausalNet approach [4] based on our own training dataset.

A. Evaluation Datasets

We evaluate our approach on five benchmark datasets -
four datasets published by [7] and a Twitter dataset from our
previous work [9]. Each dataset consists of pairs of texts such
as (X,Y ) and the corresponding labels. A brief description of
these datasets is given below:

• SemEval - The SemEval dataset is a subset of the
SemEval 2010 task 8 [17] dataset. The dataset is about
identifying relationship between words in word pairs. Our
SemEval dataset contains 1730 pairs which includes 865
causal and 865 non causal pairs. The causal pairs are
taken directly from the original dataset. The non causal
pairs are prepared by collecting pairs of words that has
no causal relationship between them. Table III displays a
few samples from the dataset. Any pairs in the table can
be converted into a binary causal question. For instance,
(collision, fire) is an example pair and “Could collision
cause fire?” is the corresponding binary causal question.

• NATO-SFA - The NATO-SFA dataset is prepared from
the Strategic Foresight Analysis (SFA) 2017 report [18]
published by NATO (the North Atlantic Treaty Organi-
zation). The report includes a set of “trend” of changes
in the world and their “implications” curated by human
experts. The trends are considered as causes and the
corresponding implications are considered as the effects.
In the NATO-SFA dataset we have 118 pairs of words
or phrases in total. There are 59 causal pairs and 59
non causal pairs. The non causal pairs are prepared by

TABLE V: Sample items from the Risk Models dataset

X Y Label
Rising regional tensions resource competition non causal
decrease in taxes market disruptors causal
growing social tension reduced tourism causal
increase in taxes liberal politician or party

elected
causal

strengthening economic
environment

increased cost of doing
business

non causal

Natural disasters Increased requirement for
humanitarian support

causal

TABLE VI: Sample items from the CE pairs dataset

X Y Label
broadband access more new businesses causal
increased growth dent consumer and business

confidence
non causal

consistent branding and
pricing

increases revenue causal

increase in corruption negative effect on foreign
investment

causal

management incentives low investment causal
increased government
spending

decreased political stability non causal

combining two phrases or words that has no direct cause-
effect relationship in the report. Table IV shows a set of
example pairs for the NATO-SFA dataset.

• Risk Models - The Risk Models dataset is built using
a set of models that is a part of a decision support
system [19], [20]. Each model is a graph where the nodes
represent an event and the edges represent a cause-effect
relationship between two nodes. The dataset contains 402
causal pairs which are prepared from the relationships
between edges and nodes. The dataset also has the
same number of non causal pairs that are prepared by
combining unrelated edges and nodes. Table V illustrates
a few sample pairs from the Risk Models dataset.

• CE Pairs - The CE (cause-effect) pairs dataset is an
extension of the Risk Models dataset. To build the CE
pairs dataset a set of node labels is assigned to 7 human
annotators and asked to find corresponding cause or effect
phrases by web search. The node labels of the model
graphs are used as the cause or effect phrases and the
corresponding cause of effect phrases are searched on the
web. The dataset contains 302 pairs, where 50% of the
pairs are causal and the remaining pairs are non causal.
Table VI shows a few example pairs from the dataset.

• Twitter - This dataset is prepared by Kayesh et al. [9]
that contains labeled tweets on causality. The tweets in
the dataset are related to Commonwealth Games, Gold
Coast 2018. The dataset includes total 916 pairs with
manually annotated labels. Table VII includes a set of
example causal and non causal pairs from this dataset.

B. Benchmark Approaches

We compare our approach to answer binary causal questions
with a number of existing benchmark approaches. A brief
description of the benchmark approaches is given below.



TABLE VII: Sample items from the Twitter dataset

X Y Label
i ned to be front and centre it’s al about me non causal
families truly suport girl-
child

we can se that sky to is not
the limit

causal

you’re loking for us in the
vilage

you’l know where to find us non causal

#comonwealthgames2018
and what did they do

people were urged to stay
out of gold coast

non causal

they are the best both reached this point causal
a mechanical isue 34am central to benleigh

train has ben canceled
casual

1) NLM-BERT Model and its Variants: This section
presents the NLM-BERT Model proposed by Hassanzadeh et
al. [7] and its variants that we have implemented in our paper.

• NLM-BERT-17M [7] - This is the BERT-based natural
language model proposed by Hassanzadeh et al. [7]. The
approach uses 17M causal sentences as their training
dataset. Since we couldn’t access their training dataset
to reproduce the results we directly report the same
thresholds and results mentioned in the original paper [7]
on four test datasets: SemEval, NATO-SFA, Risk Models
and CE Pairs. The similarity calculation of NLM-BERT
and threshold selection are described later in this section.

• NLM-BERT [7] - To implement NLM-BERT that is local
to our training dataset, we use the pretrained ‘Sentence-
Transformer’ [21] model to transform each sentence into
a 768-dimension vector. For indexing the sentence vectors
and searching the closest k sentences, we use the faiss4

library [22] as suggested by the authors [7]. For this
model, we also use the same thresholds proposed by
Hassanzadeh et al. [7] for all test datasets except the
twitter dataset. For the twitter dataset, we have used the
maximum of the thresholds proposed by Hassanzadeh et
al. [7] for SemEval, NATO-SFA, Risk Models and CE
Pairs.

• NLM-BERT++ - The implementation of this model is the
same as the NLM-BERT model [7] except the usage of
thresholds. Unlike the NLM-BERT model, we use a sin-
gle pair of values for th1 and th2 which is 0.60 and 0.30,
respectively, for all test datasets. These threshold values
are determined automatically by following a technique
described later in this section.

**NLM-BERT Similarity Scores Calculation**. The
NLM-BERT model [7] is dependent on two similarity scores:
bert-sim-score and bert-c-score. To calculate these scores,
the model converts a candidate causal pair (X, Y) into two
sentences “X may cause Y” and “Y may cause X”. Then, it
calculates bert-sim-score and bert-c-score for “X may cause
Y” and “Y may cause X”, respectively. To calculate bert-sim-
score, the approach converts the sentence “X may cause Y”
into a vector vf using a pretrained BERT model and then, finds
a set of k closest vectors {v0, v1, ..., vk−1} from the training
dataset which has been converted into a list of vectors using

4https://github.com/facebookresearch/faiss
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Fig. 6: Threshold selection for the NLM-BERT++ approach

the same pretrained BERT model. Then, it calculates bert-
sim-score based on the average cosine similarity of the pairs
(vf , vi), where i ∈ {0, 1, ..., k − 1} as given in Eq. 1.

bert-sim-score =

∑k−1
i=0 CosineSimilarity(vf , vi)

k
(1)

To calculate bert-c-score, the reverse causal sentence “Y
may cause X” is similarly converted into a vector vr and the
closest k sentence vectors {v0, v1, ..., vk−1} are extracted from
the training dataset. The average cosine similarity score, which
is labeled as bert-reverse-sim-score, is calculated based on the
pairs (vr, vj), where j ∈ {0, 1, ..., k − 1} as given in Eq. 2.
Finally, bert-c-score is calculated by dividing bert-sim-score
by bert-reverse-sim-score as given in Eq. 3.

bert-reverse-sim-score =

∑k−1
j=0 CosineSimilarity(vr, vj)

k
(2)

bert-c-score =
bert-sim-score

bert-reverse-sim-score
(3)

**Automatic Threshold Selection for NLM-BERT++**.
In NLM-BERT model [7], the answer to the causal question
“Could X cause Y?” depends on bert-sim-score and bert-
c-score, which are maximized by thresholds th1 and th2,
respectively. If bert-sim-score and bert-c-score is greater than
th1 and th2, respectively, then the answer is yes and otherwise,
the answer is no as given in Eq. 4.

f(X,Y ) =

{
yes if bert-sim-score > th1&bert-c-score > th2,

no otherwise
(4)

In the original NLM-BERT approach [7], th1 and th2 need
to be finalised for each test dataset, which requires expert
supervision. For this, a prior knowledge of the test dataset
characteristics is required. In this paper, we aim to elimi-
nate this manual threshold selection process by automatically
learning the thresholds from the training data (not the test
dataset). We randomly split the training dataset into training
and validation datasets. We use 75% data for training and
the remaining 25% data for validation. Then, we follow the
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Fig. 7: Pretraiend BERT-based models fine-tuning scores on the validation dataset

same procedure described in NLM-BERT Scores Calculation
to calculate the two scores and use Eq. 4 to answer binary
causal questions and evaluate them on the validation dataset
for different combination of th1 and th2. For th1, the value
varies from 0.0 to 1.0 and the threshold th2 ranges between
0.0 and 1.2. We set the step size to 0.3 that is used to increase
these threshold values. Fig. 6 illustrates the validation scores
for different combinations of thresholds. We observe that both
f1-score and accuracy are maximized for th1 = 0.6 and
th2 = 0.3 as it is evident from Fig. 6.

2) CausalNet Approach: The CausalNet approach [4]
builds a causal network, which is a bidirectional graph where
each node represents a word and each edge corresponds to a
causal relationship, to capture the causal knowledge. Firstly,
the training dataset is preprocessed using the set of causal cue
words given in Table I. For a candidate causal pairs (X,Y ),
a causal score is calculated using the causal graph to decide
whether X is a cause of Y. Firstly, a set of word pairs is
prepared by implementing Cartesian product between words
in both X and Y . For each pair, the necessity and sufficiency
causal scores are calculated from the causal network, which
are then combined together after maximizing by a threshold.
Finally, the pair-wise scores are summed together and divided
by the total number of words in X and Y to calculate the
causal score. Interested readers are referred to [4] for detail
explanation of the approach. In this experiment, we use the
same 100K training causal pairs to build the causal network
and considered a candidate pair (X, Y) as causal if the causal
score is greater than zero.

3) Our Approach: This section presents the automatic
binary question answering models that we have implemented
based on the state-of-the-art BERT model and its variants by
following the approach described in Section III.

• BERT [15] - BERT is a transformer-based language
model proposed by Google Research. This model can
be used for transfer learning based natural language
processing (NLP) tasks. To implement this BERT model
based transfer learning for our task, we use the trans-
formers5 library [23], which provides several pretrained

5https://github.com/huggingface/transformers

transformers based language models. In our experiment,
we use the ‘bert-base-uncased’ version of the pretrained
model with ‘BertForSequenceClassification’ class.

• RoBERTa [24] - RoBERTa is a variation of the BERT
model, which is proposed by Facebook AI. This approach
focuses on hyperparameter tuning and alternative training
strategies of BERT. The authors claim state-of-the-art
performance on at least three publicly avaiable datsets.
To implement this model in our experiment, we use the
‘roberta-base’ version of the pretrained model, which
is released by the transformers library [23] with the
‘RobertaForSequenceClassification’ class.

• DistilBERT [25] - DistilBERT is a light-weight variation
of BERT. The objective of this model is to reduce the
number of hyper parameters and structural complexity of
transformers while keeping the performance comparable
to the original BERT model. The version of pretrained
model we implement in this experiment is ‘distilbert-
base-uncased’ and we use the “DistilBertForSequence-
Classification” class to fine-tune the model.

• ALBERT [26] - ALBERT is another light-weight version
of the BERT model. The ALBERT model is proposed to
handle the issue of large training time, higher usage of
memory and scaling for the large dataset. The approach
applies parameter reduction technique to reduce run-time
and improve memory usage. In this experiment, we fine-
tune the ‘albert-base-v2’ version of the pretrained model
with ‘AlbertForSequenceClassification’ class.

C. Experiment Settings

We perform the experiments in this paper on Google Colab
GPU runtime, which offers 12GB of memory and a Tesla K80
GPU processor that has 2,496 CUDA cores. We run every
BERT-based model by setting batch size to 32, maximum
sequence length to 128, and learning rate to 0.00002. We use
a small learning rate so that the pretrained weights are not
overridden too much. Fig. 7 suggests that the training losses
and validation f1-scores of BERT, RoBERTa and DistilBERT
are plateau at around epoch 4 or 5. From these observations,
we set the number of epochs to 5 for BERT, 4 for RoBERTa,



TABLE VIII: Pretrained BERT-based models fine-tuning scores

Model Score Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6

BERT
Train loss 0.0911 0.0296 0.0161 0.0106 0.0088 0.0064
Val Acc 0.9842 0.986 0.9847 0.9855 0.9864 0.9853
Val F1 0.9836 0.9855 0.9842 0.9848 0.9859 0.9847

RoBERTa
Train loss 0.0784 0.0342 0.0223 0.0154 0.0128 0.0107
Val Acc 0.9876 0.9866 0.9888 0.9898 0.9893 0.989
Val F1 0.987 0.9861 0.9884 0.9895 0.989 0.9886

DistilBERT
Train loss 0.1008 0.0387 0.02 0.0127 0.01 0.0076
Val Acc 0.9799 0.9825 0.9823 0.9823 0.9839 0.9823
Val F1 0.9793 0.9817 0.9818 0.9818 0.9832 0.9818

ALBERT
Train loss 0.5384 0.2096 0.137 0.1061 0.0844 0.0682
Val Acc 0.8909 0.9396 0.9438 0.9647 0.9616 0.9658
Val F1 0.8955 0.94 0.9445 0.9637 0.9607 0.9651

5 for DistilBERT, and 6 for ALBERT. Please refer to Table
VIII to see the detail results of our validation experiments for
choosing the number of epochs for each model.

D. Results and Discussion

In this section, we describe the experiment results for
different experiment settings and test datasets. We compare our
approach with different benchmark approaches and each of the
benchmark approaches except NLM-BERT-17M are trained on
the same training dataset that we describe in Section III-A.

Table IX displays the results of benchmark comparison.
The results show that our transfer learning-based models
outperform Hassanzadeh et al. [7]’s pretrained BERT and
cosine similarity-based approach NLM-BERT model in terms
of f1-score on at least 4 out of 5 test datasets. The NLM-
BERT-17M model has the best f1-scores for NATO-SFA, Risk
Models, and CE Pairs. However, when the model is trained
on our smaller 100K causal pairs dataset with the original
thresholds mentioned by the authors has zero true positive
value on NATO-SFA and CE Pairs datasets. We get similar
result on the Twitter dataset by using 0.94 and 0.90 as th1

and th2, respectively. NLM-BERT++ model outperforms the
NLM-BERT model on all except the Risk Models dataset.
In the Risk Models dataset, the f1-scores are comparable.
Luo et al. [4]’s causal network based approach has varying
results and its f1-scores and accuracy vary from 0.1590 to
0.6095 and from 0.49 to 0.5426, respectively. Comparing
among the BERT-based models, BERT has the best f1-scores
on SemEval and Risk Models datasets, DistilBERT has the
best f1-scores on NATO-SFA and CE Pairs datasets, while
RoBERTa achieves the best f1-score on the Twitter dataset.

From these experiment results we observe that Hassan-
zadesh et al. [7]’s NLM-BERT model is dependent on large
training dataset and expert supervision for manual threshold
selection. Also, the thresholds are not transferable as they
are test dataset specific. In this paper we show that we can
solve this manual threshold selection problem by automatically
learning thresholds from training data. The automatically se-
lected thresholds are not dependent to any test data hence they
are transferable. We also observe that the transfer learning-
based approaches can achieve comparable performance to
NLM-BERT-17M when fine-tuned on a small training dataset.

Although the training dataset is small the rich linguistic
features captured by the pretrained transfer learning models
enable them to achieve comparable performance. These results
also demonstrate the effectiveness of our proposed training
dataset preparation method where we automatically prepared
a training dataset with 100K causal pairs and the same number
of non-causal pairs without any human annotation process.

V. CONCLUSION

In this paper, we have proposed a transfer learning-based
approach to answer binary causal questions. We have presented
a semi-supervised training dataset preparation approach which
automatically collects the training data from news articles us-
ing a set of causal cue words. We have shown how to fine-tune
a pretrained BERT model on our training dataset to answer
binary casual questions. Our approach achieves a comparable
performance to a number of benchmark approaches on five
benchmark test datasets that are extracted by human experts.
From experiments, we observe that we can solve the issue of
large training dataset requirement of many machine learning-
based models by fine-tuning a pretrained transfer learning-
based model on a carefully designed small training dataset.
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