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Abstract—With the explosive growth of online information,
many recommendation methods have been proposed. This re-
search direction is boosted with deep learning architectures,
especially the recently proposed Graph Convolutional Networks
(GCNs). GCNs have shown tremendous potential in graph
embedding learning thanks to its inductive inference property.
However, most of the existing GCN based methods focus on solv-
ing tasks in the homogeneous graph settings, and none of them
considers heterogeneous graph settings. In this paper, we bridge
the gap by developing a novel framework called HeteGraph based
on the GCN principles. HeteGraph can handle heterogeneous
graphs in the recommender systems. Specifically, we propose
a sampling technique and a graph convolutional operation to
learn high quality graph’s node embeddings, which differs from
the traditional GCN approaches where a full graph adjacency
matrix is needed for the embedding learning. For evaluation,
we design two models based on the HeteGraph framework
to evaluate two important recommendation tasks, namely item
rating prediction and diversified item recommendations. Extensive
experiments show our HeteGraph’s encouraging performance on
the first task and state-of-the-art performance on the second task.

Index Terms—Recommender System, Heterogeneous Graph,
Graph Convolutional Network

I. INTRODUCTION

Online users nowadays exposed to the increasingly huge
amount of information are facing the “paradox of choice”,
which leads to severe cognitive overload. Recommender sys-
tems have been developed and adopted as effective solutions,
where users are recommended with the items tailored to their
needs and preferences. Recommender system is an active
research field spans across disciplines in data mining, machine
learning, and human behaviour psychology. The early methods
were mainly based on the principles of the collaborative
filtering and the matrix factorization approaches [1].

However, in recent years, the rapid advancement in deep
learning has contributed greatly to this field. Several new
approaches using deep learning methods have been applied
and seen fruitful results [2]–[4]. Particularly, the combination
of deep learning and graph methodologies are commonly used
to solve recommendation problems. The common workflow of
this combined approach is illustrated in Fig. 1. The complete
workflow contains multiple steps. Typically the raw data
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Fig. 1. Common workflow of deep learning recommender systems using
graph-constructed data. Users, items and the interaction information are
constructed as graph-structured data. Then the embedding method will derive
the useful embeddings of those data which will be fed into deep neural
network model. The final result are usually the top-k recommendations for a
particular user.

get converted to graph-structured data, then an embedding
process will learn the graph’s node embeddings, and use
these embeddings in a deep neural network model to generate
recommendations. A very crucial part of the workflow is
the embedding method. A meaningful embedding can en-
code important properties of either the nodes, the edges, the
local node’s neighbourhoods or the entire graph depending
on what specific applications we want to solve. For solving
recommendation problems, we usually need to learn the node
embeddings with the purpose of finding a group of similar
nodes as recommendations. As such, a major component
of solving recommendation tasks using deep learning model
with graph is to have a good embedding learning algorithm.
Especially, finding high quality embeddings that have low
dimension from the graph entities is very important.

Over the years, the research space of graph embedding has
grown rapidly and several deep learning methods have been
developed to learn graph-structure data embeddings effectively
[5]. One popular approach that recently has spurred a lot
of exciting developments is the deep learning architecture
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of Graph Convolutional Networks (GCNs) [6]. GCNs are
neural network models that have been designed to work with
graph-structured data using graph adjacency matrix. Based
on GCNs, GraphSage [7] is another prominent method to
learn graph-structured data via graph convolutional operation
(GCO) and random walk sampling technique to reduce the
memory footprint, as well as having the inductive learning
capability. However, these proposed methods originally work
with homogeneous graph data, while recommendation prob-
lems are mostly based on heterogeneous data types. The main
challenge of working with heterogeneous data is the coalescing
of multiple semantic data types into one uniform embedding.
We give an example of a movie recommendation problem
modelled as a heterogeneous graph. In this recommendation
scenario, we have heterogeneous node types such as user nodes
and movie nodes, each having their own attributes. The rating
between a user and a movie is represented as the connected
edge. Our objective of this recommendation problem is to
predict which movies to be recommended to a user based on
their previous rating interactions as well as their attributes.

Our work follows the new direction of using deep learning
in solving recommendation problems. Particularly, we look at
the problem of making recommendations as a link prediction
task in graph, because we can construct recommendation data
input as a bipartite heterogeneous graph. We present our
work in handling heterogeneous graph-structured data of the
recommendation problems based on the recent developments
of GCN techniques. We aim to bridge the gap with current
limitations of GCN techniques and heterogeneous data chal-
lenge by building a framework called HeteGraph. HeteGraph
exploits the users’ and items’ attributes, their neighbourhood
information, and the edge weight to learn useful embeddings,
then feeds these embeddings into downstream recommenda-
tion tasks. With this novel architecture for learning heteroge-
neous node embeddings, we continue to tackle two important
recommendation tasks.

The first recommendation task is about making a rating
prediction between a user and an item, which is a fundamental
task of a recommender system. Specifically, we want to show
that using the GCO technique can help generate accurate
rating predictions. The second recommendation task is about
generating a diversified list of items to recommend to an active
user. This second task has a different objective to the first one,
which is to put more focus on the novelty of the generated
recommendations. Novelty in the recommendations may give
an active user a surprise as she discovers unanticipated items
based on her previously interacted items, thus it might improve
her satisfaction from the recommendations. In our evaluations,
HeteGraph framework is able to make recommendations for
both tasks with positive performance. Overall, our work on
the HeteGraph framework allows us to contribute several
aspects in solving recommendation problems based on graph
convolutional principles. In a nutshell, the main contributions
are as follows:
• An adapted graph convolutional operation. This opera-

tion is based on the GCN approaches to work with hetero-

geneous graph-structured data. This process includes the
heterogeneous neighbourhood sampling and the adapted
GCO.

• A novel framework named HeteGraph. Based on our
adapted GCO, HeteGraph consists of four major phases
and aims to solve challenging recommendation tasks.

• We conduct extensive experiments with two important
recommendation tasks that have different objectives as
a proof of concept to show how HeteGraph can help
solve recommendation problems. The experiments based
on two real-world datasets show the encouraging perfor-
mance of HeteGraph on the first task and a state-of-the-art
performance on the second task.

The rest of this paper is organized as follows. In Section II,
we address the related works on recent researches of GCNs
and its applications in recommender systems. We detail the
HeteGraph framework architecture in Section III. We introduce
our recommendation application models in Section IV. The
evaluations are described in Section V, and we conclude our
work in Section VI.

II. RELATED WORK

The works on embedding learning of graph-structured data
have gained significant attention in recent years. The core
mechanic of the graph embedding learning is to find a node
embedding method to embed the node data into tensor form,
then these tensors are applied into various downstream ma-
chine learning tasks. Graph Convolutional Network (GCNs)
have been a rising trend recently for the task of learning
node embedding. The terminology of graph convolution is
originated by the seminal work of Bruna et al. [16], where
the concept was developed based on special graph theory.
Continuing this line of research, other researchers proposed
improvements and extensions of this spectral convolution
[6], [7], [17], and provided new state-of-the-art performance
on benchmarking tasks such as node classification and link
prediction. These successes have popularized these GCN al-
gorithms, and researchers started to use them to solve other
graph-structured data problems such as recommendation and
drug-design tasks [21], [22]. Recommender systems have been
traditionally relied on collaborative filtering approaches such
as K-nearest neighbour or matrix factorization [1]. However,
deep learning has changed the landscape of recommender
algorithms. Researchers have used advanced models of deep
learning to improve the recommender systems, such as au-
toencoder [3], recurrent neural network [2], and wide and
deep model [24]. Henceforth, it is not straightforward to see
new recommender’s algorithms that leverage the convolution
operation of the GCN’s principles. However, these works
either rely on spectral convolutional approach [23] or belong
to a proprietary and specific service’s task [25]. Therefore,
our purpose in developing HeteGraph is to have a flexible and
general framework that can handle common recommendation
tasks, while leveraging the strong aspects of the GCO tech-
nique.
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Fig. 2. The HeteGraph recommender framework for heterogeneous graph-
structured data. fu and fNBu are node u tensor and its neighbourhood tensor.
P is the pooling layer. σ is the non-linear activation. C is the concatenation
operation. Zu is the convolved tensor. N is the node embedding. In Phase
1 we sample the node’s neighbourhood. In Phase 2 we perform our GCO
technique. In Phase 3 we learn the embeddings, and the embedding learning
strategy depends on the application model of Phase 4.

III. THE HETEGRAPH ARCHITECTURE

Fig. 2 shows the HeteGraph architecture with different
phases. The overall strategy is that for every node in the graph,
we sample its neighbourhood and learn the node embedding
via our GCO technique. We can learn the embeddings either in
supervised or unsupervised manner depending on the specific
application model. These embeddings are then used as inputs
to solve the targeted recommendation task. We will describe
Phase 1 to 3 in this section, and Phase 4 “Application Model”
will be described in Section IV.

A. Phase 1 - Neighbourhood Sampling

The learned embedding of each node in the HeteGraph
model encodes both the node’s attributes as well as its
neighbourhood’s attributes, thus we need to sample the node’s
neighbourhood first. Fig. 3 shows our sampling strategy using
the random-walk technique. For a user node, we sample its
neighbourhood by walking through an item node to reach the
next user node via the connected edges. Similar strategy is
applied for the item node. We use 2-hop walking distance
in our model, since it gives the best performance in our
algorithms based on the evaluations. The edge between a user-
item node-pair during the walk represents their interaction. We
leverage the edge weight to bias our walks when sampling.
For example, in the case of movie recommendation problem,
edge weight is the rating value. We define a relevant threshold
δ. During the walk, edges with weight higher than δ are
selected in random order. This helps HeteGraph to guide the
random-walk process effectively. Therefore, for any node type,
we can sample its neighbourhood with high relevance. This
process is repeated several times for each node, forming a set
of paths NBp = {p1, p2, ..., pi} and each path pi contains
heterogeneous nodes pi = {n1, n2, ..., nk}. The cardinality
|NBp| and |pi| are both predefined constants.

Algorithm 1 describes the implementation in pseudo code.
First, we start the random-walk process by selecting the first
target node n (line 7). Its neighbourhood is retrieved and sorted

: User Node

: Item Node

Hop 1

Hop 2

: Path p

: Connected Edge

Fig. 3. HeteGrap neighbourhood sampling strategy. For a certain node of type
χ, we perform a 2-hop random-walk to reach the next neighbour node of the
same type χ. The walking path is biased by the connected edge’s weight.

Algorithm 1: HeteGraph Neighbourhood Sampling
Algorithm (NeighSamp)

Input: node n of Graph G(V, E); Sampling size K; Walking
distance D; Random elements retrival function
RAND; Max path length constant k; Randomize
constant c; Neighborhood retrieval function
NEIGHBOR; Weight sort function SORT

Result: NBn: The sampling neighbourhood of node n
1 begin
2 NBn ←− ∅
3 for i← 1 to K do
4 target← ∅
5 for j ← 1 to D do
6 if j equal 1 then
7 target← n
8 end
9 {nbj} = NEIGHBOR(target)

10 {nbj}sort ← SORT ({nbj}) in descending
order

11 {nbj}filter ← select first k + c elements from
{nbj}sort

12 {rand nbj} ← select k elements from
RAND({nbj}filter)

13 rnbi ← RAND({rand nbj})
14 NBn[i] adds rnbi
15 target← rnbi
16 end
17 end
18 return NBn

19 end

by connected edge weight in descending order (lines 9-10).
To avoid getting fixed neighbourhood of node n for every
sampling, we keep k + c highest edge weight neighbourhood
nodes, then select random k nodes from this “k+c list” (lines
11-12). Finally, we select a random node rnbi in the “k list”
and add it to the ith path of K sampling paths (line 13). The
rnbi is the next target node of the path-forming process (line
14) until we retrieve D nodes for this ith path (line 5). This
random-walk process is repeated until we sample K paths for
the node n’s neighbourhood NBn (line 3).



B. Phase 2 - Graph Convolutional Operation

After each node gets its sampled 2-hop neighbourhood,
which is denoted by a set of bias random paths NBp =
{p1, p2, ..., pi}, they become the inputs for the GCO. This
GCO process is critical because it extracts the prominent
characteristics of a node’s neighbourhood, and puts them into
the node embedding. Algorithm 2 describes our approach.
The GCO involves two operational layers, the neighbourhood
attribute aggregation (NAA) layer and the attribute pooling
layer. The NAA layer takes each neighbourhood set of paths,
transforms each path to an attributed tensor by combining all
node’s attributes in that path via concatenation operation. The
final aggregated tensor of each neighbourhood is

fNBn
=


attp1

attp2

...
attpi

 , (1)

where attpi is the combined attributes of all nodes nk in path
pi of the neighbourhood NBn (line 4). These neighbourhood
tensors fNB will be fed into the next attribute pooling layer.
Similar to the pooling operation in a traditional convolutional
neural network, our attribute pooling layer extracts the most
prominent characteristics of the fNB . Since it is very important
that the attribute pooling layer’s output is symmetric (permu-
tation of its inputs will not change the output), we apply the
symmetric pooling method called mean pooling:

fPOn = mean(σ(Wpool · fNBn)), (2)

mean(

x11 . . . x1m
...

. . .
...

xn1 . . . xnm

) =

[
n∑

i=1
xi1

n . . .

n∑
i=1

xim

n

]
(3)

The attribute pooling layer comes with its own weight pa-
rameters Wpool and performs the mean operation of Equation
(3) over the aggregated neighbourhood tensor fNB to form
the pooling neighbourhood tensor fPOn (line 5). Afterwards,
the pooling neighbourhood tensor fPOn is concatenated with
its original node attributes tensor (line 6). Finally, we apply
non-linear activation function σ and normalization operation
on the combined tensor, which we call the convolved tensor
z, then use this z tensor in the embedding phase (lines 7-8).

C. Phase 3 - Embedding Learning Strategy

The embedding phase is the next step in the process of
learning node embedding of the heterogeneous graph. We
apply a particular loss method depending on the application
model. For instance, if it is a supervised model then we can
apply the root mean square error (RMSE) loss function to train
this supervised model on every pair of user-item interactions.

LRMSE =

√
1

n
Σn

i=1

(
ri − yi

)2
. (4)

The RMSE value is also a standard measurement metric for
the accuracy of recommendation problems based on explicit

Algorithm 2: HeteGraph Graph Convolutional Opera-
tion Algorithm

Input: Graph G(V, E); node attributes {xn,∀n ∈ V };
Pooling weight matrix Wpool; Convolution weight
matrix W; non-linearity function σ; Neighborhood
sampling function NeighSamp (Algorithm 1);
Neighbourhood attribute aggregation layer called
NEIGH AGG; Attribute Pooling layer called
POOLING; CONCAT function to concatenate
node’s attributes;

Result: Graph Convolutional representation zn for all n ∈ V
1 begin
2 Z ← ∅
3 for n ∈ V do
4 fNBn ← NEIGH AGG(NeighSamp(n))
5 fPOn ← POOLING(σ(Wpool · fNBn))
6 zn ← σ(W · CONCAT (xn, fPOn))
7 zn ← zn/‖zn‖2
8 store zn in set Z
9 end

10 return Z
11 end

feedback. In Equation (4), ri and yi are the predicted rating
and the actual rating respectively.

When we want to learn the node embeddings in an unsu-
pervised manner, we apply an adapted version of hinge loss
(HL) function with negative samplings to optimize the model
parameters. For a user-item node-pair (u, i) that has high edge
weight value, we want the dot product of their convolved
tensor zu and zi to have a higher value than the dot product of
the user-item node-pair (u, j), which has lower edge weight
value (negative item).

LHL(zuzi) = Enegu∼Pneg(u)max{0, zu · znegu − zu · zi + Γ}.
(5)

Equation (5) shows our adapted HL function. Pneg(u)
is the probability distribution of the negative samplings for
user u (irrelevant items to user u), Γ is the margin hyper-
parameter and znegu is the negative convolved tensor from
the negative items sampling negu of user u. Our negative
sampling technique is inspired by the work of T. Mikolov
et al. [26]. We first select k random item nodes of the graph.
Then, out of those k items, we remove the ones that have high
edge weight value with user node n. The LHL value is then
optimized by using back-propagation with stochastic gradient
descent method.

IV. RECOMMENDATION APPLICATION MODELS

As mentioned in Section III-C, the embedding learning
strategy of Phase 3 depends on the application model for
a particular recommendation task. In our work, we aim to
tackle two recommendation scenarios, which are 1) item rating
prediction and 2) diversified item recommendations. We derive
a supervised model for the first task, and an unsupervised
model for the second task. We purposely choose these two
different tasks with a contrasted way of model training to
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Fig. 4. HeteGraph Model 1 - Item rating prediction model. In this model, we
use the edge embedding from the rating of a pair of user-item as input to the
multilayer perceptron (MLP) neural network to train the rating prediction. The
edge embedding is constructed via the concatenation operation C between the
convolved tensor zu of user u and the convolved tensor zi of item i.

evaluate how effectively the GCO technique can be applied
in solving recommendation problems. The detail of our appli-
cation models is explained in this section.

A. Model 1 - Item Rating Predictions

Predicting item ratings for an active user is the most fun-
damental task of a recommender system, and based on these
predicted ratings, a list of top-k relevant items is served to the
active user. This is the typical feature of e-commerce/media
consumption services such as book recommendations of Ama-
zon [27] or movie recommendations of Netflix [28]. In these
services, a user expresses her interest for an item via a rating
score, usually in the numerical range such as from 1 to 5,
whereas a low score provides the least favourable expression
and a high score shows huge interest of the user to the item.
From the graph perspective, we can consider this task as the
link prediction or the link attribute inference problem between
a user node and an item node. Given an unconnected user-
item node-pair, we want to predict whether this node-pair
should form an edge, based on the node-pair’s attributes and
its neighbourhood. In case of link attribute inference, we also
want to predict the weigh value of this edge.

In our work, we build the model for the rating prediction
problem by using the feed-forward neural network multilayer
perceptron (MLP). As depicted in Fig. 4, for every known
rating between a user-item, we represent its feature vector
input as an edge embedding vector ej . The edge embedding ej
is formed by concatenating the user convolved tensor zuj

and
item convolved tensor zij . The input ej is then fed into the
MLP network, which can have multiple hidden layers and one
output layer. The output layer of the MLP network contains
the predicted rating. We use 2 hidden layers for this MLP
network during our evaluation. Through Phase 1 to Phase 3
as explained in Section III, we learn the edge embedding as
the model’s input, and we use the true explicit rating of that
user-item node-pair as the model’s label output. The whole
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Fig. 5. HeteGraph Model 2 - Long distance search for diversified recom-
mendations. In this model, user-A and user-B have node embeddings that
are close to each other in the embedding space, thus they can have similar
characteristics and preferences. However, in the original graph, they belong to
different communities with a long distance between them. By recommending
rated items from user-B to user-A, we can increase the diversity of the
recommendations.

model is then optimized using RMSE loss to learn the shared
weight parameters W between all training users’ attributes
and items’ attributes. We denote this model as HeteGraph
Supervised Model (HeteGraphsup).

Noted that we use the RMSE loss directly from the final
output to train our model, thus we cannot use the HL loss
to learn the node embedding. Therefore, another variant of
our model is proposed to solve this item rating prediction,
denoted as HeteGraph Mix Model (HeteGraphmix). With
HeteGraphmix, we first learn the node embeddings via HL loss
in unsupervised manner as depicted in Phase 3 of Fig. 5, then
we use those node embeddings to form the edge embeddings
and go through the same process as described above to train
this model. Since we use both unsupervised training to learn
the node embeddings and supervised training for the rating
prediction process in the this model variant, we use the word
mix to differentiate our model variances.

B. Model 2 - Long Distance Search for Diversified Items

While the first model concerns about the HeteGraph perfor-
mance on the typical task of a recommender system, which
is rating prediction, we also would like to explore a new
recommendation task in our second model. Our purpose is
to see other practical aspects of graph convolution approach
in a recommender system. Therefore, we derive a model to
recommend items for their diversity. Diversity concept can
be quite vague, thus in our application, we consider the
diversity of items based on the items’ attributes. All items are
considered to have certain common attributes based on their
local community. For instance, in the movie recommendation
problem, a very common movie attribute is the genre. But if
we look at the global scale of movies in different countries,
another common attribute of movie is the language. Hence,
if we want to recommend relevant movies, we recommend
movies with similar common attributes such as both genre



and language. Any deviation of the common movie attributes
are considered as diversified items. For instance, we now
recommend two action movies but with different languages,
that means those two items belong to different communities
in the movie recommendation graph, and this is a diversified
recommendation.

Our strategy to accomplish this task is to build a second
model named HeteGraphdiv as depicted in Fig. 5. It is clear
in Fig. 5 that first we use the unsupervised training in Phase 3
to learn the low dimensional node embedding of each user and
item. The node embedding’s position in its embedding space
signifies its relationship with other nodes. Two embedding
nodes that stay close to each other imply high similarity in
their attributes as well as their local neighbourhood infor-
mation, despite the fact that they may belong to different
communities in the original graph. Phase 4 as illustrated in
Fig. 5 describes the process. Given this intuition, we want to
find users who are close in the embedding space but have a
long distance in the original heterogeneous graph. Henceforth,
their rated items can act as diversified recommendations to
each other.

V. EVALUATIONS

We evaluate the HeteGraph models with different metrics in
recommendation accuracy and recommendation diversity. We
compare them with popular matrix factorization and K-Nearest
neighbourhood methods.

A. The Datasets and the Metrics

We perform evaluations on two datasets, the “MovieLens
100K” (ML-100K)1 and “BookCrossing” (BX)2. The ML
dataset contains 100,000 ratings of 1,682 movies from 943
users, each movie or user has its own respective attributes
such as movie’s genre, movie’s title, user’s age, and user’s
occupation. The BX dataset contains more than 1,000,000
ratings of books from its users, each also having their own
attributes such as book’s name, book’s publisher, and user’s
location. One interesting aspect of the BX dataset is that it
contains both implicit and explicit rating values. Value 0 means
implicit rating, which can be interpreted as the user has an
interaction with the book. Any other value above 0 is the
explicit rating value. Table I summarizes the chosen datasets.
Due to hardware limitation and the extreme sparseness of
the BX dataset ratings (0.001%), we filter the BX dataset to
include about 200,000 ratings of 5,102 users and 4,405 books,
where each user has rated more than 30 books and each book is
rated by more than 30 users. This helps increase the density of
the BX dataset ratings to 0.98% as well as allow our hardware
to process all of the data.

For the measurement of first task, we use four metrics
including Mean Absolute Error (MAE) [30], Root Mean
Square Error (RMSE), Precision-at-K (Pr@K) [29] and Recall-
at-K (Re@K) [29]. The second task requires diversity metric,
thus we adapt the Intra-list Simialry (ILS) from the work of

1grouplens.org/datasets/movielens
2grouplens.org/datasets/book-crossing

TABLE I
DATASETS FOR THE EVALUATION

Dataset ML-100K BX-200K
User size 943 5,102
Item size 1,682 4,405
Rating size 100,000 219,289
Rating scale 1-5 0-10
Feature vector size 64 128
Rating density 6.3% 0.98%

[29]. Equation (6) is our adapted formula of the original ILS.
For a recommendation list L of user u, the ILS score of user
u is the summation of all similarity scores between item ij
and ik in list L. Any similarity function sim can be used
such as the cosine similarity or Jaccard similarity coefficient.
In our evaluation, we use the cosine similarity function. The
ILS score is then normalized by a factor of 2|L|. The average
ILS score of the whole test set is the average ILSu scores of
all users in the test set.

ILSu =

∑
ij∈L

∑
ik∈L

sim(ij , ik)

2|L|
(6)

B. Feature Preprocessing

As the GCO uses the node’s attributes to learn the em-
beddings, we need to convert the raw attribute data of each
node into a vectorized form. For text content such as item’s
title we use the “bag-of-words” technique for the conversion.
Categorical values such as user’s occupation of the ML
dataset get converted into feature vector by using the one-
hot-encoding technique. Other numerical values such as the
user’s age are normalized to centre around 0. Additionally, we
pad extra 0s to either user’s feature vector or item’s feature
vector to make them equal in size. For the user-item bipartite
graph, we remove all isolated nodes to reduce the graph’s size.
Finally, we split the ratings (graph’s edges) into training set
and test set with a ratio of 80% and 20% respectively.

C. Model Evaluations

1) Accuracy of Item Rating Predictions (Model 1): The
main evaluation metrics for item rating prediction is the accu-
racy. It is well known that accuracy metrics do not represent
the overall satisfactory measurement of an active user when
receiving recommendations [29]. However, it is still the most
common evaluation metric used nowadays to assert certain
confidence on the capability of a recommender system. We
compare our model with other popular algorithms such as
SVD and SVD++. The parameters for the Pr@k and Re@k
evaluations are k, which is the size of recommendation list and
the relevant threshold β, which is the value where both the
predicted rating and the true rating values of a user-item pair
must be higher, to be considered as relevant recommendation.
For the ML-100K dataset, we set k as 20, and the threshold
score β as 3.5 (rating scale from 1 to 5). For the BX dataset,
we set k also as 20, and the threshold score β as 6 due to a
different rating scale (from 0 to 10).

Table II shows our evaluation results. Surprisingly, both
HeteGraph models achieve encouraging results. Admittedly,



TABLE II
ITEM RATING PREDICTION EVALUATION

Metrics RMSE MAE Pr@20 Re@20
ML-100K dataset

HeteGraphsup 0.976 0.761 0.737 0.679
HeteGraphmix 0.958 0.733 0.741 0.664
SVD [30] 0.943 0.743 0.763 0.659
SVD++ [30] 0.917 0.718 0.749 0.670
NMF [31] 0.963 0.763 0.728 0.637
SlopeOne [32] 0.950 0.745 0.733 0.654
kNN [33] 0.981 0.776 0.717 0.706

BX-200K dataset
HeteGraphsup 3.702 2.802 0.843 0.388
HeteGraphmix 3.634 2.776 0.857 0.403
SVD 3.556 2.763 0.910 0.333
SVD++ 3.796 2.793 0.808 0.392
NMF 3.885 2.785 0.743 0.438
SlopeOne 3.531 2.706 0.882 0.395
kNN 3.795 2.944 0.898 0.322
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Fig. 6. Diversity Evaluation with ILS scores

both of them cannot outscore SVD or SVD++ in terms of
RMSE and MAE metrics (lower is better), but we score
higher than SVD++ in the BX dataset for the Pr@k and
Re@k metrics (higher is better). Additionally, our models
consistently perform better than kNN in the RMSE and MAE
metrics in both datasets. For the comparison between our
models variances HeteGraphsup and HeteGraphmix, it is clear
that HeteGraphmix scores better than HeteGraphsup in most
of the evaluated metrics. This suggests that our unsupervised
training model is able to extract useful node characteristics
and can learn useful embeddings.

2) Diversity of Diversified Recommendations (Model 2):
To verify the diversity of the recommendations, we use the
intra-list similarity (ILS) score [29] for the diversification.
ILS measures the diversity of a recommendation list, and
lower score means more diversity. We modify the ILS score
for each user by scaling down with a factor equal to that
user’s recommendation list size. Figure 6 shows the evaluation
results of the HeteGraphdiv model. In terms of diversity, our
model has the lowest ILS scores in both ML and BX datasets,
which means we achieve the highest diversification in the
recommendation list.

D. Hyper-parameters Analysis

During the evaluations, we conduct experiments with differ-
ent learning rate α to find the best learning rate value for our
models. In this section, we briefly discuss our observations.
We make a grid-search attempt with different learning rate α,
several optimizers and regularization techniques. We select five
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Fig. 7. RMSE losses of different optimizers on the ML dataset during training.
The SGD optimizer converges at the lowest RMSE loss after 21 epochs, while
other optimizers take longer iterations to converge.

popular optimization techniques. They are the Stochastic Gra-
dient Descent (SGD), RMSProp [34], Adadelta [35], Adagrad
[36], and Adam [37]. We observe that the training converges
quite fast after about twenty epochs for certain optimizers
such as SGD with momentum [38] or Adagrad. This greatly
reduces the training time. Thus in both ML and BX datasets,
we perform training with SGD with momentum value of 0.9.
For the learning rate α, we choose two values, which are 0.001
and 0.0005. They both help us converge smoothly, but we find
that the α rate of 0.001 performs slightly better than the α rate
of 0.0005. Fig. 7 illustrates the converging loss of different
optimizers.

VI. CONCLUSION

In this paper, we propose a novel framework called Hete-
Graph to handle heterogeneous graph-structured data to solve
recommendation problems. The flexible architecture of Hete-
Graph enables the composition of different contextual models
to learn high quality embeddings of the heterogeneous graph
nodes and derive solution for various recommendation tasks.
We present the important features of the framework including
the bias neighbourhood sampling phase, the graph convo-
lutional operation phase, the embedding objective and the
application models. To evaluate how the graph convolutional
operation technique can be used to solve recommendation
problems, we propose two novel models for two different
recommendation tasks: item rating prediction and diversified
recommendations. We perform extensive evaluations on these
models and our proposed methods achieve encouraging results.
In the future work, we plan to improve our model in terms of
accuracy measurement, as well as the sampling technique to
account for more edge’s attributes.
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