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Abstract—Human activity recognition (HAR) is an important
task in many internet of things (IoT) applications. In recent years,
significant efforts have been made towards achieving the highest
possible recognition performance (accuracy and robustness) by
using advanced machine learning techniques, including deep
learning. However, to the best of our knowledge, the adversarial
vulnerability of the Doppler sensor-based HAR systems has not
been studied. In other domains such as computer vision, the
vulnerability of deep learning algorithms to adversarial samples
has attracted tremendous research interests in the past few years.
In this work, we investigate the adversarial vulnerability of
the Doppler-based human activity recognition system. Using a
case study we demonstrate that the adversarial examples can
significantly degrade the performance of the human activity
recognition. Specifically, the basic iterative method (BIM) attack
can reduce classification accuracy by as much as 85%. We also
discuss different types of attacks, e.g., data poisoning attacks and
potential strategies of protecting the Doppler-based HAR systems
against adversarial attacks.

Index Terms—Adversarial attack, Activity recognition, Time
series classification

I. INTRODUCTION

Human activity recognition (HAR) is an important task in
many internet of things (IoT) applications, such as security,
home care, and smart facilities. Accurate human activity recog-
nition provides not only context information for prompt service
decision making, but also long-term analytics for precision
and personalized services. For example, in the pressure ulcer
prevention and care application, we can monitor the activity
of the patients and send notifications to change their positions
on bed if they have not moved for certain amounts of time,
in order to prevent pressure ulcer [1]. In the patient vital sign
monitoring application, timely notifications to caregivers can
save patients’ lives [2].

There are many different ways of sensing human activities.
Wearable sensors can be attached to human body to monitor
their activity and location. However, this type of systems
requires user cooperation, and may cause discomfort to users.
Cameras can monitor human activity in a non-cooperative way,
but they have the privacy issue in many scenarios. As wireless
devices become more and more pervasive recently, wireless
sensor becomes a cost-effective and promising sensing modal-
ity. For example, [3] demonstrates that they can use radio
frequency (RF) sensors to estimate human pose accurately
through walls. [4] uses channel state information (CSI) from
IEEE 802.11 radio chips to recognize human activity in a tag-
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free way. Work in [2] uses Doppler sensors and received signal
strength (RSS) measurements from IEEE 802.15 radio chips
to detect occupancy and classify human activity.

From a machine learning perspective, HAR is a multiclass
classification problem where each class represents a human
activity. Towards achieving the highest possible recognition
performance (accuracy and robustness), many machine learn-
ing modeling techniques have been explored. As the deep
neural networks (DNN)-based machine learning methods have
achieved the state-of-the-art performance in the computer
vision related applications, researchers have also used convolu-
tional neural networks (CNN) and other deep learning methods
in the human activity wireless sensing application [5], [6].

Recent studies have found the vulnerability of machine
learning methods, e.g., DNN algorithms, to the adversarial
examples [7]-[11]. These adversarial examples are small
perturbations that cause DNN models to make false predictions
with high confidence scores, as illustrated in Figure 1. After [7]
first demonstrated the effect of the adversarial examples on the
image classification problem, researchers have been proposing
different new attack and defense methods for various natural
language processing (NLP), reinforcement learning and other
applications [12], [13]. More recently, [14] explores the
adversarial vulnerability for the HAR using the smartphone
data. However, to the best of our knowledge, the adversarial
vulnerability of the deep learning models has not been studied
for the non-intrusive Doppler sensor-based HAR systems [2].
We argue that adversarial attacks to the non-contact HAR
systems can have significant economic and social impact, and
thus the study of the adversarial vulnerability for the Doppler-
based HAR systems is critical and urgent. For the Doppler
sensor-based HAR system concerned in this paper, if the
data acquisition system or the WiFi connection was attacked
and adversarial examples were fed into the data during the
inference stage, as shown in Figure 2, a machine learning
model could misclassify the life-threatening “no vital sign”
case as the “lying on bed” case, which would cause life-critical
issues for a real patient monitoring system.

Aiming for exploring the adversarial vulnerability of HAR
system, in this paper, we adapt the adversarial attack methods
popularly used for the computer vision and natural language
processing applications to a specific [oT time series clas-
sification [16] problem, i.e., Doppler-based human activity
recognition [15]. We demonstrate that the adversarial exam-
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Fig. 1: Adversarial examples for Doppler-based human activity recognition: CNN model prediction is correct - “turning on
bed” for (a) with 0.99 confidence score, but incorrect - “lying on bed” for (c) with 0.96 confidence score.

ples is a practical challenge for applying machine learning
algorithms to the human activity Doppler sensing problem, as
shown in Figure 1. Specifically, we apply three adversarial
attack methods: fast gradient sign method (FGSM), basic
iterative method (BIM) and C&W method, to the Doppler time
series data. From our experiments, we demonstrate that the
BIM attack method can reduce the recognition/classification
accuracy by up to 85%. We also discuss the potential risks
of data poisoning attack, and propose research topics and
directions to investigate and improve adversarial robustness
of human activity recognition.
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Fig. 2: Architecture of Doppler-based human activity monitor-
ing system.

To the best of our knowledge, our paper is the first one
in exploring the adversarial vulnerability of the non-intrusive
Doppler-based HAR systems. Our initial results obtained in
this paper reveal a potential security problem in HAR. We
hope our work here can stimulate more research interests in
this direction. The rest of this paper is organized as follows.
Section II reviews related work. Attack strategies are discussed
in Section III. In section IV we present our experiments and
their results. Section V concludes the paper.

II. RELATED WORK

For the human activity recognition problem, various wire-
less sensing techniques have been proposed and developed re-
cently [5]. [4] uses channel state information (CSI) of wireless

devices and proposed a sparse representation classification-
based method to recognize lying, sitting, standing and walking
activities. [2] fuses the received signal strength (RSS) measure-
ments from a wireless network with the Doppler signal and
uses the support vector machine (SVM) method to classify
four activities. In [6], four wireless testbeds including WiFi,
ultrasound, mmWave and visible light are used to extract
environment-independent features from convonlutional neural
networks (CNN) for device-free human activity recognition.
In this work, we target on the adversarial robustness of the
DNN-based algorithms on the Doppler sensor data.

There are various adversarial attack methods for a deep
learning model. Two common adversarial attacks are the
inference-time attack and the training-time attack. For the
inference time-attack, an adversary adds small perturbations to
the measurements so that the machine learning model produces
incorrect predictions with high confidence [7], [8], [17], [18].
Later, [9] demonstrate a way of generating an universal adver-
sarial perturbation for a trained classifier, [10] show a approach
of generating one-pixel attack against a classifier. Most of
attack are generated in the digital domains by manipulating
the digits of an image, [11] demonstrate that this type of
attack are also feasible in the physical world. For the training-
time attack, training data are corrupted with carefully designed
backdoors or triggers [19]. Through injecting the backdoor
into the training data, the poisoned model will make false
predictions [20]. In this paper, we demonstrate the inference-
time attack using experimental data from a real-world human
activity recognition application, and we discuss the training-
time attack as a future research topic.

Most of the current adversarial attacks are demonstrated in
the computer vision and natural language processing related
applications [7], [8], [21]. For example, [8] uses the fast
gradient sign method, and [21] uses the forward derivative
method to craft adversarial examples. More recently, [22] uses
the FGSM and BIM methods on time series classification
to investigate the adversarial attacks on the vehicle sensor
and food data classification problems. However, we are not
aware of any research on the adversarial attacks on the
Doppler based human activity recognition problem. We present



research effort on this direction and demonstrate the challenge
from adversarial attacks on the state-of-the-art human activity
recognition algorithms.

IIT. ADVERSARIAL ATTACK STRATEGIES

In this section, we describe our strategies of attacking
HAR systems. Specifically we describe different approaches
of generating adversarial examples for inference-time attacks.
The inference-time attack refers to an adversarial attack in the
inference stage after a model is built and deployed. It includes
targeted attack and non-targeted attack [12]. We do not limit
our attack to a particular class, thus we generate adversarial
examples with the more general non-targeted attack. In this
work, we perform three type of inference-time attacks: FGSM
[8], BIM [23] and C&W [17], which will be described in detail
as follows. For description convenience, we denote the input
time series as x = (z1, 22, ...,T,) € R™, the class label as
I € Z*, the perturbed data, i.e., the adversarial examples, as
x’ € R", adversary targeted label as I’ € Z*, and the deep
learning model as a function fy(-), which maps input data x
to a label [. Then, generation of adversarial examples can be
formulated as following:

min X' = x|,

st fo(xX') =1, fo(x) =11 # 1
A. FGSM attack

Fast Gradient Sign Method (FGSM) was first proposed
in [8]. Objective of FGSM method is to reduce the time
complexity for generation of the adversarial examples. The
adversarial examples from the FGSM attack can be generated
as:

x' = x + esign(VxJo(x,1))

where Jy(-,-) is a loss function, e.g., cross entropy of the
model fy. FGSM only calculates the gradient once. After the
gradient is obtained, it takes sign of the gradient and multiplied
by a small perturbation €, a hyper parameter controlling the
perturbation magnitude, to generate the adversarial examples.
Compared with other methods, FGSM is efficient in terms of
computational complexity.

B. BIM attack

Basic Iterative Method (BIM) was first introduced in [23].
It extend FGSM method into a multi-step process. The ad-
versarial examples from the BIM attack can be formulated
as:

Xy =X, Xj = Clipxm{x; + asign(VyJy(x, l))}

where Clip, , {x'} =
a controls the size of the update. Compared with FGSM,
BIM attack needs multiple iterations to obtained adversarial
examples. During each iteration, new x’ will be clipped by
1, which is a hyper parameter controlling the strength of
the perturbation. To adapt from the image-based adversarial
examples to the time series data, we remove the constrains of
x € [0,255] from the formulation [23] .

min {x + 7, max {x — n,x’}}, and

C. C&W attack

Carlini & Wagner’s adversarial attack (C&W) was first
proposed in [17]. It formulate the problem as an alternative
of a constrained optimization problem. The C&W adversarial
attack can be formulated as:

rnainD(X,x+5) +c-g(x+9)
st.x+6€][0,1]"

where D(-,-) is the distance metric, g(-) < 0 if and only if
fo(x 4+ 9) # 1. C&W attack also requires multiple iterations
to craft adversarial examples, and it is effective for most of
existing adversarial detecting defenses [12]. Note that all the
above hyper parameters, e.g., € in FGSM, can be chosen based
on the range of the data. We will discuss this in more details
in Section IV.

IV. EXPERIMENTS AND RESULTS
A. Data description

In this work, we present and discuss the adversarial ro-
bustness of the state-of-the-art machine learning techniques
applied to the Doppler motion sensor-based human activity
recognition problem [15]. The architecture and components
of the Doppler-based human activity recognition system are
shown in Figure 2. Two Doppler sensors are used to capture
the vital signs and activities of the patients either on the hos-
pital bed or in the room. The human sensing, edge computing
and wireless connectivity components are all in a sensor box,
as illustrated in the blue block in Figure 2 [15].

In [2], human subjects were recruited to perform over forty
trials of four activities: (1) walking in room, (2) lying on
bed, (3) body turning on a bed, and (4) no vital signs (empty
room). We use the data from the human activity experiments
performed in [2] to evaluate the adversarial robustness of the
CNN networks.

B. Data Processing

To capture the temporal features of the Doppler time series
from different activities, we use a window of length 256 based
on the sampling rate of the Doppler system, as mentioned in
Section IV-C. All time series data from 42 trials are split into
21 training cases and 21 testing cases, with 1200 samples
in each trial. Through the moving window approach [16],
we obtained 19845 samples for training and 19845 samples
for testing. Four samples from four activity states are shown
in Figure 3. Note that the Doppler time series are from
the analog-to-digital converter of the HAR system shown in
Figure 2

From Figure 3, we see that the Doppler time series from
different activity states clearly show different patterns. The
time series from the “no vital signs” state have much smaller
variation compared with the other activity states. The Doppler
data from the “lying on bed” state shows a clear pattern of
periodic changes due to the respiration motion of the person.
The “turning on bed” activity has the largest magnitude change
in time series, while the “walking in room” activity shows
random variations.
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Fig. 3: Doppler time series for four activity states.

C. Deep Learning Model Generation

For human activity recognition, CNN algorithms have
achieved the state-of-the-art performance [5], [6]. CNN also
provides an end-to-end solution, which does not require hand-
crafted features. We build a CNN network to classify four
activity states described in Section IV using the Doppler sensor
data [2]. As shown in Figure 5, we construct two convolutional
layers with the rectified linear unit (ReLU) as the activation
function, and a fully connected layer with the softmax function
before the output layer. The overall architecture of the CNN
network is shown in Figure 5.

For training the deep learning model, we use the Doppler
data collected in [2]. We use the overlapping moving window
approach [16], to group time series into many blocks, as
illustrated in Figure 4, to create large training and testing
datasets. The window size should be chosen based on the
sampling rate of the sensing system such that the model can
learn the temporal features of the time series data.
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Fig. 4: Doppler time series with overlapping time windows (a
window size of 256 is used to capture the temporal correlation
of the Doppler time series).

D. Model training and performance measures

We implement the CNN networks mentioned above with
Python deep learning package Keras [24]. Since dimension-
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Fig. 5: Architecture of CNN networks for Doppler-based
human activity recognition.

ality and size of the data is not large, we perform the model
training on a local machine with Intel Core 17-7820HQ CPU.

For evaluating classification/recognition performance, we
use confusion matrix to capture the misclassification counts.
We calculate the window-based classification accuracy and
case-based classification accuracy. To be specific, window-
based classification performance evaluates the classifier’s per-
formance on all the sliding windows (total 19845 samples).
Case-based classification performance evaluates the classifier’s
performance on all the test cases (total 21 test cases) by
majority voting of the sliding windows in the same test case.

E. Attack-free Performance

We first evaluate the attack-free performance of the CNN
networks as the baseline. Since we divide the Doppler time
series into windows to generate enough samples for training,
we perform two evaluations: the first evaluation is the window-
based evaluation, where the CNN is evaluated on all 19845
testing samples; the second evaluation is the trial or case-
based evaluation, where the evaluation is performed for 21
testing cases. The evaluation results, the confusion matrices,
are shown in figure 6. We see that the CNN algorithm
achieves high classification accuracy without any adversarial
attacks: the average classification accuracy for the window-
based evaluation is 92.2%, and the accuracy for the cased-
based evaluation is 95.2%.

E Adversarial Attack

Now we apply the adversarial attack methods discussed in
Section III to generate adversarial examples and then feed
them into the CNN networks as the testing data to evaluate
the performance of CNN under different attacks.

First, we generate the adversarial examples for the white box
attack using the IBM ART package [25]. We choose the hyper
parameters, i.e., the bound parameters, based on the range of
Doppler data. Table I shows the range of the testing data as
well as the bounds of the adversarial examples from different
activities. Note that since the time series from the“turning on
bed” activity have much larger variations compared with those
from other activities, we assign relatively larger bound when
generating its adversarial examples. However, the bound is
still less than 1.5% of the magnitude difference between its
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Fig. 6: Confusion matrices of attack-free CNN using window-
based and case-based evaluation methods

maximum and minimum values, as shown in Table I. Thus, all
the adversarial examples have small perturbations, as shown
in Figure 7.

| Activity | Min [ Max [ Diff [ Bounde |
No Vital Signs 1561 | 1641 80 e=1.70
Lying on Bed 1400 | 1964 564 e=1.70
Turning on Bed 590 | 2469 | 1879 | € =125.43
Walking in Room | 1518 | 1647 129 € =423

TABLE I: Information of testing data and the designed bounds
for adversarial noise e.

Then, we feed generated adversarial examples into the CNN
networks, and evaluate its performance. We list the window-
based classification accuracy of CNN with three adversarial
attacks in table II. Also listed is the accuracy of the attack-
free CNN. We see that the adversarial examples from FGSM,
BIM and C&W methods significantly reduce the performance
of CNN. CNN with adversarial examples from FGSM only
achieves 39% classification rate for the “no vital signs” class.
The iterative attack methods BIM and C&W reduce the classi-
fication accuracy of CNN even more than FGSM. The average
classification accuracy of CNN with adversarial examples from
the BIM method is 11.28% for the “No Vital Signs” class, a
85.9% accuracy reduction from the attack-free CNN algorithm.
In the meantime, we also show the standard deviation o of
the attack-free signals as well as adversarial-attacked signals
in the table II. According to the table, the raw attack-free

signals and the adversarial-attacked signals have similar values
of standard deviation; however, their classification results are
quite different from each other.

Finally, Figure 7 shows the comparison of normal sam-
ples and the adversarial samples from the C&W method
as one example. We see that the adversarial examples have
no obvious human-observable differences compared to the
original signals. However, the adversarial examples cause the
human activity recognition deep learning model to misclassify
activity. For example, small perturbations to the “no vital sign”
data make the CNN algorithm classify the data as “lying on
bed”, which could cause life-critical issues for a real patient
monitoring system.

Original: No Signs -> Perturbed: Lying Original: Lying -> Perturbed: Walking

1620 — original 1620 —— original
adversarial adversarial
1600 1600
1580WWWMMW 1580
1560 1560
0 50 100 150 200 250 0 50 100 150 200 250

Original: Walking -> Perturbed: Turning
1700 2250

1650 2000
1600 """\MWW 1750
1550 1500

1500
—— original 1250
1450

adversarial 1000
14000

Original: Turning -> Perturbed: Walking

—— original
adversarial

50 100 150 200 250 0 50 100 150 200 250

Fig. 7: Adversarial examples that cause false predictions.

G. Future Topics

Recent studies have investigated the time series inference-
time attacks for different deep learning models, such as
recurrent neural networks (RNN) [21] and CNN [22]. In this
paper, we demonstrate the white box adversarial attack on the
CNN algorithm. In the future, we plan to investigate another
type of attack method, the black box attack. That is, we can
attack a deep learning model without knowing its architecture
and model parameters. Another interesting research topic is
to investigate the transfer ability of various adversarial attack
methods. While certain adversarial examples can be used
to compromise CNNs or RNNs with different architectures,
they may not be able to attack the conventional feature-based
machine learning methods. Finally, the training-time attack for
long short-term memory (LSTM) has been studied in [26],
[27]. Tt is also an interesting and important topic to investigate
the data poisoning attack for the human activity recognition
problem.

Another research topic we plan to investigate is to add
defense mechanism to the trained classifier. There are multiple
research works related to defense of adversarial attacks in
computer vision domains. [8] proposed an idea of using
generated adversarial examples for adversarial training. [28]



Activity || Attack-free [ FGSM [ BIM | CW [ o of Attack-free [ o of FGSM [ o of BIM [ o of CW
No Vital Signs 97.25% | 39.17% | 11.28% | 14.98% 476 485 484 471
Lying on Bed 93.26% | 70.83% | 68.71% | 68.78% 42.57 42.64 42.63 42.58
Turning on Bed 90.96% | 69.59% | 55.98% | 41.82% 166.42 171.83 170.47 165.78
Walking in Room || 87.15% | 43.81% [ 81.70% | 43.07% 12.56 12.92 12.90 12.46

TABLE II: Class-wise accuracy of attack-free signal, FGSM, BIM and CW (left) and standard deviation of the corresponding

attack-free and adversarial signals (right).

demonstrate an idea of using convex outer approximation
to provide defense to the adversarial examples. Later, [29]
proposed a min-max neural network training formulation to
provide robustness to the trained models. [30], [31] demon-
strate an approach of building robust and interpretable deep
neural network model with k-nearest neighbor. Most of the
research works are demonstrated using image data; therefore,
we plan to extend the work into the time series domain as well
as investigating the difference between defense in time series
classification models and image classification models.

V. CONCLUSION

Human activity recognition is an important task in numerous
IoT applications. Many advanced machine learning techniques
including deep learning has been explored in recent years aim-
ing for achieving the highest possible recognition performance.
However, in the community of HAR, adversarial vulnerability
of deep learning models has not been well recognized and
studied, while such vulnerability has attracted tremendous
research attention in other domains, e.g., computer vision. In
this paper we explore the adversarial vulnerability of HAR sys-
tems by leveraging attack sampling techniques from computer
vision. Using the Doppler-based HAR system as a case study,
we demonstrate that the adversarial examples can be generated
and are effective in attacking the deep learning models of the
HAR system. More specifically, we build a CNN-based HAR
system, and apply three adversarial attack methods on the
Doppler time series data. Our experimental results show that
such generated adversarial examples can significantly reduce
the classification accuracy of the HAR system by as much as
85% from its originally designed and attack-free classification
accuracy. To the best of our knowledge, our work in this paper
is the first one addressing adversarial vulnerability of HAR
systems. We hope that our initial work here would stimulate
more research interests in the community of HAR.
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