
Sleep Stage Classification using NeuCube on
SpiNNaker: a Preliminary Study

Sugam Budhraja
Computer Science & Information Systems

BITS Pilani, Goa Campus
Goa, India

f20160064@goa.bits-pilani.ac.in

Basabdatta Sen Bhattacharya
Computer Science & Information Systems

BITS Pilani, Goa Campus
Goa, India

basabdattab@goa.bits-pilani.ac.in

Simon Durrant
School of Psychology
University of Lincoln

Lincoln, United Kingdom
sidurrant@lincoln.ac.uk

Zohreh Doborjeh
Centre for Brain Research
The University of Auckland
Auckland, New Zealand

zohreh.doborjeh@auckland.ac.nz

Maryam Doborjeh
Information Technology & Software Engineering

Auckland University of Technology
Auckland, New Zealand

maryam.gholami.doborjeh@aut.ac.nz

Nikola Kasabov
KEDRI

Auckland University of Technology
Auckland, New Zealand

and Ulster University
nkasabov@aut.ac.nz

Abstract—This paper studies sleep stage classification using
NeuCube, a Spiking Neural Network (SNN) architecture, sim-
ulated on SpiNNaker, a neuromorphic computer. The sleep
electroencephalogram (EEG) time series is converted to spikes
and provided as an input to NeuCube. Relevant feature vectors
are extracted at different stages of training. We used six standard
machine learning classifiers on different combinations of these
feature vectors and calculated 5-fold cross-validation accuracy.
We observed that the gradient boosted decision trees classifier
performed the best by achieving 81.25% accuracy on a combi-
nation of two feature vectors. An evaluation of the results using
confusion matrices and classification reports showed that the
Awake, N2, SWS and REM sleep stages can be classified with ≥
80% F1-score using the gradient boosted decision trees algorithm.
Overall, our proof-of-concept work towards autonomous sleep-
stage classification using NeuCube shows promise and will form
the base for continued research in this direction.

Index Terms—Sleep stage classification, EEG, Spiking Neural
Networks, NeuCube, SpiNNaker

I. INTRODUCTION

The traditional method for sleep stage classification is
through visual inspection of Electroencephalogram (EEG). A
sleep expert looks at 30 second segments of EEG data (called
epochs) to identify the sleep stage in accordance with the
specifications in the American Academy of Sleep Medicine
(AASM) manual [1]. However, this method of scoring is
highly time-consuming and dependent on the expert’s expe-
rience; an automated classification process would be highly
desirable for a better, faster and efficient classification system.
A recent review [2] looks into several automatic schemes
for sleep stage classification based on EEG analysis. A few
different approaches that have been taken for sleep stage
classification include Maximum Overlap Discrete Wavelet
Transform [3], Higher Order Spectra [4], Convolutional Neural
Networks [5] and Deep Neural Networks [6]. A relatively
recent work provides a proof-of-concept for decoding and
classifying time-series signals including EEG using NeuCube,

a spiking neural architecture, running on the SpiNNaker ma-
chine, a low-power neuromorphic hardware that aims to run
in real time [7]. Inspired by this work, we have looked into
classifying sleep stages from raw EEG data using NeuCube
simulated on SpiNNaker.

Arousal can be divided into three stages namely awake (W),
non-rapid eye movement (NREM) and rapid eye movement
(REM). NREM can be further divided into light transitional
sleep (N1), proper light sleep (N2) and slow wave sleep
(SWS). A normal night-time sleep cycle usually follows the
sequence: N1, N2, SWS, N2, REM; typically, there are 4 to
6 cycles during a full night’s sleep [3]. The gold standard in
method of sleep monitoring is polysomnography (PSG). PSG
contains multiple measures that are recorded over a person’s
full night sleep, such as EEG, electromyography (EMG),
electrooculogram (EOG), electrocardiography (ECG), blood
pressure, heart rate, oxygen saturation and respiration [8]. EEG
measures the electrical activity of the brain with excellent tem-
poral resolution across the scalp and is relatively inexpensive.
We have used EEG signals of a full night sleep from one
person recorded at our laboratory; this is detailed in Sec. II-A.

NeuCube is a spiking neural network (SNN) architecture
designed with the motivation of mapping, learning and un-
derstanding spatio-temporal brain data (STBD) [9]. Spiking
neural networks can incrementally learn from brain dynamics
gathered over time in a 3D space and capture meaningful
patterns from brain data. The NeuCube architecture consists
of three modules viz. Signal to Spike Encoder, SNN Reser-
voir/Cube and Output Classifier; each of these are described
in brief in Sec. II-B.

The SpiNNaker machine is a million-core neuromorphic
platform, designed for low power consumption while simu-
lating a massive number of spiking neurons in parallel [10].
It resides at the University of Manchester. In a recent collab-
oration between the SpiNNaker and the NeuCube groups [7],
Behrenbeck et al looked into simulating the NeuCube SNN
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Fig. 1. Number of 30s epochs that belong to each class.

on SpiNNaker. Furthermore, they demonstrated that simulating
NeuCube on SpiNNaker rather than Matlab is more efficient
when using a larger number of data samples.

The code used in this work is written in Python 3 using
the PyNN library [11]. The sPyNNaker package [12] allows
code written using PyNN to be simulated on SpiNNaker. Our
implementation on SpiNNaker allowed us to use up to 800
samples for training and testing our model. We have used
the Leaky-Integrate-Fire (LIF) neuron as our spiking neuron
model in the network, same as [7]. Further details on the
implementation are specified in Sec. II.

Section III presents our findings from this study. We observe
that the best classification accuracy is achieved using the
Gradient Boost Decision Tree (GBDT) algorithm, using two
feature vectors extracted from different modules of NeuCube,
during different stages of training. A combination of confusion
matrices and classification reports indicate ≥ 84% F1 score for
Awake, REM and SWS stages; 81% for N2 stage; 44% for N1
sleep stage when using 800 samples. Thus, the N1 sleep stage
could not be classified to a desirable level with our training
algorithm. Section IV presents the conclusion from this study.

II. METHODOLOGY

In Sec. II-A we describe the EEG dataset which we use
for training and testing simulation. In Sec. II-B we make a
brief description of the data processing techniques used in
NeuCube and the structure of the spiking neural network. In
Sec. II-C we discuss the learning rules implemented to train
the spiking neural network. In Sec II-D we describe the final
module of NeuCube called the Output classifier and the feature
vectors extracted from NeuCube. In Sec. II-E we describe
the classification methods used after extracting features from
NeuCube.

A. EEG data of sleep

The EEG dataset used here has been recorded at the Sleep
and Cognition Laboratory at the University of Lincoln and
contains data of a healthy adult person’s full night sleep [13].
Five EEG scalp electrodes, that have been recommended in
the AASM manual, are used in this work viz. F3-M2, F4-
M1, C3-M2, C4-M1 and O1-M2. The continuous EEG signal

Fig. 2. (a) A 2s EEG signal. (b) Encoded spike train produced using the Step
Forward (SF) algorithm. (c) The reconstructed EEG signal superposed with
the original EEG signal.

is split into 30s epochs and each epoch is assigned a sleep
stage by a sleep expert. As mentioned before, the five sleep
stages considered in this work are Awake, N1, N2, SWS
and REM. Since the EEG data was recorded for 8 hours 21
minutes, after splitting and labelling we ended up with 1002
30s epochs. Fig. 1 shows the number of epochs in each sleep
stage i.e. class. Furthermore, the EEG signals were recorded
at a frequency of 200 Hz. Since each 30s epoch has data from
5 channels, it will contain 5×30×200 i.e. 30000 data points.

B. NeuCube Spiking Neural Architecture

NeuCube consist primarily of three modules; here we dis-
cuss about the first two.

1) Signal to Spike Encoder: A typical spiking neural net-
work takes spike trains (discrete binary signals that record the
times at which a neuron fires) as inputs. Thus, the sleep EEG
signals in Sec. II-A, which are to be provided as inputs to the
spiking neural network in NeuCube, need to be first converted
to spike trains. This is achieved using analog-to-spike encoding
algorithms like Threshold Based Representation (TBR), Ben’s
Spiking Algorithm (BSA), Moving Window (MW) and Step
Forward (SF) [14]. We have tested all four aforementioned
algorithms on our data, and found that the TBR and MW
algorithms generate poor reconstructed signals (not shown
here). Thus we focus on the BSA and SF algorithms to find the
better of the two in context of our dataset. For ease of reading,
we provide a brief overview of the SF and BSA algorithms.

• Step Forward (SF): SF is a simple threshold based
algorithm. It has two main parameters viz. base and
threshold. Initial value of base is the value of sig-
nal at time t = 0, while the threshold parameter is
user defined. If the signal value at t is greater than



Fig. 3. (a) A 2s EEG signal. (b) Encoded spike train produced using the
Ben’s Spiker Algorithm (BSA). (c) The reconstructed EEG signal superposed
with the original EEG signal.

base + threshold then an excitatory spike is encoded
and base is updated to value base + threshold. If the
signal value at t is less than base − threshold then an
inhibitory spike is encoded and base is updated to value
base−threshold. In other situations, no spike is encoded
and value of base remains same [15]. A 2s EEG signal
and its spike train, encoded using SF, is shown in Fig. 2.

• Ben’s Spiker Algorithm (BSA): This algorithm is based
on use of FIR filters to encode the signal. At each time
instant τ we calculate two errors

∑M
k=0 abs(s(k + τ) −

h(k)) and
∑M
k=0 abs(s(k + τ)) where s is the original

signal and h is the FIR filter of length M . If the first
error is smaller than the second minus a threshold, then
we encode a spike and subtract the filter from the input. A
simple convolution between the spike train and FIR filter
can be performed to recover the signal from the spike
train. BSA algorithm produces only positive spikes [16].
A 2s EEG signal and its spike train, encoded using BSA,
is shown in Fig. 3.

To understand the efficacy of the encoding methods, the spike
trains were converted back to the analog signals — the result
is referred to as the ‘reconstruction’ of the original signal. The
reconstructed signals are shown in Fig.s 2(c) and 3(c).

2) Optimal Parameters for our simulation: To obtain an
objective estimate of how well the signal were reconstructed,
we used four metrics as suggested by Petro et al [14]:

• Signal-to-noise ratio (SNR): This indicates how much
noise is introduced into the signal by the encoding
algorithm and is defined in Eqn. (1).

SNR = 20 · log
Power(s)

Power(s − r)
[dB] (1)

Fig. 4. Threshold optimization in the SF Algorithm. At threshold value 11
the SNR maximizes, RMSE decreases, R-squared score increases to nearly 1
and spike count also decreases significantly.

where s is the original signal and r is the reconstructed
signal. Greater the difference between s and r, the lower
the SNR will be.

• Root mean squared error (RMSE): RMSE is a well known
metric used to evaluate the error between two signals. It
is calculated as root of the sum of squared differences
between the two signals.

• R-squared score: R-squared score is a metric typically
used to evaluate regression models and is defined in
Eqn. 2. Here the original signal can be considered as
the required output of a regression problem and the
reconstructed signal is our model’s prediction.

R2 = 1 −
∑T
t=1 (st − rt)

2∑T
t=1 (st − s)

2
(2)

where s is the original signal, r is the reconstructed signal
and s̄ is the mean of the original signal.

• Spike Count: A lesser spike count means we are able to
represent the EEG signal with lesser number of spikes.

Optimal parameters for an encoding algorithm would pro-
duce a reconstructed signal that maximizes SNR, minimizes
RMSE, maximizes R-squared score and has a relatively lower
spike count. As mentioned before, we observed that with
optimal parameters, only BSA and SF algorithms gave good
reconstructed signals. A filter of size 30 and cutoff frequency
0.1 is used for BSA. We found the optimal threshold value
for BSA to be 0.9 and for SF to be 11. Out of the two, the
SF algorithm gave better reconstructed signals with higher
SNR. Hence, we proceeded with using the SF algorithm in
the encoder module. Fig. 4 shows the mean values of the four
different metrics over the five EEG signals of the first 30s
epoch. The number of spikes in these spike trains forms the
first of three feature vectors used for the final classification.



Fig. 5. A pictorial depiction of the SNNr created using Talairach brain atlas
containing 1471 neurons with mapped electrode positions. This structure is
used for extracting the EEG channel interaction plots.

3) NeuCube Reservoir: The SNN reservoir (SNNr) con-
sists of spiking neurons whose locations and connections are
modelled after the 3D-geometry of the human brain. The
Talairach brain atlas is used to place the neurons in a spatially
meaningful manner. The 10/20 EEG scalp electrode positions
are converted to Talairach coordinates using the mapping given
by Koessler et al [17]. The input spike trains are introduced
into the cube at these mapped coordinates simultaneously. The
distance between two consecutive neurons in one dimension
is chosen to be 10mm so that it is easier to map the 10/20
electrode positions. The resulting reservoir contains 1471 LIF
neurons where each neuron represents 1 cm3 of the brain [18].
The SNNr is scalable in size and can support different types
of mappings like brain atlas mapping, spatial mapping based
on spike correlation and personalized mapping which were
explored by Tu et al [19]. We have used the original brain
shaped spatial structure for creating the channel interaction
plots in Sec. III-A. However, for the classification task, we
have adopted a simpler structure containing 125 spiking neu-
rons that are arranged in a 3-D grid (5 × 5 × 5) with a
resolution of 5mm as shown in Fig. 6. This helped in avoiding
high dimensionality of feature vectors and also greatly reduced
the training time.

The connections between the neurons in the reservoir are
initialized using small world connectivity approach. This
means that neurons that are closer to each other have a higher
chance of being connected. The excitatory and inhibitory
synapses within the reservoir are probabilistically determined
based on the calculated connection probability Pi,j between
any two neurons Ni and Nj . :

Pi,j =

{
C ∗ e−(dnorm

i,j /λ)
2

if dnorm
i,j ≤ dthresh

0 otherwise
(3)

where C is the maximum connection probability which was set
to 0.25, λ represents the small world connection radius which
was set to 2.5, dnormi,j is the normalized distance between
neurons Ni and Nj , dthresh is the maximum connection
distance which was set to half of maximum distance between

Fig. 6. A pictorial depiction of the 3-D grid consisting of 125 neurons used
for the classification task in this work.

any two reservoir neurons. The values of these parameters are
the same as used by Behrenbeck et al [7].

Each connection also has a weight and a delay associated
with it. The synaptic weight represents the contribution of
a pre-synaptic neuron Ni in the firing of the post-synaptic
neuron Nj . Whenever Ni fires, the membrane potential of
Nj increases or decreases by the weight according to Spike
Timing Dependent Plasticity (STDP) rule (see Sec. II-C). The
synaptic delay represents the time taken by a spike generated
by Ni to reach Nj . It is proportional to the euclidean distance
between the neurons.

C. Learning in NeuCube

During the training phase, the spike trains of the train-
ing samples are introduced at the mapped locations of the
SNN reservoir and the connection weights are updated using
an unsupervised learning rule called Spike-Time Dependent
Plasticity (STDP) — where the change in value of a synaptic
connection’s weight depends on the time of spiking in the pre-
synaptic and post-synaptic neurons. If a pre-synaptic neuron
spikes just before the post-synaptic neuron, then the synaptic
weight of that connection is increased (made stronger) un-
der the assumption of causality between the two neurons.
Conversely, if a post synaptic neuron spikes before a pre-
synaptic neuron, the assumption is of a lack of causality,
and the synaptic weight is decreased (made weaker). Thus,
connections in which the pre-synaptic spike causes the post-
synaptic spike contribute more in the future (Long Term
Potentiation), whereas connections in which the pre-synaptic
neurons don’t cause the post-synaptic spike contribute less in
the future (Long Term Depression). An output spike is only
produced when many input spikes occur together in a short
period of time. Hence, pair of neurons with high synaptic
weights are correlated in time.

The learning weight is defined according to the quintessen-
tial STDP learning weight look up table first defined by Bi
and Poo [20] from physiological studies .

W (s) =

{
A+ exp [s/τ+] for s < 0
A− exp [−s/τ−] for s > 0

(4)



s represents the difference between arrival time of the pre-
synaptic spike and the firing time of post-synaptic spike.
τ+ represents the pre-synaptic time interval and it was set
to 10. τ− represents the post-synaptic time interval and it
was set to 1. A+ represents amplitude of weight change
when pre-synaptic spike arrives before post-synaptic spike.
A− represents amplitude of weight change when post-synaptic
spike arrives before pre-synaptic spike. Both A+ and A−
were set to 0.01. The parameters associated with STDP were
optimized for this dataset.

All training samples are passed through the SNNr and the
weights of connections between reservoir neurons are updated
using STDP unsupervised learning rule before moving on to
the final module in NeuCube.

D. Classification Task in NeuCube

The last module in NeuCube is called the Output Classifier.
It uses dynamic evolving SNN (deSNN) algorithm for super-
vised learning, where the association between the class labels
of the training samples is learned. In deSNN, a new output
neuron (O) is created for each training sample. This output
neuron is connected to every reservoir neuron (N ). The initial
weights for these connections are computed using the Rank-
Order learning rule (RO) as described in Sec. II-D1. Then the
spike trains of the sample are introduced in the SNNr and
the weights of synaptic connection between the reservoir and
output neurons are updated using the Spike Driven Synaptic
Plasticity (SDSP) algorithm described in Sec. II-D2. The test
samples undergo the same processes as the training samples
except the STDP weight update.

Three different feature vectors are extracted from NeuCube
for every sample. The first feature vector is the number of
spikes in the input spike trains and id referred to as Spike
Count (SC). The second feature vector is the number of
spikes that occur at each reservoir neuron in the SNNr during
deSNN and is referred to as Spikes Per Neuron (SPN). The
third feature vector is the final weights of connections formed
during deSNN and is referred to as Final Weights (FW). Any
standard classifier can be used on these feature vectors to
predict label for the test samples. Behrenbeck et al [7] used K-
Nearest Neighbours (KNN) algorithm but we have also tried
other supervised learning algorithms to find the most suitable
one for sleep stage classification. These are described briefly
in Sec. II-E.

1) Rank Order Learning Rule (RO): Rank-order codes are
inspired by fast information processing by sensory neurons.
The hypothesis is that the spike arriving first from a reference
point in time encode the most salient information about the
surrounding environment. Thus, higher synaptic weights are
assigned to neurons that fire first, and connection weights are
updated based on the order of arrival of spikes.

winit (Nn,Om) = α× modorder(Nn,Om) (5)

In our work, the value of α is set to 1 and value of mod is
set to 0.9. These values were optimized for our dataset.

2) Spike Driven Synaptic Plasticity (SDSP): SDSP a mod-
ified version of STDP, where the pre-synaptic spikes are com-
pared with post-synaptic membrane potential. If at the time
of arrival of a pre-synaptic spike, the post-synaptic membrane
potential is above some threshold then the synaptic weight is
increased (strengthened). Otherwise, if at the time of arrival of
a pre-synaptic spike, the post-synaptic membrane potential is
below the threshold (usually if it has fired recently) then the
synaptic weight is decreased (weakened). In NeuCube, it is
assumed that if a pre-synaptic neuron fires, the post-synaptic
membrane potential will always be above the threshold. Hence,
if there is a pre-synaptic spike, the connection weight is
increased, otherwise it is decreased.

wfinal (Nn,Om) = winit (Nn,Om) + driftup ×nspikes

−driftdown ×nnospikes

(6)

where driftup represents the increase in the synaptic weight
when a spike is observed at the pre-synaptic neuron and
driftdown represents the decrease in synaptic weight when
no pre-synaptic spike is observed. driftup is set to value 0.08
and driftdown is set to value 0.01.

The neurons which fire more will have higher final weights
in their connections to the output neuron. The value of driftup
is kept more than driftdown so that the difference between
final weights of neurons that fire more and neurons that fire
less is significant.

E. Classifiers used in this work

• K-Nearest Neighbours (KNN): KNN is a simple distance-
based algorithm. To classify a new sample, we find the
distance between it and every other existing training
sample. We find the k closest samples and classify the
new sample as majority label from the k selected samples.

• Logistic Regression (LR): LR is in which we try to learn
a linear decision boundary that separates the data into
different classes. It uses a softmax function on top of the
linear regression algorithm that calculates probabilities
of a sample belonging to each class. Based on these
probabilities we can choose the suitable class for the
sample.

• Support Vector Machines (SVM): SVM finds a separat-
ing decision boundary that maximizes the margins (gap
between the data and the boundary). SVMs also use a
kernel function to map the data to a higher dimensional
space with the aim of making the data linearly separable.

• Multilayer Perceptron (MLP): MLP is a simple feed
forward neural network. It consists of an input layer, few
hidden layers and an output layer. Each layer contains
a decided number of perceptrons. Each layer is fully
connected with the next and the connection weights are
updated using back propagation.

• Random Forest (RF): Random Forest is an ensemble
learning method that uses multiple decision trees for
classification. Each decision tree is given a random subset
of training samples and the results of all the trees are
averaged to produce the final result. The decision trees



TABLE I
SUMMARY OF 5-FOLD CROSS-VALIDATION ACCURACY OF SLEEP STAGE CLASSIFICATION USING NEUCUBE RUNNING ON SPINNAKER.

Number of Features Classifiers
epochs KNN LR SVM MLP GBDT RF

Spike count (SC) 62 ± 2.45 64 ± 3.39 64 ± 4.36 67.5 ± 8.14 65 ± 5.7 62 ± 4.85
Spikes per neuron (SPN) 62.5 ± 6.12 65.5 ± 5.79 67.5 ± 4.74 67.5 ± 7.5 71 ± 6.04 69.5 ± 8.86

Final Weights (FW) 62.5 ± 8.06 66 ± 5.15 66.5 ± 8.46 70.5 ± 7.89 73.5 ± 9.70 73.5 ± 9.82
200 SC + FW 68 ± 7.34 76 ± 3.38 73 ± 4.85 78 ± 9.54 77.5 ± 6.12 75.5 ± 11.77

SPN + FW 62.5 ± 8.06 66.5 ± 5.61 68.5 ± 5.61 68.5 ± 5.39 71.5 ± 11.24 72 ± 9.92
SC + SPN 68.5 ± 4.64 77.5 ± 5.7 74.5 ± 4 60.5 ± 11.66 79 ± 5.64 75 ± 12.14

SC + SPN + FW 68 ± 6.78 76.5 ± 6.44 74 ± 4.64 58 ± 6.2 76 ± 7.52 75.5 ± 10.3

Spike count (SC) 68 ± 2.45 68.4 ± 1.96 70.6 ± 1.02 71.2 ± 3.87 69.2 ± 3.31 69.2 ± 2.93
Spikes per neuron (SPN) 70.8 ± 4.53 72.6 ± 3.83 75.2 ± 1.17 71.2 ± 6.34 75.4 ± 1.62 74.4 ± 2.58

Final Weights (FW) 71.6 ± 2.42 71.4 ± 2.94 74.2 ± 0.75 74 ± 2.1 73.8 ± 3.54 74.2 ± 1.72
500 SC + FW 72.2 ± 3.54 72.6 ± 3.14 75 ± 1.79 74.6 ± 1.2 74 ± 3.69 75.2 ± 1.6

SPN + FW 71.6 ± 2.87 71.8 ± 3.92 73.8 ± 1.47 73.4 ± 1.02 74 ± 4.94 74.4 ± 2.33
SC + SPN 73.8 ± 3.19 73.8 ± 2.93 75.4 ± 2.33 74 ± 1.79 75.4 ± 2.87 75.4 ± 2.33

SC + SPN + FW 72.2 ± 4.92 73 ± 2.68 75 ± 0.89 73.6 ± 1.2 74.6 ± 3.5 74.8 ± 2.48

Spike count (SC) 73.5 ± 3.03 71.75 ± 1.27 74.875 ± 2.28 73.5 ± 1.84 73.5 ± 1.46 73.875 ± 2.32
Spikes per neuron (SPN) 74.625 ± 2.73 79.25 ± 3.22 79.375 ± 2.88 78.125 80.25 ± 3.48 78.875 ± 4.04

Final Weights (FW) 74.375 ± 3.04 78.25 ± 3.57 78.75 ± 3.11 78.875 ± 2.48 80.375 ± 4.41 78.625 ± 3.22
800 SC + FW 74.5 ± 2.51 78.25 ± 4.08 79 ± 3.2 80.375 ± 3.53 81 ± 5.1 78.75 ± 3.24

SPN + FW 74.5 ± 2.54 78.75 ± 3.77 79.125 ± 2.92 78.625 ± 3.59 81.25 ± 4.24 78.75 ± 4.05
SC + SPN 74.25 ± 2.93 78.75 ± 3.97 79.25 ± 3.27 78.875 ± 2.72 80.875 ± 3.27 78.875 ± 4.58

SC + SPN + FW 74.875 ± 2.42 78.5 ± 3.37 79.125 ± 3.37 78.875 ± 4.32 81 ± 3.39 78.875 ± 3.76

Results are presented as Mean ± Standard Deviation of the 5 accuracies. Highlighted results were used for evaluation of classification errors.

only use a random subset of the features while splitting
nodes.

• Gradient boosted decision trees (GBDT): GBDT is a
residual-based ensemble learning method, based on the
concept of boosting. In boosting, initially there is a weak
learner (just slightly better than random chance). Models
are added repetitively that try to learn the errors of the
previous model. GBDT uses decision trees as the learning
model and gradient descent to minimize the loss when
adding trees.

III. RESULTS

Initially, we performed our simulation using NeuCube v1.3
software implemented in Matlab. However, we found that on
using more than 500 samples for training and testing, more
than 33GB of RAM is required to store the NeuCube output.
Matlab deals with this requirement by not loading the complete
output in the RAM at once, making the process inefficient and
time-consuming.

To overcome the computational constraints, we have based
our simulation of NeuCube on the SpiNNaker machine, using
upto 800 samples for training and testing. All results presented
here are simulated on SpiNNaker.

A. Classification Results

As mentioned above, 3 feature vectors are extracted from
NeuCube viz. Spike Count (SC), Spikes Per Neuron (SPN)
and Final Weights (FW). Combinations of these feature vectors
are tested using the 6 classifiers discussed in Sec. II-E. The
number of epochs used for training are gradually increased to
observe the effect of increasing data samples on classification
accuracy. We performed 5-fold cross validation to evaluate

the performance of the classifiers due to limited samples. The
results are compiled in Table I in the format Mean ± Standard
Deviation of the accuracies obtained during cross validation.
For each classifier, the parameters were optimised using grid-
search, a standard optimization technique in data science. The
best result is an accuracy of 81.25% achieved using the GBDT
algorithm on 800 epochs, where the Spikes per neuron and
Final Weights feature vectors are used.

B. Evaluation of Classification Errors

To analyse how well each class is being predicted, we
computed confusion matrices of the results highlighted in
Table I. These are presented in the left column of Fig. 7 for
progressively increasing sample size. The sum of each row
of the confusion matrix indicates the total number of samples
that was tested for a particular epoch size; the total number of
epochs available under each class being as shown in Fig. 1.
Overall, the most confusion is observed between the N1 and
N2 stages where samples from N1 stage get mislabeled as N2.

To have an objective understanding of the confusion ma-
trices, we have presented a classification report for each one
in the right column of Fig. 7. There are three measures that
define the classification report, and are briefly discussed below
in context to our result:

1) Precision: This measures how many of the epochs
predicted as a certain class (sleep stage) indeed are of that
class, i.e. ‘True Positive’, as opposed to actually belonging to
a different class, but wrongly predicted, i.e. ‘False Positive’.
Thus, it can be defined as the ratio of the True positives to
the sum of both True and False positives for the class. For
example, in the Confusion Matrix for 800 epochs in Fig. 7(c),
the Awake sleep stage has 58 True Positives and 5 False



Fig. 7. Confusion matrix and Classification report for prediction by GBDT
algorithm on (a) 200 epochs (b) 500 epochs (c) 800 epochs of sleep data

Positives (summing across the column) which results in a high
precision of 0.92 in the classification report.

In our work, the Awake state has high precision across all
epoch sizes. Conversely, the N1 class has a high number of
False Positives with a low Precision of 0.57 in the study with
800 epochs.

2) Recall: This indicates how many of the epochs of
a certain class indicated along the rows of the Confusion
Matrix are correctly predicted as belonging to the class, i.e.
True Positive, as opposed to incorrectly predicted as ‘False
Negative’, i.e. belonging to a different class. Thus, it can be
measured as the ratio of the True Positives to the total number
of epochs of a class (i.e. the sum of True Positives and False
Negatives).

Our results in Fig. 7 show a consistently high Recall for
the SWS and REM sleep stages (≥ 0.85), and a consistently

low recall (≤ 0.68) for the N1 sleep stage; instances of False
Negatives for the N1 stage increase with increasing epoch sizes
as shown in the Confusion Matrices of Fig.s 7(b) and (c) and
indicated by Recall ≤ 0.36.

3) F1-Score: This is a harmonic mean of the Precision and
Recall measures. It is high when both Precision and Recall
are high and low when either of them is low. Thus, a high
F1-Score implies low values for both False Negatives and
False Positives, thus indicating a high predictive accuracy for
a certain class.

For our data and simulation with 800 epochs, all sleep stages
show a F1-score ≥ 80% except for the N1 sleep stage, which
has shown a low F1-score of 44%.

C. Interaction analysis using individual sleep stage data

Fig. 8. Interaction between different EEG channels in NeuCube for each
sleep stage, based on spike communication during STDP.

We analysed the information interaction between the EEG
scalp electrodes across each sleep stage. The total temporal
interactions (in terms of spike communication) between the
6 input neurons are depicted in Fig. 8 Thicker lines indi-
cate more interaction between the inputs. These connections
were established strongly because of more spikes transmitted
between the neurons located in these areas, reflecting more
changes in the corresponding EEG signals. The REM and
Awake stage sleep have a similar pattern except for additional
interaction between C3 and C4 during REM. The time series
for both these sleep stages are known to be similar; we
speculate that such similarity in the dynamic information
being exchanged may indicate similar features extracted from
the time-series data upon conversion to spike trains. Overall,



our study indicates plausibility of a more detailed study on
relationship between different brain regions during sleep.

IV. CONCLUSION AND FUTURE WORK

We have presented a preliminary study towards autonomous
classification of sleep stages. We have used NeuCube running
on SpiNNaker to train and test our model. Our results show
that overall, for one instance of EEG data recorded from
one individual, we are able to classify all but one (N1) of
five sleep stages with an accuracy of approximately 80%.
The misclassification of N1 as N2, which seems to be the
main reason for the lower classification accuracy of N1, is
justifiable on the grounds that the only difference between
N1 and N2 in terms of scoring rules is the presence of
spindles or K-complexes in N2. However, once an epoch of
N2 has occurred, subsequent epochs are scored as N2 even
in the absence of spindles and K-complexes, until a further
classification change is made. That means that in practice,
many N1 and N2 epochs will be indistinguishable, and so of
course they cannot be reliably separated in classification unless
the surrounding context (i.e. the fact that N2 was already being
scored) is considered. Thus, this misclassification is actually
an indicator of the goodness of our classification model. In
continuation of the present work, we are looking into using
a finite state machine as a means of resolving the observed
confusion between N1 and N2 samples.

Overall, the use of the NeuCube framework enables using
SNN-based classification of complex time-series signals such
as EEG, and with relative ease of computation. The use of
SpiNNaker has enabled us to use a larger sample size for
training our model, which is indeed important for robustness
of the classification study, as indicated with better predictive
accuracy of our model.

We note that the 5 × 5 × 5 grid of 125 neurons used in
our work is set by trial and error and works better than a grid
with 64 neurons. Indeed, we have not checked with larger grid
sizes (e.g. 216 neurons) to keep lower computational times on
SpiNNaker. Continuing work will look into increasing the size
of the training network on NeuCube.

The sleep data used in this work is from one individual
over a full night’s sleep. To generalise our observation and to
comment on what algorithm is best as a generic method for
sleep classification, in our future work we will use a larger
dataset of sleep.
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