
Code Pointer Network for Binary Function Scope
Identification

Van Nguyen∗, Trung Le∗, Tue Le†, Khanh Nguyen†, Olivier de Vel‡, Paul Montague‡ and Dinh Phung∗
∗Faculty of Information Technology, Monash University, Australia

†AI Research Lab, Trusting Social, Australia
‡Defence Science and Technology Group, Australia

Abstract—Function identification is a preliminary step in
binary analysis for many extensive applications from malware
detection, common vulnerability detection and binary instrumen-
tation to name a few. In this paper, we propose the Code Pointer
Network that leverages the underlying idea of a pointer network
to efficiently and effectively tackle function scope identification
– the hardest and most crucial task in function identification.
We establish extensive experiments to compare our proposed
method with the deep learning based baseline. Experimental
results demonstrate that our proposed method significantly out-
performs the state-of-the-art baseline in terms of both predictive
performance and running time.

Index Terms—Deep Learning, Cyber Security, Function Scope
Identification.

I. INTRODUCTION

In computer security, we often face the situation where
source code is not available or impossible to access and only
binaries are accessible. In these situations, binary analysis is
an essential tool enabling many extensive applications such
as malware detection [1], common vulnerability detection
[2]. Function identification is usually the first step in many
binary analysis methods. This aims to identify function scopes
in a binary and can contribute to a wide variety of appli-
cation domains including searching for vulnerabilities [3],
binary instrumentation [4], binary protection structures with
Control-Flow Integrity [5], and binary software vulnerability
detection [6], [7]. One of the most challenging problems in
both binary analysis and function identification is how to
tackle the scarcity of high-level semantic structures in binaries
which might originate from compilers during the process of
compilation.

There have been many effective approaches proposed for
solving the function identification problem from simple heuris-
tics solutions to more complicated methods employing ma-
chine learning or deep learning techniques. In an early work
of the function identification problem, [8] pointed out that
the task of function start identification is trivially solved for
regular binaries. However, later research of [2] and [9] revealed
that this task is non-trivial and complex in some specific cases
where it is too difficult for heuristics-based methods to figure
out all function boundaries. ByteWeight [10] is a machine
learning based method for function identification. It learns

Acknowledgement: This research was supported under the Defence Sci-
ence and Technology Group’s Next Generation Technologies Program.

signatures for function starts using a weighted prefix tree,
and recognizes function starts by matching binary fragments
with the signatures. Each node in the tree corresponds to
either a byte or an instruction, with the path from the root
node to any given node representing a possible sequence of
bytes or instructions. Although ByteWeight significantly out-
performed disassembler approaches such as IDA Pro, Dyninst
[11], BAP [12], and the CMU Binary Analysis Platform,
it is not scalable enough for even medium-sized datasets.
In particular, it took about 587 compute-hours for training
a dataset of 2,064 binaries [13]. Recently, [14] proposed a
new solution for function identification, which is based on
Control Flow Graph analysis. This method was comparable
with ByteWeight in terms of predictive performance while
requiring less computational time.

The study in [13] is the first work that applied a deep
learning technique for the function identification problem. In
particular, a Bidirectional Recurrent Neural Network (Bidirec-
tional RNN) was used to identify whether a byte is a start point
(or end point) of a function or not. This method was proven
to outperform ByteWeight while requiring much less training
time. However, this method cannot address the function scope
identification problem, the toughest and most essential sub
problem in function identification, wherein the scope (i.e., the
indexes or addresses of all machine instructions in a function)
of each function must be specified. The only way to fulfill this
task using this method is to first pair corresponding function
starts and function ends and make assumption that the scope
inside each pair comprises a function. In addition, if both
start points and end points are simultaneously necessary, two
separate Bidirectional RNNs must be trained independently
and this certainly cannot exploit the semantic relationship
among start points, end points, and other machine instructions
in a function.

In this paper, we propose a method named the Code Pointer
Network (CPN) that employs the idea of a pointer network
[15] in the specific context of function identification. Our
proposed CPN includes one encoder and one decoder. The
encoder takes the sequence of all machine instructions in a
binary while the decoder reads out function scopes in the
given binary. In addition, unlike the work of [13], our proposed
CPN can directly address the function scope identification task,
hence it inherently offers the solutions for other simpler tasks
including function start, function end, and function boundary

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

identifications. We establish extensive experiments to compare
our proposed Code Pointer Network with the Bidirectional
RNN proposed in [13] on 120,000 binaries compiled from
120,000 C/C++ programs generated by Csmith [16] – a famous
tool for generating codes using for the purpose of testing
compilers. The experimental results shows that our proposed
method significantly outperforms the baseline on function
start, function end and function scope identification tasks,
especially for the hardest task of function scope identification.
Regarding the amount of time taken for training, our proposed
CPN is three times faster than baseline (i.e., around two hours
in comparison with six hours) using the same number of
iterations (i.e., 40,000 iterations).

II. RELATED WORK

In this section, we introduce work related to ours. We firstly
present the pointer network and its applications and then move
to discuss work in function identification.

A pointer network [15] is a seq2seq model that deals with
the case when the target dictionary is varied and non-fixed. The
underlying idea of a pointer network is to employ a content-
based attention mechanism to form a discrete distribution
over inputs. Pointer networks have been applied to several
real-world problems including finding convex hulls, Delaunay
triangulation, the traveling salesman problem [15], sorting an
array [17], and natural language processing [18].

Function identification is not a real problem when working
with source codes [19], [20]. However, this is a preliminary
step in binary analysis. Besides the works that used heuristics,
several machine learning works have attempted to solve this
problem. The seminal work of [21] modeled function start
identification as a Conditional Random Field (CRF) in which
binary offsets and a number of selected idioms (patterns)
appear in the CRF. Since the inference on a CRF is very
expensive, the computational complexity of this work is very
high. [10] used a weighted prefix tree to learn signatures for
function starts , and then recognize function starts by matching
binary fragments with the signatures. However, because of
its high computational complexity, this work is not suitable
for large-scale data sources. Recent methods [13] and [22]
proposed to employ a Bidirectional RNN for function start (or
function end) and function scope identification respectively.
However, those work cannot be applied directly to or cannot
address all cases (e.g., in the case, there exist functions nested
in a function) of the toughest and most essential problem –
the function scope identification problem. In 2017, Andriesse
et al. [14] based on Control Flow Graph analysis to propose
a new solution for function identification.

III. THE FUNCTION IDENTIFICATION PROBLEM

This section addresses the function identification problem.
We begin with definitions of the sub problems in the function
identification problem, followed by a typical example of
source code generated by Csmith and its binaries compiled
under optimization levels O1 and Ox. Finally, we discuss on
the challenges in this task.

A. Problem Definitions
Given a binary program P , our task is to identify the

necessary information in its n functions {f1, ..., fn} which is
initially unknown. According to the nature of information we
need from {f1, ..., fn}, we can categorize the task of function
identification into the following such problems.

Function start identification: In this problem, we need
to specify the set S = {s1, ..., sn} which contains the
first machine instructions of the corresponding functions in
{f1, ..., fn}.

Function end identification: In this problem, we need
to identify the set E = {e1, ..., en} which contains the
end machine instructions of the corresponding functions in
{f1, ..., fn}.

Function boundary identification: The function bound-
ary identification problem is harder than the function start
and function end identification problem. In this problem,
we have to point out the set of (start, end) pairs SE =
{(s1, e1) , ..., (sn, en)} which contains the pairs of the function
start and the function ends of the corresponding functions in
{f1, ..., fn}.

Function scope identification: This is the hardest problem
in the function identification task. In this problem, we need to
find out the set {(f1,s1 , ..., f1,e1) , ..., (fn,sn , ..., fn,en)} which
specifies the machine instructions in each function f1, ..., fn in
the given binary program P . It is apparent that the solution of
this problem covers those of three aforementioned problems.
We note that our proposed CPN addresses this hardest prob-
lem, hence inherently offering solutions for the other problems.

B. Running Example
In Fig. 1, we show a typical example of a function generated

by Csmith. According to our observation, source codes gener-
ated by Csmith have a wide range of variety in both control and
data flows. Fig. 2 shows the assembly code of the source code
in Fig. 1 which was compiled with the optimization levels O1
and Ox on the Windows platform. It can be observed that the
entry pattern for each optimization level is different. Besides
that the assembly code corresponding with the option Ox has
three rets (i.e., return instruction) and the last ret is the real
end point while the assembly code corresponding with the
option O1 has only one ret. We further observe that in the real
generated binary codes, the patterns for the entry point vary in
a wide range and can start with push, mov, movsx, inc, cmp,
or, and, etc. These make the task of function identification
very challenging.

C. Challenges of The Function Identification Task
In what follows, we list some challenges of the task of func-

tion identification. These challenges originate from various
behaviors of compilers when compiling source codes under
various combinations of optimization levels (e.g., O1, O2, and
O3 or Ox), processor architectures (e.g., x86 and x64), and
platforms (e.g., Windows or Linux).

Not every machine instruction belongs to a function:
Compilers may introduce additional instructions for alignment
and padding between or within a function which leads to some
machine instructions that do not belong to any function.

Figure 1. An example source code of a function generated by Csmith.

(3.a) Compiled using MVS with O1. (3.b) Compiled using MVS with Ox.

Figure 2. The assembly codes of the example source code in Fig. 1 compiled
using Microsoft Visual Studio (MVS) with the x86 architecture and Window
platform under the optimization levels O1 (left) and Ox (right).

Functions may be non-contiguous: There may exist gaps
between functions which can jump tables, data, or even
instructions for completely different functions. In addition, as
observed by [23], function sharing code can also lead to non-
contiguous functions.

Functions may have multiple entries: High-level languages
use functions as an abstraction with a single entry. When
compiled, however, functions may have multiple entries as a
result of specialization. In addition, the number of patterns
for function start can be enormous and varied according to
optimization levels, processor architectures, and platforms.

IV. CODE POINTER NETWORK FOR THE FUNCTION
IDENTIFICATION PROBLEM

In this section, we present our proposed Code Pointer
Network (CPN) that can tackle the function identification task.
We start with the discussion of how to process instructions to
input to our CPN, followed by technical details for the training
and testing procedures.

A. Processing input statement

We compiled the source code programs for the x86 archi-
tecture with three different optimization levels (O1, O2 and
Ox). Each machine instruction may have a different size which
can be 4, 5, 6, 7, 8 bytes or even more. To the best of
our knowledge, the first 4 bytes in x86 architecture mostly
contains the crucial information for a machine instruction

(i.e., the opcode and other crucial addresses), hence before
feeding these machine instructions to the CPN, we preprocess
them as follows: (1) keep the first 4 bytes from the left for
machine instructions which are longer than 4 bytes and (2)
padding 0 to the right of the machine instructions which
have fewer than 4 bytes. For example, the machine instruction
“mov dword ptr [0x42b008], 0x0” has the corresponding value
“C70508B0420000000000” in hex format which is 10 bytes
long, we then remove the last 6 bytes and keep the first 4
bytes to get the numerical value “C70508B0”. For the machine
instruction “xor al, al” which contains 2 bytes “32C0” in the
hex format, we then pad with 0 to fill in the third and fourth
bytes and gain the numerical value “32C00000”.

B. Code Pointer Network

1) Training procedure: The Code Pointer Network archi-
tecture is depicted in Fig. 3. Our CPN takes as input a binary
program including a sequence of many machine instructions
which may belong to different functions. The task of the CPN
is to read out the scope of the first function in the input binary
program. To this end, as in a typical pointer network, our
proposed CPN consists of two components: one encoder and
one decoder. The encoder’s task is to encode the sequence of
machine instructions in a binary program, while the decoder
tries to decode the encoded output of the encoder to read out
the indexes of the machine instructions in the first function in
the given binary program. In addition, to signal the end of the
function, we introduce the specific symbol EOF whose value
is iE which is randomly initialized. This value iE is inputted
to the CPN encoder right after the last instruction in the binary
program (cf. Fig. 3).

To reduce the sequence length of the CPN encoder, at
a time, we input two consecutive functions including gaps
between functions if existing in a binary program to the
encoder. For example, as shown in Fig. 3, a binary program
that consists of 4 functions forms 3 pairs of two consecutive
functions (i.e., (gap ,func1, gap, func2, gap), (gap, func2,
gap, func3, gap), and (gap, func3, gap, func4, gap)) and the
encoder takes each pair at a time. Let us now define the input
sequence I = {i1, i2,, il+1} (i.e., the machine instructions in
a pair) and the output sequence O = {n1, n2,, nm, nm+1}
where nm+1 specifies the index of the symbol EOF and
which includes the indexes of machine instructions in the first
function in the input pair. We learn the model parameters θ
by maximizing the following conditional probabilities over the
training set D which includes the pair I and the indexes of
machine instructions in its first function O:

θ∗ = argmax
θ

∑
(I,O)∈D

log p(O|I; θ)

where we have defined

p(O|I; θ) =
m∏
k=1

p(nk+1|n1, ..., nk, I; θ) (1)

We now denote {h1,h2,,hl+1} and {s0, s1, s2,, sm}
with s0 = s as the encoder hidden states and decoder hidden
states, respectively. Since sk is a function of n1, ..., nk, I or a

Figure 3. The Code Pointer Network (CPN) architecture.

lossy summary of this sequence, we can reasonably simplify
p(O|I; θ) as follows:

p(O|I; θ) =
m∏
k=1

p(nk+1|sk; θ)

log p(O|I; θ) =
m∑
k=1

log p(nk+1|sk; θ)

To define the probability log p(nk+1|sk; θ) where nk ∈
{1, 2, . . . , l + 1}, we first compute the alignment scores be-
tween the decoder hidden state sk and the encoder hidden
states hj , ∀j = 1, . . . , l + 1:

ajk = vTtanh(Uhhj + Ussk) (2)

or ajk = vTtanh
(

U
[

hj
sk

])
(3)

where the vector v and the matrices U, Uh, Us are learnable
parameters.

We then apply the softmax to [ajk]
l+1
j=1 to gain the vector bk

and define p(nk+1|sk; θ) as the nk+1-th element in this vector:

bk = softmax
(
[ajk]

l+1
j=1

)
p(nk+1|sk; θ) = bk,nk+1

2) Predicting procedure: In the predicting procedure, given
a specific binary program, we first input this binary program
into the encoder of the trained model to read out the first func-
tion (machine instructions and their positions). The detected
function is then eliminated from the binary program and the
remaining binary code is once again inputted to the CPN. This
process is repeated until the last function. We visualize the
process for the predicting procedure in Fig. 5.

V. EXPERIMENTS

In this section, we present the experimental results of our
proposed Code Pointer Network compared with the Bidirec-
tional recurrent neural network (the Bidirectional RNN). We
also investigate the performance of our CPN with various
RNN cells (e.g., Long Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU) cells) and alignment score formulas
as shown in Eqs. (2 and 3). We note that we could not

experiment with ByteWeight [10] since this method is not
scalable enough for our data (i.e, ByteWeight took about
587 compute-hours for training a dataset of 2,064 binaries
[13] while our data has 120,000 random C/C++ programs).
In addition, the Bidirectional RNN [13] has been proven to
outperform ByteWeight.

A. Data Collection

We used Csmith [16], which is a well-known tool for
generating random C/C++ programs conforming dynamically
and statically to the C99 standard, to generate 120,000 random
C/C++ programs. Each generated program has a number of
functions in the range {2, 3, 4, 5}. Binaries were then compiled
from the source programs using Microsoft Visual Studio in the
debug mode with one of three different optimization levels
O1 (for creating the smallest code), O2 (for creating the
fastest code), and Ox (with full optimization options including
smallest and fastest code) under x86 (32 bit) architecture.
Finally, we used DIA2Dump1 to read the debug files (i.e.,
*.pdb) for creating the labelled dataset.

B. Experimental Setting

We divided the binaries into three random parts; the first
part contains 80% of the binaries used for training, the second
part contains 10% of the binaries used for testing, and the
third part contains 10% of the binaries for validation. For each
the method, we trained the competitive methods over 40,000
iterations.

For the Bidirectional RNN, we used identical settings and
the architecture proposed in [13]. In particular, we chopped the
binaries into chunks of 1,000 bytes. This means that we run
recurrent neural networks forward and backward on a 1000-
byte sequence from the corresponding binaries. The size of
the hidden state for the forward and backward RNN is 32.
Then the forward and backward RNN are concatenated to
feed into a linear transformation and the soft-max function.
This process produces a probability distribution to identify
whether a byte corresponds to the beginning (or end) of a

1https://docs.microsoft.com/en-us/visualstudio/debugger/debug-interface-
access/debug-interface-access-sdk

Figure 4. The alignment scores in the CPN network.

Figure 5. The predicting procedure of the CPN network.

function or not. We employed the RMSprop optimizer with
the learning rate varying in the range of {0.01, 0.1} and the
batch size is set to 32. We trained the models for function
start identification task and function end identification task
separately. The Bidirectional RNN proposed in [13] is not
directly applicable to function scope identification. To make
it applicable to this task, we first paired the corresponding
function starts and function ends detected by two Bidirectional
RNN and assume that each pair forms a boundary for a
function where all machine instructions in this boundary are
counted as that in this function and counted it as a correct
function prediction if this matches exactly a real function.

For our model in the training process, we used the encoder
with a sequence of 100 hidden states where the hidden state
size is 128. For each binary, we concatenate sequentially two
functions as input for the Code Pointer Network in the encoder
process. We employed the Adam optimizer with the default
learning rate 0.001 and the batch size 128. In addition, we
applied Max-norm regularization to prevent the over-fitting
problem when training the model. Because our CPN solves
the function scope identification task, it can be inherently
applicable to the function start and function end identification
tasks.

We implemented the Code Pointer Network and the Bidirec-
tional RNN in Python using Tensorflow [24], an open-source
software library for Machine Intelligence developed by the
Google Brain Team. We ran our experiments on an Intel Xeon
Processor E5-1660 which has 8 cores at 3.0 GHz and 128 GB
of RAM.

C. Metrics

In order to evaluate performances of function identification
methods, we employ three measures including recall (R),

Figure 6. The confusion table.

precision (P) and F1-score (F1) which are widely used to
report predictive performances on imbalanced datasets. This is
due to the fact that the number of function starts, function ends,
etc., are fewer than the number of machine instructions. Given
a dataset with two kinds of labels: positive and negative labels,
the precision is the fraction of the number of true positive
instances among the number of original positive instances. The
recall is the faction of the number of true positive instances
among the number of predicted positive instances. The F1-
score is the most important measure which aggregates both
precision and recall. The recall, precision and F1-score have
the following forms:

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2× P×R

P + R

where TP, FP and FN are the number of true positives,
false positives and false negatives, respectively which can be
defined using a confusion table as shown in Fig. 6.

Table I
COMPARISON OF OUR CODE POINTER NETWORK AND THE BIDIRECTIONAL RNN. THE BEST RESULTS (%) ARE EMPHASIZED IN BOLD.

Optimization O1

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN 96.53% 97.26% 96.89% 94.09% 94.64% 94.36% 92.77% 93.15% 92.96%
Bidirectional RNN 86.30% 98.14% 91.84% 96.42% 81.58% 88.38% 81.56% 82.17% 81.87%

Optimization O2

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN 95.18% 93.27% 94.23% 89.60% 87.87% 88.73% 87.55% 88.20% 87.87%
Bidirectional RNN 82.48% 98.16% 89.63% 87.86% 72.52% 79.45% 73.14% 78.43% 75.69%

Optimization Ox

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN 94.43% 93.77% 94.10% 89.07% 88.57% 88.82% 87.34% 88.01% 87.67%
Bidirectional RNN 74.39% 80.02% 77.10% 79.62% 70.14% 74.58% 71.18% 73.21% 72.18%

Table II
COMPARISON OF THE VARIANTS OF CPN USING DIFFERENT TYPES OF RNN CELLS INCLUDING LSTM, GRU AND THE STANDARD RNN CELL. THE

BEST RESULTS (%) ARE EMPHASIZED IN BOLD.

Optimization O1

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 95.32% 96.42% 95.87% 92.75% 90.85% 91.79% 90.27% 91.19% 90.73%
CPN-GRU-01 92.78% 96.45% 94.58% 90.14% 90.52% 90.33% 84.91% 87.40% 86.14%
CPN-RNN-01 91.32% 96.16% 93.68% 90.07% 90.42% 90.24% 85.26% 86.54% 85.90%
Optimization O2

Methods Function Start Functions End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 93.09% 93.38% 93.23% 87.04% 87.36% 87.20% 86.75% 87.96% 87.35%
CPN-GRU-01 93.03% 93.25% 93.14% 87.48% 87.69% 87.58% 84.35% 85.45% 84.90%
CPN-RNN-01 91.76% 92.86% 92.30% 86.52% 87.63% 87.07% 83.41% 84.24% 83.82%
Optimization Ox

Methods Function Start Functions End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 92.47% 93.16% 92.81% 86.35% 85.54% 86.94% 86.56% 87.71% 87.12%
CPN-GRU-01 90.81% 93.94% 92.35% 85.87% 88.71% 87.27% 84.59% 84.73% 84.65%
CPN-RNN-01 90.53% 92.43% 91.47% 84.95% 87.56% 86.24% 83.32% 84.17% 83.74%

Table III
COMPARISON OF VARIANTS OF CPN USING EQ. (2) (CPN-LSTM-01) AND EQ. (3) (CPN-LSTM-02) FOR COMPUTING ALIGNMENT SCORE. THE BEST

RESULTS (%) ARE EMPHASIZED IN BOLD.

Optimization O1

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 95.32% 96.42% 95.87% 92.75% 90.85% 91.79% 90.27% 91.19% 90.73%
CPN-LSTM-02 96.53% 97.26% 96.89% 94.09% 94.64% 94.36% 92.77% 93.15% 92.96%
Optimization O2

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 93.09% 93.38% 93.23% 87.04% 87.36% 87.20% 86.75% 87.96% 87.35%
CPN-LSTM-02 95.18% 93.27% 94.23% 89.60% 87.87% 88.73% 87.55% 88.20% 87.87%
Optimization Ox

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 92.47% 93.16% 92.81% 86.35% 85.54% 86.94% 86.56% 87.71% 87.12%
CPN-LSTM-02 94.43% 93.77% 94.10% 89.07% 88.57% 88.82% 87.34% 88.01% 87.67%

D. Experimental Results

Code Pointer Network versus Bidirectional RNN: We com-
pare our method using Eq. (3) for computing alignment scores
and Long Short Term Memory (LSTM) for RNN cell with the
Bidirectional RNN proposed in [13]. The experimental results
show that our proposed method achieves better performance
in most cases in terms of predictive performance and training
time. In particular, Table I indicates that our proposed CPN
achieved better predictive performance (i.e., R : Recall, P:
Precision, and F1: F1-score) with a wide margin in most
cases, especially for the highest optimization level Ox our
CPN significantly outperformed the baseline in all measures.
Regarding the training time, our CPN is approximately three
times faster than the baseline. In particular, with the same
number of iterations (i.e., 40,000 iterations), the CPN took
around 2 hours to finish, while the baseline took around 6
hours.

Variations in RNN cells: In Table II, we compare the
performances of our CPN using different RNN cells such
as Long Short Term Memory (CPN-LSTM-01) and Gated
Recurrent Unit (CPN-GRU-01) with the basic RNN cell (CPN-
RNN-01) with Eq. (2) for computing alignment score. It can be
observed that LSTM achieved better performance than GRU
which in turn performed better than the basic RNN cell in
most cases.

Variation in attention mechanism techniques: In Table III,
we compare the performances of our CPN using different
formulas for computing alignment score as in Eq. (2) (CPN-
LSTM-01) with Eq. (3) (CPN-LSTM-02) while employing the
LSTM cell. The experimental results show that CPN-LSTM-
02 obtained better performances in most cases compared with
CPN-LSTM-01.

VI. CONCLUSION

In this paper, we have proposed the novel Code Pointer
Network for dealing with the function identification problem,
a preliminary and significant step in binary analysis for many
security applications such as malware detection, common
vulnerability detection and binary instrumentation. Specifi-
cally, the Code Pointer Network leverages the underlying idea
of a pointer network in order to tackle the function scope
identification, the hardest and most crucial task in function
identification. The experimental results show that the Code
Pointer Network can achieve the state-of-the-art performances
in terms of efficiency and efficacy.

REFERENCES

[1] J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Binary
code extraction and interface identification for security applications,”
in Proceedings of the 17th Network and Distributed System Security
Symposium, 2010.

[2] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching
errors in deployed software,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, 2009.

[3] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of the
2015 IEEE Symposium on Security and Privacy, 2015.

[4] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “Pebil:
Efficient static binary instrumentation for linux,” International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), 2010.

[5] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries,” in National Diabetes Services
Scheme (NDSS), 2015.

[6] T. Le, T. Nguyen, T. Le, P. Montague, O. De Vel, L. Qu, and
D. Phung, “Maximal divergence sequential autoencoder for binary
software vulnerability detection,” in In International Conference on
Learning Representations, 2019.

[7] T. Nguyen, T. Le, K. Nguyen, O. De Vel, P. Montague, J. Grundy,
and D. Phung, “Deep cost-sensitive kernel machine for binary software
vulnerability detection,” in Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, 2020.

[8] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly
of obfuscated binaries,” in Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, 2004.

[9] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in
Proceedings of the 22Nd USENIX Conference on Security, 2013.

[10] T. Bao, J. Burket, and M. Woo, “Byteweight: Learning to recognize func-
tions in binary code,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014.

[11] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumen-
tation,” in Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools, 2011.

[12] D. Brumley, I. Jager, T. Avgerinos, and dward J. Schwartz, “Bap: A
binary analysis platform,” in Proceedings of the 23rd International
Conference on Computer Aided Verification, 2011.

[13] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015.

[14] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2017.

[15] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Ad-
vances in Neural Information Processing Systems 28, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran
Associates, Inc., 2015, pp. 2692–2700.

[16] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” SIGPLAN Not., vol. 46, no. 6, pp. 283–294, Jun.
2011.

[17] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” arXiv preprint arXiv:1511.06391, 2015.

[18] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing
the unknown words,” arXiv preprint arXiv:1603.08148, 2016.

[19] V. Nguyen, T. Le, T. Le, K. Nguyen, O. DeVel, P. Montague, L. Qu, and
D. Phung, “Deep domain adaptation for vulnerable code function iden-
tification,” in 2019 International Joint Conference on Neural Networks
(IJCNN), 2019, pp. 1–8.

[20] V. Nguyen, T. Le, O. De Vel, P. Montague, J. Grundy, and D. Phung,
“Dual-component deep domain adaptation: A new approach for cross
project software vulnerability detection.” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2020.

[21] N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt, “Learning to
analyze binary computer code.” in AAAI, 2008, pp. 798–804.

[22] V. Nguyen, T. Le, T. Le, K. Nguyen, O. De Vel, P. Montague, J. Grundy,
and D. Phung, “Code action network for binary function scope identifi-
cation,” in Pacific-Asia Conference on Knowledge Discovery and Data
Mining, 2020.

[23] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,”
SIGARCH Comput. Archit. News, vol. 33, no. 5, pp. 63–68, Dec. 2005.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

