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Abstract—With the rapid development of biomedical technol-
ogy, discovering causality from genes and human physiological
and pathological characteristics has become a hot but challenge
spot over the past decades. Due to the increment of the amount
of biomedical data, discovering causality from observed data
becomes more and more difficult to search this large body of
knowledge in a meaningful manner. To address the issues in
existing causality discovering models, we introduce a generative
Bayesian causal network that combines neural network to ex-
plicitly characterize these unique causal-effect relationships as
a variable number of nodes and links. Particularly, a basic
skeleton is generated for node selection to reduce the network
size by minimizing the maximum mean discrepancy among
variables. In addition, a causal generative neural network model
is presented to construct causal network with cause-effect scores
between variables. Empirical evaluations on two publicly avail-
able biomedical datasets and four synthetic datasets suggest our
approach significantly outperforms the state-of-the-art methods
in discovering causal relationships among biomedical variables.

Index Terms—casual discovery, Bayesian networks, cause-
effect dependency, biomedical application

I. INTRODUCTION

Over the past decade approaches for discovering causal
structure directly from large-scale biological datasets such
as expression data and gene expression data has become a
commonplace research field, given its role in uncovering novel
biological insights, whose ultimate goal is to understand all
the components of a biological system and how it works.
Compared with traditional experimental methods, focusing on
the analysis of single-cell functions, such collective obser-
vation datasets are much more practicable to analyze causal

relationships than experimenting with complete interventions.
In an experimental study, one or more variables are often
randomly manipulated, and the corresponding effects on other
variables are measured. Consequently, experiments on genes,
which require complicate interventions, are expensive and
difficult to put into force. On the other hand, causal relations
between biological variables can be effectively explored and
identified from these observation data, which are passively
observed from experiments with or without full intervention,
that may interfere with the biological system, resulting in
guiding decision-making on future experiments or studying
a complex organism such as a living organism and revealing
the complex interactions between cells.

How to find meaningful relationships from these massive
biomedical data, especially causality, is one of the most
promising areas of biology and biomedicine. So far causal
discovery is receiving widespread attention in this field [5]–
[7]. Causality strictly distinguishes between causal variables
and effect variables, playing an important role in revealing
the mechanism of occurrence and guiding intervention behav-
iors [9]. For example, smoking and yellow teeth have a strong
correlation with lung cancer, but only smoking is the cause
of lung cancer. Quitting smoking can reduce the incidence
of lung cancer, while cleaning teeth cannot reduce the risk
of lung cancer. Actually in this case yellow teeth is another
effect of smoking which has high correlation with lung cancer
but is independent of it. Such causal relations among the three
variables are theoretically named v-structure.

Despite being a very challenging problem, in recent years
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there has been a rapid growth of interest in causal discovery.
Bayesian causal network is the most commonly used causal
representation in causal discovery that estimate the causal
relationships of all variables in terms of nodes and edges
as well as their joint probability distributions under Markov
blanket property. The Bayesian network model has many ad-
vantages for representing and learning causality from observed
data. First, it is flexible that can naturally incorporate prior
knowledge. Also, it has considerable ability to derive models
from observed data, and it can combine expert knowledge and
observed data to improve model performance. Additionally, it
can handle incomplete data, which often appear in biomedical
applications. Most importantly, its structures and parameters
have clear meanings, allowing it explicitly to represent causal
relationships. Many advances have been made on Bayesian
causal network in the areas of model evaluation and scoring
as well as model search [11], since the Bayesian model
is expressive and intuitive, which is commonly expected to
be a representative of molecular biological processes. For
instance, it is described that graphical model is one of the most
promising approaches to represent cellular pathways [26].
Bayesian findings of causal networks (with potential variables)
have been widely used in systems biology studies, especially
in learning from a variety of experiments about gene network-
s [27], [28].

Existing Bayesian structure-based methods for causality
discovery can be roughly divided into three categories: score-
based methods, constraint-based methods and function-based
methods. The score-based methods, as their names imply,
scoring each possible resulting network, are more interpretive
but more complex than constraint-based methods. The typical
score-based methods, such as GES algorithm [12], GIES
algorithm [13], among others, normally search for a graph
that represents the correct causality by first increasing the
explanatory power through edge adding and then reducing the
complexity via edge removing. Subsequently, the explanation
with the highest score is found through such search process.
However, they have high time complexity, which is NP-
hard, due to the involvement of network structure search
process. On the other hand, the constraint-based methods
are more computationally effective than score-based methods,
which mainly includes two stages: causal skeleton learning
and causal direction inference. By defining causal Markov
assumption, conditional independence is used to test causal
skeleton from observation variables, and then v-structure is
explored to determine causal directions. The typical constraint-
based methods include PC algorithm [10], FCI algorithm [11],
and etc. The main limitation of such methods is that they
may fail to distinguish the potential causal structures from
statistically equivalent structures, which is called Markov
equivalence problem, and consequently, they return uncertain
causal directions. To address such problem in constraint-
based methods, causal function models are put forward from
the perspective of the data distribution characteristics caused
by the causal mechanism. These models are based on the
structural equation model (SEM) [14], which is a framework

that can be used for multivariate analysis, including random
variable sets and equation sets. Random variable sets include
both observation variables and implicit error variables. A
set of structural equations corresponds to a directed graph
of a node as observed variables, which implies the causal
structure of the model and the form of the structural equation.
Although SEM can be used for multivariate analysis, in
many cases, the classical SEM cannot estimate the causal
direction of variables. To this end, causal data generation
mechanism is incorporated to obtain a causal function model
by extending SEM with representative capability. A variety of
causal discovery algorithms are improved by leveraging causal
function model, such as Linear Non-Gaussian Acyclic Model
(LiNGAM) [15], Post-NonLinear (PNL) [16], Additive Noise
Model (ANM) [17], and so on. These approaches need to
search the entire dataset during the learning process, which are
computationally expensive, and would end up being intractable
with the growth of variable size.

To address these issues in causal discovery for biomedical
applications, we present a generative neural network-based
framework for learning casual Bayesian structure from ob-
served biomedical data. In particular, our approach considers
a principled way of dealing with the inherent causal vari-
ability among nodes associated with biomedical properties,
which combines the capability of deep learning with the
interpretability of causal models. Briefly speaking, to dis-
cover representative nodes in biomedical properties, a basic
skeleton is generated by a generative feature selection model
from a representative subset which is chosen from original
biomedical observation dataset. Specifically, we propose to
construct a basic network skeleton by minimizing the max-
imum mean discrepancy between the chosen variables and the
observed data. In this way, the network size can be reduce
to guarantee computational efficiency while remaining cause-
effect dependency. By leveraging a generative neural network,
causal inference is conducted to orientate undirected edges
over the skeleton to obtain a causal network. In addition, a
causal generative neural network model is presented to further
improve the resulting causal network with cause-effect scores
between variables. In this way, our causal network-based
approach is more capable of discovering the inherit cause-
effect dependency in biomedical variables when compared
to existing methods, which is also verified during empirical
evaluations.

The structure of the paper is as follows. First, in section II,
we define the terminology and assumptions associated with
our model. Then our model is introduced in section III.
Section IV introduces the datasets and evaluation metrics. The
experimental results are reported in section V. Conclusions are
given in section VI.

II. DEFINITIONS AND ASSUMPTIONS

A. Causal Network
A causal network is generally represented by a directed

acyclic graph (DAG) with probabilistic dependencies between
variables, which can be denoted by a triplet G = (X,E, P ).



X = {x1, x2, . . . , xn} represents the set of all nodes in
the network. E = {e (xi, xj) |xi, xj ∈ X} represents the
set of one-way edges between any pair of nodes, where
e (xi, xj) represents a dependency xi → xj between xi and
xj . P =

{
P
(
xi|paxj

)
|xi, paxi

∈ X
}

is a set of conditional
probabilities, where P (xi|paxi

) represents the probabilistic
influence of the parent node set paxi

of xi.
It can be seen that a causal network is a directed acyclic

graph, where nodes represent biomedical variables, while
edges between nodes represent direct casual dependencies
between variables. In addition, each node is associated with
a probability distribution. The root node r ∈ X is at-
tached to its edge distribution P (r), while a non-root node
x ∈ X is attached to the conditional probability distribution
P (xi|paxi

) of xi. Note that a casual network is actually a
graphical representation of the joint probability distribution
P (xi, x2, . . . , xn).

B. The d-separation
The d-separation criterion is an important property for

describing the causal relationship between nodes in a causal
network. Let U, V,W ⊂ X be the set of any three disjoint
nodes in a directed acyclic graph G. We call the node set W
d-separates node sets U and V in graph G, if a path p for any
node from U to V is blocked by W , that is, a node vi on path
p satisfies one of the following conditions:
• vi has a collision arrow on p, namely→ vi ←, and neither
vi nor its descendants belong to W .

• vi does not have a collision arrow on p, that is, → vi →
or ← vi →, and vi ∈W .

According to the probability density implication of the d-
separation criterion, if the sets U and V are d-separated by
the sets W , then U and V are independent given W and
conversely, if sets U and V are not d-separated by sets W ,
then U and V are interdependent given W .

C. Markov Blankets
Given any node xi in G, its parent node set is paxi

and its
child node set is chxi . The parent node set of each node in
the child node-set are called the Markov blanket of node xi.
A node xi and the set of nodes in the directed acyclic graph
G that do not belong to the Markov blanket are d-separated
by the Markov blanket. That is, the node xi and nodes in
the Bayesian network that does not belong to its Markov
blanket are conditional independent of Markov blanket. Under
certain conditions, the conditional independent relation in the
probability pattern P (X) for the same problem corresponds
to the d-separation relation in the Bayesian network G.

D. Casual Assumption
Currently, there are three main assumption for causal dis-

covery of biomedical variables, namely, causal sufficiency
assumption, causal Markov assumption and causal faithfulness
assumption.

A variable set is considered sufficient when all direct causes
of any two variables belongs to a variable set. It is called

causal sufficiency assumption. In other words, there are no
common confounders of the observed variables in G.

For a set of variables with causal sufficiency, if all variables
are conditionally independent of their non-descendant nodes
under the condition of variables’ parent nodes, we call this
case satisfying causal Markov assumption.

Given the variable set X = (x1, . . . , xn), if the variable
xi and xj are independent or conditionally independent, then
in the causal graph G consisting of the variables and their
causal dependencies, all paths between xi and xj are d-
separation by the appropriate variable in the variable set X .
We called that all the joint distribution of random variables
P and graph G satisfies the causal faithfulness assumption.
The implication of the causal faithfulness assumption is that
no additional (conditional) independent relationships between
variables occur during causal discovery. Under the causal
faithfulness assumption, the model not only contains structural
equations defined on variables or variable sets but also in the
real situation. The real function form and the real value of
coefficients have no additional implicit constraints.

The establishment of a causal network is generally based on
its implicit assumptions. This inspires us to present in what
follows a model where these networks can be systematically
discovered to construct a resulting causal network to discover
the cause-effect pairs among biomedical variables.

III. OUR APPROACH

In this section, we present a novel framework that learns
multivariate causal network structure under uncertainty for
biomedicine. The main procedure of our model is illustrated
in Figure 1.

A. The Framework
Given a dataset X = [x1,x2, · · · ,xN ]

T ∈ RN×M , which
is a matrix of N samples with M biomedical properties.
It first selects a representative subset based on the original
observation dataset by iteratively searching variables (nodes)
with generative steps to obtain a basic skeleton with undirected
edges. After then, a generative neural network is used for
causal network construction to determine directions in the
skeleton. Finally, a causal generative neural network model is
presented to optimize the resulting causal network with cause-
effect scores among variables. The specific process is shown
in Figure 1.

B. Representative Subset Selection
In active learning, the number of samples is reduced by

selecting the most representative sample to represent the
whole training set. Uncertainty sampling is a method of active
learning, but it is easily influenced by outliers. We present a
sampling method based on k-NN to solve the problem caused
by outliers by the following definitions:

D =
∑
xi∈X

I2 (X,xi) ,

(1)
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Fig. 1: Our framework of discovering casual network structure with generative neural networks.

Given an unlabeled dataset X, we can use Equation (1) to find
the representative subset D of X, where

I2 (X,xi) =
∑

xi∈TopKdist(xj ,X,k)

I1 (X,xi) ,

(2)

where TopKdist (xj ,X, k) represents the k most similar sam-
ples to xj in X, where k is constant. I2 (X,xi) can measure
the probability of finding the k most similar samples using
test data in set X and the strength of the similarity. I1(xi,xj)
is defined as:

I1(xi,xj) = dist(xi,xj) =

√√√√ M∑
m=1

(
xm
i − xm

j

)2
,

(3)

where dist(xi,xj) represents the similarity between samples
xi and xj .

C. Basic Skeleton Identification

Due to the super-exponential complexity of the deep neu-
ral networks, we first determine the skeleton of our causal
network through a feature selection model from the set of
continuous variables D = {D1, . . . ,DM}, where a variable
Di = (x1, . . . ,xn). Then, the selected variables are taken
as candidates for the network, and the undirected edges are
determined between variables according to a feature selected
score threshold. The process runs iteratively and finally returns
feature selection scores for each node, which can be regarded
as the weight of the node.

Given a set of continuous observed variables D =
(D1, . . . ,DM ) and Gu = (D, f, E) be an undirected graph

over D, the relationship among variables satisfies the following
formula:

Di ← fi
(
DPa(i,Gu), Ei

)
, Ei ∼ E , for i = 1, . . . ,M

(4)

These continuous random variables with joint distribution
P can be factorized over Gu as follows:

P (D) =
∏
i

P
(
Di|DPa(i;Gu)

)
,

(5)

By taking both the ground samples D and the generated
samples D̂ in any order and returning the score between the
two empirical distributions, the score is defined by:

ξ̂ =
1

n2

n∑
i,j=1

k (xi,xj) +
1

n2

n∑
i,j=1

k (x̂i, x̂j)

− 2

n2

n∑
i,j=1

k (xi, x̂j) ,

(6)

where kernel k is computed by k (x,x′) =

exp
(
−γ ‖x− x′‖22

)
, which is usually regarded as the

Gaussian kernel. ξ̂ has a quadratic complexity, which has the
property that as n increases infinitely it decreases to zero if
and only if P = P̂ .

D. Edge Orientation and Optimization
Based on the above process, we obtain a casual network

skeleton Gu, which is an undirected graph. Then we need
to determine the direction of the edges between variables.
Pairwise variant of our approach models the causal directions
xi → xj and xi ← xj with a 1-hidden layer neural network.
The causal direction is considered as the best-fit between the
two causal directions.



Algorithm 1: The framework of discovering multivariate
causal network structure under uncertainty for biomedical
variables.

Input: The set of variables for current batch X,
threshold Θ

Output: The resulting network G for the variables sets X
and the scores S of causal-effect between two
variables in G

1 Initialization parameters;
2 I (xi) =

∑
xj∈X dist(xi,xj);

3 D = φ;
4 TopKdist (xi,D, k) = φ;
5 while |D| < n do
6 xselected = argmax(I(xi));
7 for xi ∈ X do
8 if dist(xselected,xi) > Kthdist (xi,D, k) : then
9 TopKdist (xi,D, k).add(xselected,xi);

10 if |TopKdist (xi,X, k)| > k : then
11 //find out the minimal score

xremoved = argmin TopKdist (xi,D, k);

12 Calculate the feature selected score Sij between two
variables xi and xj in the subset D;

13 if score Sij > Θ then
14 added xi and xj into the network skeleton Gu; edge

xi − xj is added at the same time with the weight
between variables;

15 Orientate each variable xi − xj as xi → xj or xj → xi
among D by selecting associated two-variable approach;

16 Traverse paths from a random set of nodes with the
edges pointing towards a visited node reveal cycles must
be reversed until all nodes are reached;

17 For a number of iterations, reverse the edge that leads to
the maximum improvement of the model score S(G,D);

18 return G and S;

There exists f̂ =
(
f̂1, . . . , f̂M

)
, where f̂i a 1-hidden layer

regression neural network with nh hidden neurons such that
P (D) equals the generative model defined from (G, f, E):

D̂i = f̂i

(
D̂Pa(i;G), Ei

)
=

nh∑
k=1

w̄i
kσ

 ∑
j∈Pa(i;G)

ŵi
jkD̂j + wi

kEi + bik

+ b̄i,
(7)

where nh is the number of hidden units, w̄i
k, ŵi

jk, wi
k, bik are

the parameters of the neural networks, and σ is an activation
function.

∀e(M),
∥∥∥zM (e(M)

)
− ẑM

(
e(M)

)∥∥∥ < ε,

(8)

Let ZM be the set of variables with topological order less
than M and sM be its size. For any sM -dimensional vector
of noise values e(M), let zM

(
e(M)

)
be the vector of values

computed in topological order from f . For any ε > 0, there
exists a set of networks f̂ with G.

A n-sample set D̂ sampled after the joint distribution P̂
defined by the casual model estimated (Ĝ, f̂ , E). In fact, the
casual model is trained by minimizing S(Ĝ,D), which is a
scoring metric on model evaluation defined as:

S(Ĝ,D) = −ξ̂(D, D̂)− λ|Ĝ|,

where |Ĝ| means the number of edges in Ĝ, and λ is a
penalization weight.

We use T to indicate the number of edges in the skeleton,
and then define an orient edge optimization problem, the
complexity of which is O(2T ). Note that not all orient edges
are remained, because the searching process must end up with
a directed graph that is DAG. The purpose of this step is
to decouple the edge selection task and the edge orientation
task, and enable them to be evaluated independently. Any edge
xi−xj in the skeleton represents a direct dependency between
the variables xi and xj . We consider the causal Markov
condition and the causal faithfulness assumptions, where such
direct dependence either reflects a direct causal relationship
between two variables (xi → xj or xi ← xj), or xi and xj
acknowledge a potential (unknown) common cause.

The general process is as follows:

• First, consider each xi − xj edge individually, and then
use our approach to evaluate its direction. Calculate
the scores of the two oriented edges S

(
Cxi→xj ,f̂

, xij

)
and S

(
Cxi←xj ,f̂

, xij

)
simultaneously, where xij =

{[xi,q,xj,q] |q = (1, . . . , n)}. Keep the minimum score
corresponding to the best direction. After this step, the
complexity of the initial graph is 2T .

• Modify the initial diagram to remove all circles. Starting
with a set of random variables, traverse all paths until
all variables are reached, with the edges pointing to the
visited nodes and reversing the edges in a cycle. Finally,
we get the DAG as the initial graph of the oriented edge
optimization.

• The optimization of DAG structure is accomplished by
a hill-climbing algorithm, which aims to optimize the
global score S

(
CG,f̂ ,D

)
. Iteratively, i) select an edge

xi − xj uniformly randomly in the current graph; (ii)
consider the graph obtained by inverting this edge (if it
is still a DAG and was not previously considered) and
retrain the relevant global score; iii) if the graph has a
lower global score than the previous graph, it becomes the
current graph, and the process is iterated until a (local)
optimum is reached. In this paper, we use the method
of hill-climbing to achieve a reasonable balance between
computational time and accuracy performance.



Table I: Summary of the two publicly available datasets and
the four synthetic datasets.

Datasets No. of observations No. of variables
Sachs 7465 11

Dream4 100 100
NN 9000 10
PN 9000 10
LIN 9000 10
SIG 9000 10

IV. EXPERIMENTAL SET-UPS

A. Datasets
Two real datasets and four synthetic datasets as shown in

Table I are used to evaluate the construction of causal network
structure in biomedicine.
Sachs dataset [21]: It consists of observational data collected

after general perturbation, which relies on simultaneous mea-
surement of single cell expression profiles of 11 pyrophosphate
proteins involved in a signaling pathway of human primary T
cells. It contains 7465 observation samples.
Dream4 dataset [22]: It is a commonly used dataset which
provides five different structured networks that reflects the
common topological characteristics of real gene regulatory
networks in E.coli or S.cerevisiae, including feedback loops.
Each subnetwork of 100-node contains 100 samples.
Synthetic datasets: Given a causal mechanism, we randomly
generate data and their corresponding acyclic graph.
• NN: 9000 artificial samples are generated with a neural

network initialized with its random weights and random
distribution for the cause.

• PN: 9000 artificial samples are generated by a polynomial
causal mechanism. The effect variables are built with
post multiplicative noise (Y = f(X) × E) or pre-
multiplicative noise (Y = f(X × E)).

• LIN: 9000 artificial samples are generated by a linear
causal mechanism. The effect variables are built with post
additive noise setting (Y = f(X) + E) or pre-additive
noise (Y = f(X + E)).

• SIG: 9000 artificial samples are generated by a sigmoid-
Mix causal mechanism initialized with random weights
and random distribution for the cause.

The function used to initiate variables of the graph defaults to
a Gaussian Mixture model. The number of variable nodes is
set to 10. The proportion of Gaussian noise in the mechanisms
is set to 0.4.

B. Baseline Approaches
To evaluate the effectiveness of our model, we compared it

with other eight competitive causal discovery methods.
• PC [10]: It is a typical constraint-based algorithm. We

implemented it using pcalg-R [29]. Fisher Z-Score con-
ditional independence test is used as a conditional inde-
pendence test for determining the skeleton of the graph.

• GES [12]: It is a score-based algorithm that searches
heuristically the graph which minimizes likelihood s-

cores. It was implemented by pcalg-R [29]. L0-penalized
Gaussian maximum likelihood estimator is used for scor-
ing the candidate causal networks.

• GIES [13]: It is a variant of GES that it accepts inter-
ventional data for its inference.

• LiNGAM [15]: It is a SEM method that handles lin-
ear structural equation models, where each variable is
modeled as Xj =

∑
k αkP

k
a (Xj) + Ej , j ∈ [1, d], with

P k
a (Xj) the k-th parent of Xj and αk a real scalar.

• GS [31]: It is a constraint-based algorithm to recover
bayesian networks. It consists in two phases, one growing
phase in which nodes are added to the markov blanket
based on conditional independence and a shrinking phase
in which most irrelevant nodes are removed. It is imple-
mented by bnlearn-R [30].

• IAMB [32]: It is a constraint-based algorithm to recover
Markov blankets in a forward selection and a modified
backward selection process.

• Fast-IAMB [33]: Similar to IAMB, Fast-IAMB adds
speculation to provide more computational performance
without affecting the accuracy of markov blanket recov-
ery.

• Inter-IAMB [33]: It is another variant of IAMB which
has a progressive forward selection minimizing false
positives.

C. Evaluation Metrics
We used AUPR, SHD, and SID to evaluate the performance

of the competing methods on learning causal structures:
Area Under the Precision/Recall Curve(AUPR): AUPR is a
single number summary of the information in the precision-
recall (PR) curve.
Structural Hamming Distance(SHD) [24] [25]: SHD considers
two partially directed acyclic graphs and calculates how many
edges do not coincide, i.e., the number of edges that changes
to convert one graph to another.
Structural Intervention Distance(SID) [23]: SID estimates the
number of equivalent bivariate interventions between the two
graphs. It is based solely on graphical standards and quantifies
the proximity between two DAGs based on the corresponding
causal inference statement.

D. Experimental Settings
The neural network structure of our model is designed

as a 1-hidden layer network with ReLU activation func-
tion. The number of hidden units for each generative
neural network is set to 20. The bandwidth γ range of
multi-scale Gaussian kernel used in the score function is
(0.005, 0.05, 0.25, 0.5, 1.5, 50). Since our method is a prob-
abilistic model, in order to have a stable evaluation of the
operation, we run our model 12 times for each test. The
distribution E of the noise variables is set to N (0, 1). We
used Adam tool to train data with 0.01 learning rate until
convergence, and evaluated it on the generated samples. All
experiments run on an Intel Xeon 2.5GHz CPU, and four
NVIDIA GTX 1080Ti GPU.
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V. EXPERIMENTAL RESULTS

A. AUPR Comparison

Figure 2 shows the comparisons of the averaged AUPR
results of the eight competing methods on the six datasets.
It can be viewed that on either real biomedical datasets or
synthetic datasets, the AUPR score of the causal network
generated by our proposed method is better than the others. In
general, our proposed model is relatively superior to methods
in capturing causal relationships. In addition, it is clear that
our method is much more accurate than other methods of
causal discovery (about 15%-50% performance improvement).
The main reason is that some of these competing approaches
(e.g., GES and GIES) use score function based on maximum
likelihood estimation, so that the network structure can be
fitted to the maximum to obtain the network structure with the
highest degree of fit to the dataset. However, the ultimate goal
is not to infer causal between variables. On the other hand,
other competing methods analyze the probability distribution
between nodes based on the latent structure in the network.
By analyzing conditional independence tests between nodes,
certain rules are used to infer causality. However, such rules
are often subjective and do not fully consider the causal
relation implied between the variables. Particularly, PC cannot
make correct inferences about Markov equivalence classes. It
can only discover partial causality, and thus it cannot make
accurate inferences about edge directions.

Notably, regardless of the sizes of the datasets, our method
outperforms others in terms of AUPR, even in the case of high-
dimensional samples. Obviously, when the data dimension
becomes higher, the performance of all the competing methods
declines gradually, especially for the scores-based methods. To
infer the edge direction of the network, these methods search
all possible network structures, which increase exponentially
with the number of variables, resulting in high time complex-
ity. In addition, the conditional independence test often fails
to get an ideal result as the dimension of the conditional set

is too high. So these competing methods are only applicable
to the network with dozens of dimensions.

B. SHD and SID Comparison
As shown in Table II and Table III, compared with other

algorithms, our method performs better results than other
competing methods. It further emphasizes the fact that when
the skeleton is known, using the structure of the graph will
yield better results than the methods that only use local
information.

Table II: The SHD comparison of causal networks constructed
by competing algorithms.

Method Sachs Dream4 NN PN LIN SIG

GES 39 522 36 37 16 36
GIES 39 522 36 37 16 36
LiNGAM 18 285 29 31 14 17
PC 27 260 19 27 15 25
GS 25 261 18 27 13 24
IAMB 25 266 18 27 14 24
Fast-IAMB 25 260 18 27 13 24
Inter-IAMB 25 263 18 27 14 24

Ours 16 234 17 26 12 19

Table III: The SID comparison of causal networks constructed
by competing algorithms.

Method Sachs Dream4 NN PN LIN SIG

GES 76 7628 55 78 26 70
GIES 76 7628 55 78 26 70
LiNGAM 80 6512 79 72 40 77
PC 82 7309 62 80 45 82
GS 95 5630 83 73 39 76
IAMB 89 5993 83 73 49 76
Fast-IAMB 95 5614 83 73 39 78
Inter-IAMB 89 5932 83 73 49 76

Ours 72 4772 43 62 36 46

C. Robust Test
The two real datasets were used to verify the robustness

of our proposed method by perturbing edges in the network



skeleton. The network skeleton was changed by perturbation
of 10% and 20% edges. As shown in Table IV, all the
methods have lower scores after introducing false edges into
the graph skeleton. Our proposed method still performs the
best, since our proposed method takes advantage of conditional
independence as well as distribution asymmetry. The least
robust methods are constraint-based methods, because they
rely heavily on the structure of the graph to determine the
direction of the edges.

Table IV: Performance under synthetic errors of edges in
network skeleton.

Dataset Method Original skeleton Under 10% synthetic error Under 20% synthetic error
AUPR SHD SID AUPR SHD SID AUPR SHD SID

Sachs

PC 0.31 27 82 0.20 43 119 0.19 73 134
GES 0.30 39 76 0.24 56 120 0.21 89 178
GIES 0.30 39 76 0.24 56 120 0.21 89 178
LiNGAM 0.29 18 80 0.17 49 148 0.12 88 198
GS 0.38 25 95 0.29 45 167 0.18 87 193
IAMB 0.37 25 89 0.30 44 179 0.24 68 204
Fast-IAMB 0.38 25 95 0.29 45 167 0.18 87 199
Inter-IAMB 0.37 25 89 0.30 44 179 0.24 68 204
Ours 0.68 16 72 0.58 25 102 0.51 37 125

LIN

PC 0.38 15 45 0.33 43 75 0.23 68 94
GES 0.37 16 26 0.34 39 56 0.29 67 78
GIES 0.35 16 26 0.34 39 56 0.29 67 78
LiNGAM 0.36 14 40 0.29 37 76 0.22 64 98
GS 0.37 13 39 0.33 39 58 0.27 65 86
IAMB 0.17 14 49 0.14 43 84 0.11 68 119
Fast-IAMB 0.37 13 39 0.33 39 58 0.27 65 86
Inter-IAMB 0.17 14 49 0.14 43 84 0.11 68 119
Ours 0.61 12 36 0.57 34 56 0.52 61 73

VI. CONCLUSION

In this work we present an effective causal network frame-
work that combines deep neural network to discover cause-
effect relations among biomedical variables. Empirical exper-
iments show the effectiveness of our framework on various
biomedical datasets. It is verified that our framework is more
efficient and robust than existing methods for biomedical
causality discovery. As for future work, we will consider
improving optimization method in the framework, and we
will further investigate the performance of our model on more
biomedical tasks.

ACKNOWLEDGEMENT

This work was supported by grants from the National
Major Science and Technology Projects of China (grant nos.
2018AAA0100703, 2018AAA0100700), the National Natu-
ral Science Foundation of China (grant no. 61977012), the
Chongqing Provincial Human Resource and Social Security
Department (grant no. cx2017092), the Central Universities in
China (grant nos. 2019CDJGFDSJ001).

REFERENCES

[1] Mattmann C A, “Computing:A vision for data science,” Nature, vol.
493, pp. 473-475, April 2013.

[2] McAfee A and Brynjolfsson E, “Big data:The management revolution,”
Harvard Business Review, vol. 90, pp. 60-68, 2012.

[3] Hey T, Tansley S and Tolle K, “The Fourth Paradigm Data Intensive
Scientific Discovery,” Redmond,USA Microsoft Research, 2009.

[4] McAfee A and Brynjolfsson E, “Big data:The management revolution,”
Harvard Business Review, vol. 90, pp. 60-68, 2012.

[5] Goto, T., Fernandes, A.F.A., Tsudzuki, M. et al., “Causal phenotypic
networks for egg traits in an F2 chicken population,” Mol Genet
Genomics, pp. 1455C1462, 2019.

[6] Reshef D N, Reshef Y A and Finucane H K, “Detecting novel associa-
tions in large data sets,” Science, vol. 334, pp. 1518-1524, 2011.

[7] Justin D. Finkle, Jia J. Wu, and Neda Bagheri, “Windowed Granger
causal inference strategy improves discovery of gene regulatory net-
works ,” PNAS, vol. 115, 2018.

[8] Brandon L. Pierce and Lin Tong, “Co-occurring expression and methy-
lation QTLsallow detection of common causal variants andshared bio-
logical mechanisms,” NATURE, 2018.

[9] Pearl J, “Causality Models Reasoning and Inference,” Cambridge, 2rd
ed., United Kingdom Cambridge University Press, 2009.

[10] P.Spirtes and C.N.Glymour, “An algorithm for fast recovery of sparse
causal graphs,” Social science computer review, vol. 9, pp. 62-72, 1991.

[11] P.Spirtes, C.N.Glymour and R.Scheines, “Causation,Prediction,and
Search,” Cambridge, vol. 90, 2rd ed., MIT Press, 2000.

[12] D.M. Chickering, “Optimal structure identification with greedy search,”
Journal of Machine Learning Research, vol. 3, pp. 507-554, 2002.

[13] A.Hauser and P.Bhlmann, “Characterization and greedy learning of
interventional Markov equivalence classes of directed acyclic graphs,”
Journal of Machine Learning Research, vol. 13, pp. 2409-2464, 2012.

[14] Bollen K A, “Structural Equations with Latent Variables,” John Wiley
and Sons, 2014.

[15] Shimizu S, Hoyer P O and Hyvgrinen A, “A linear nonłGaussian acyclic
model for causal discovery,” Journal of Machine Learning Research, vol.
3, pp. 2003-2030, 2006.

[16] Zhang Kun and Hyvgrinen A, “On the identifiability of the postłnonlin-
ear causal model,” UAI, 2009.

[17] Hoyer P O, Janzing D and Mooij J M, “Nolinear causal discovery with
additive noise models,” NIPS, pp. 689-696, 2009.

[18] Rubin DB, “Bayesian inference for causal effects:The role of random-
ization,” The Annals for empirical research, vol. 6, pp. 34-58, 1978.

[19] Pearl J, “Causal diagrams for empirical research,” Biometrika, vol. 82,
pp. 669-688, 1995.

[20] Lopez-Paz D and Muandet K, “Towards a learning theory of cause-effect
inference,” ICML, pp. 1452-1461, 2015.

[21] K.Sachs, O.Perez, D.Peer, D.A.Lauffenburger and G.P.Nolan, “Causal
proteinsignaling networks derived from multiparameter single-cell data,”
Science, vol. 308, pp. 523-529, 2005.

[22] A. Greenfield, A. Madar, H. Ostrer and R. Bonneau, “Dream4: Com-
bining genetic and dynamic information to identify biological networks
and dynamical models,” PloS one, vol. 5, pp. 10, 2010.

[23] J.Peters and P.Bhlmann, “Structural intervention distance (sid) for eval-
uating causal graphs,” arXiv preprint arXiv, 2013.

[24] S.Acid and L.M.de Campos, “Searching for bayesian network structures
in the space of restricted acyclic partially directed graphs,” Journal of
Artificial Intelligence Research, vol. 18, pp. 445-490, 2003.

[25] I.Tsamardinos, L.E.Brown and C.F.Aliferis, “The max-min hill-climbing
bayesian network structure learning algorithm,” Machine learning, vol.
65, pp. 31-78, 2006.

[26] Friedman N, “Inferring Cellular Networks Using Probabilistic Graphical
Models,” Science, vol. 303(5659), pp. 799-805, 2004.

[27] Beal M, et al , “A Bayesian approach to reconstructing genetic regulatory
networks with hidden factors,” Bioinformatics, vol. 21(3), pp. 349-356,
2005.

[28] Yoo C and Cooper G , “An Evaluation of a System that Recommends
Microarray Experiments to Perform to Discover Gene-Regulation Path-
ways,” Journal of Artificial Intelligence in Medicine, vol. 31, pp. 169-
182, 2004.

[29] M. Kalisch, M. Machler, and D. Colombo, “pcalg: Estimation of
cpdag/pag and causal inference using the ida algorithm,” URL
http://CRAN.R-project.org/package=pcalg.R package version, pp. 1-1,
2010.

[30] M. Scutari, “bnlearn: Bayesian network structure learning, parameter
learning and inference,” R package version, vol. 3, 2012.

[31] Margaritis D, “Learning Bayesian Network Model Structure from Data,”
School of Computer Science Carnegie-Mellon University, Pittsburgh,
PA, vol. 3, 2003.

[32] Tsamardinos I, Aliferis CF and Statnikov A , “Algorithms for Large
Scale Markov Blanket Discovery,”,International Florida Artificial Intel-
ligence Research Society Conference, pp. 376-381, 2003.

[33] Yaramakala S, Margaritis D, “Speculative Markov Blanket Discovery
for Optimal Feature Selection,”, ICDM, pp. 809-812, 2005.




