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Abstract—In this paper, a novel hardware-efficient central
pattern generator (CPG) model based on asynchronous coupling
of cellular automaton (CA) phase oscillators for a hexapod
robot is presented. It is shown that the presented model can
exhibit various synchronization patterns depending on parameter
values. In order to analyze the synchronization patterns, a phase
equilibrium and an evaluation function for a target synchro-
nization pattern are introduced. As a result of the analysis, it
is shown that an asynchronously coupled CA phase oscillators
is suitable for the hexapod robot than a synchronously coupled
CA phase oscillators. The presented asynchronous CPG model
with parameters tuned appropriately is implemented on a field
programmable gate array (FPGA) device and the device is
mounted on a hexapod robot. A laboratory experiment verifies
that the hexapod robot can reproduce one of typical gaits of
six-legged insects. Finally, it is shown that the presented CPG
model consumes far fewer circuits elements and much less power
compared with one of conventional numerical integration CPG
model and our previous CPG model.

Index Terms—Central Pattern Generator (CPG), Nonlinear
dynamics, Synchronization, Hexapod Robot, Asynchronous Cel-
lular Automaton, Field Programmable Gate Array (FPGA)

I. INTRODUCTION

Multi-legged creatures perform various kinds of locomo-
tions by periodic motions of flexor and extensor muscles
driven with coordinated body movements. It has been widely
accepted for several decades that the periodic motions are
produced by central pattern generators (CPGs), which consist
of groups of neurons located in central nervous systems [1].
There has been an increasing an interest in artificial robots
inspired by the biological principle such as CPGs that can
carry out useful tasks in various environments [2]. For con-
trolling artificial robots, many models of CPGs have been
proposed so far [2]–[24], where typical ones are modeled as
coupled neural oscillators described by ordinary differential
equations, e.g., Hopf oscillators [11] and its phase-reduced
versions, Kuramoto oscillators [16]. From a view point of the
nonlinear dynamical system theory, the neuromorphic models
including CPG models are classified into the following four
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Fig. 1. A hexapod robot controlled by a novel central pattern generator
(CPG) model based on ring-coupled asynchronous cellular automaton (CA)
phase oscillators implemented in a field programmable gate array (FPGA).
The robot body and the servomotors are based on Lynxmotion’s MH2 hexapod
robot [27].

classes based on continuousness and discontinuousness of state
variables and times1.
Class CTCS: A nonlinear differential equation model of a
neuromorphic system having a continuous time and continuous
states (CTCS). Such a class CTCS neuromorphic model can be
typically implemented by an analog nonlinear circuit, e.g., [3]–
[10].

Class DTDS: A numerical integration model (in finite binary
number representations) of a neuromorphic system having a
discrete time and discrete states (DTDS). Such a class DTDS
neuromorphic model can be typically implemented by a digital
processor or a sequential logic circuit, e.g., [11]–[17].

Class DTCS: A nonlinear difference equation model of a
neuromorphic system having a discrete time and continuous
states (DTCS). Such a class DTCS neuromorphic model can
be typically implemented by a switched capacitor circuit,
e.g., [18]–[21].

1Partial differential equation models are omitted for simplicity.
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Fig. 2. (a) Coupling diagram of the central pattern generator (CPG) model consisting of the cellular automaton (CA) phase oscillators. (b)
Schematic diagram of the i-th CA phase oscillator. (c) Timing chart of the i-th CA phase oscillator.

Class CTDS: An asynchronous cellular automaton model
(CA) of a neuromorphic system having a continuous (state
transition) time and discrete states (CTDS). Such a class
CTDS neuromorphic model can be typically implemented by
an asynchronous sequential logic circuit, e.g., [22]–[25].

It goes without saying that most neuromorphic models are
belonging to the classes CTCS, DTDS, and DTCS. On the
other hand, our group has been developing class CTDS
neuromorphic models [22]–[25]. Also, our group has been
demonstrating advantages of the class CTDS neuromorphic
models, e.g., the models can be typically implemented by
using much fewer circuit elements and consume much less
power compared to class DTDS neuromorphic models [22]–
[25]. Hence, this paper addresses the following issues: (i)
proposal of a novel class CTDS CPG model for a hexapod
robot, (ii) analysis of its nonlinear dynamics (e.g., comparison
between synchronously coupled and asynchronously coupled
phase oscillators), (iii) implementation the proposed model
in a field programmable gate array (FPGA) mounted on a
prototype hexapod robot, and (iv) comparisons with a typical
conventional CPG model and our previous CPG model [24].

Contributions and novelties of this paper include the fol-
lowing points.
• The class CTDS CPG model can be implemented by us-

ing much fewer circuit elements and consumes much less
power compared to both a class DTDS CPG model and
the model presented by our previous paper [24]. Hence,
the results of this paper will contribute to design small
and low-power silicon CPG devices, where applications
of which will include an implantable neural prosthesis
device and an ultra-small controller for a micro robot.

• This paper presents a class CTDS CPG model based on
coupled CA phase oscillators for the first time. Although
our group presented a class CTDS CPG model to control
a snake robot [22][23] and a hexapod robot [24], these
models consist of non-phase-reduced nonlinear oscilla-
tors. By modeled with phase-reduced oscillators, the

presented model has fewer variables than our previous
models [22]–[25] and thereby circuit elements needed
to implement on an FPGA can be further reduced as
mentioned above.

• This paper analyzes the difference in behaviors between
the synchronously coupled CA phase oscillators and
the asynchronously coupled CA phase oscillators for
the first time. As a result, it can be conclude that the
asynchronously coupled CA phase oscillators are suitable
for a CPG model. Hence, the results of this paper will
be important elements of dynamical system theories (e.g.,
oscillation, synchronization, and bifurcation theories) of
class CTDS neuromorphic systems.

II. CPG MODEL BASED ON ASYNCHRONOUS COUPLING OF
CA PHASE OSCILLATOR

A. Model description

In this subsection, a novel CPG model based on asyn-
chronous coupling of cellular automaton (CA) phase oscilla-
tors for a hexapod robot is presented. Fig. 1 shows a hexapod
robot, which has a baseplate, twelve servomotors, six legs,
batteries and a field programmable gate array (FPGA). Also,
Fig. 2(a) shows a coupling diagram of the presented CPG
model, which is implemented in the FPGA. As shown in this
figure, the CPG model consists of the six CA phase oscillators,
where the oscillators are numbered as L1–L3 and R1–R3
corresponding to the legs shown in Fig. 1. Fig. 2(b) shows
a schematic of each CA phase oscillator. As shown in this
figure, each CA phase oscillator has the following internal
clock Clki ∈ {0, 1}.

Internal clock:

Clki(t) =

∞∑
l=0

δ(t− lTi), (1)

where t ∈ R is a continuous time; i ∈ {0, · · · , n − 1} is an
index for the CA phase oscillators in a ring topology defined
by the periodic conditions, i.e., Clkn = Clk0 and Clkn+1 =



Fig. 3. (a) Time waveforms of the presented model. The parameters
are n = 6, N = 36, M = 50, Γ = 1, ωi = 1.0, Fclk = 1800,
and fclk

0 = 1800 for all i. The initial values are Pi(0) = 0 for all
i, Φ0(0) = 0, Φ1(0) = 8, Φ2(0) = 24, Φ3(0) = 16, Φ4(0) = 2,
and Φ5(0) = 28. (b) Cartesian coordinate representation of the unit
circle. The i-th oscillator is plotted at x = cos(2πΦi/N) and y =
sin(2πΦi/N) as the black circles with the numbers of the indexes.
(b1) Initial states at t = 0. (b2) Steady states at t = 2.0.

Clk1; Ti ∈ (0,∞) represents a period of the i-th internal clock
Clki; and δ : R→ {0, 1} is the following unit impulse

δ(t) =

{
1 if t = 0,

0 if t 6= 0.

Each internal clock Clki triggers state transitions of discrete
variables as shown in Fig. 2(c). Hence, the CA oscillators can
be said to be{

synchronously coupled if f clki /f clkj = 1 for all i and j,

asynchronously coupled otherwise,
(2)

where f clki = T−1
i represents frequency of the i-th internal

clock Clki. The difference in behaviors between the syn-
chronously coupled oscillators and the asynchronously cou-
pled CA phase oscillators is discussed in Subsection C. As
shown in Fig. 2(b), each CA phase oscillator has the following
discrete phase variable.

Discrete phase variable:

Φi ∈ ZN = {0, · · · , N − 1}.

Each discrete phase variable controls the servomotor of the leg
in the hexapod robot. Also, as shown in Fig. 2(b), each CA
phase oscillator has the following discrete auxiliary variable.

Discrete auxiliary variable:

Pi ∈ ZM = {0, · · · ,M − 1}.

Fig. 2(c) shows a timing chart of the clock Clki, Pi, and
Φi for the i-th CA phase oscillator. As shown in this figure,
each internal clock Clki triggers the following transition of
the discrete auxiliary variable Pi.

Transition of the discrete auxiliary variable:

If Clki(t) = 1, then

Pi(t+) :=

{
Pi(t) + 1 if Pi(t) < |Hi(∆Φ−i ,∆Φ+

i )|,
0 if Pi(t) ≥ |Hi(∆Φ−i ,∆Φ+

i )|,
(3)

where

∆Φ−i ≡ Φi−1(t)− Φi(t) and ∆Φ+
i ≡ Φi+1(t)− Φi(t)

denote the phase differences of the CA phase oscillators; “t+”
denotes “limε→+0t + ε”; and the symbol “:=” denotes an
“instantaneous state transition” throughout the paper. Also,
the discrete function Hi : Z±N = {−(N − 1), · · · , (N − 1)}×
Z±N → Z±M = {−(M−1), · · · , (M−1)} is defined as follows.

Discrete coupling function:

Hi(∆Φ−i ,∆Φ+
i ) =

⌊ Fclk

N(ωi + Γh(∆Φ−i ,∆Φ+
i ))

⌋
, (4)

where the function is assumed to be saturated at ±(M − 1);
Γ ∈ R, Fclk ∈ (0,∞) and ωi ∈ (0,∞) represent a coupling
constant, a scaling factor, and a natural angular frequency of
each CA phase oscillator, respectively; and b.c denotes the
following floor function,

bxc = max{l ∈ Z | l ≤ x}.

Also, the function h : Z±N × Z±N → R is defined as follows.

h(∆Φ−i ,∆Φ+
i ) = sin

(2π∆Φ−i
N

)
+ sin

(2π∆Φ+
i

N

)
. (5)

Note that the discrete coupling function Hi is implemented
on lookup tables. As shown in Fig. 2(c), each internal clock
Clki triggers the following transition of the discrete phase
variable Φi.
Transition of the coupling of the discrete phase variable:

If Clki(t) = 1 and Pi(t) ≥ |Hi(∆Φ−i ,∆Φ+
i )|, then

Φi(t+):=


Φi(t)+1 if Hi(∆Φ−i ,∆Φ+

i )≥0 and Φi(t)<N−1,

0 if Hi(∆Φ−i ,∆Φ+
i )≥0 and Φi(t)=N−1,

Φi(t)−1 if Hi(∆Φ−i ,∆Φ+
i )<0 and Φi(t)>0,

N − 1 if Hi(∆Φ−i ,∆Φ+
i )<0 and Φi(t)=0.

(6)
Note that since the transition times of whole oscillators may
have ergodicity in a case of the asynchronous coupling, it is
necessary to be defined as a continuous time, that means the
model is regarded to be belonging to the class CTDS system as
described in Section I. Fig. 3(a) shows typical time waveforms
of the coupled CA phase oscillators. Also, Figs. 3(b1) and (b2)
show the Cartesian coordinate representations of the discrete



(a)

(b)
Fig. 4. (a) Illustration of the six-legged insect and gait diagram [26].
(b) Illustration of the target synchronization pattern described by the
phase equation φi(t) corresponding to (a).

phase variables Φi the unit circles at t = 0 and t = 2.0. In
this case, the coupled CA phase oscillators exhibit in-phase
synchronization. Also, it is confirmed that the coupled CA
phase oscillators exhibit various other synchronization states
by changing initial conditions and coupling constant Γ. Then,
the next subsection introduces a target synchronization pattern
for the hexapod robot.

B. Target synchronization for the hexapod robot
Fig. 4(a) shows an illustration of an insect and a tripod

gait diagram, which is one of typical gaits of six-legged
insects [26]. As shown in the upper illustration of Fig. 4(a),
the six legs are numbered as L1–3 and R1–3. In the lower
diagram, the horizontal axis represents time and the vertical
axis represents the movements of each leg relative to the
ground. The black bars indicate the moments when each leg
is off the ground and moving forward. In the white regions
(i.e., the regions other than black bars), each leg is touching
the ground. As indicated in Fig. 4(a), a pair of black bar and
white region can be regarded as a gait pattern with period τ .
As shown in Fig. 4(b), let us consider the following phase
signal: φi(t) = τ−1t + φ̄i (mod 1), where φi(t), φ̄i ∈ [0, 1)
and i ∈ {0, 1, · · · , 5}. Let us also consider the following map:
σ(φi(t)) = “white region” if φi(t) < 1/2 and σ(φi(t)) =
“black bar” otherwise. As shown in Figs. 4(a) and (b), the
phase signal φi(t) can be converted into the gait diagram by

Fig. 5. (a) Time waveforms of the presented model. The values of
the coupled CA phase oscillators are n = 6, N = 36, M = 50,
Γ = −1, Fclk = 1800, ωi = 1.0, and fclk

i = 1800 for all i.
The values of the initial states are Pi(0) = 0 for all i, Φ0(0) = 0,
Φ1(0) = 6, Φ2(0) = 12, Φ3(0) = 18, Φ4(0) = 24, and Φ5(0) = 19.
(b) Instantaneous evaluation function for the target synchronization r
with respect to time t. (c1–c3) Cartesian coordinate representations
on the unit circle corresponding to the states indicated by the arrows
in (b).

the map σ. Hence, in this study, let the set of the phase signals
{φi(t)} in Fig. 4(b) be the target pattern since the gait of a
robot can be controlled by them. The features of the target
synchronization pattern can be summarized as follows.
Target synchronization pattern:

1. The phase signals corresponding to legs (R1, L2, R3)
exhibit in-phase synchronization.

2. The phase signals corresponding to legs (L1, R2, L3)
exhibit in-phase synchronization.

3. The phase signals of the group of the legs (R1, L2, R3)
and the oscillations of the group of the legs (L1, R2, L3)
exhibit anti-phase synchronization.

In order to evaluate the synchronized states of the coupled
CA phase oscillators, the following instantaneous evaluation
function for the target synchronization pattern is introduced.



Fig. 6. (a) Instantaneous evaluation functions for ten typical initial
states (Φi, · · · ,Φn−1). The values of the parameters are n = 6, N =
36, M = 50, Γ = −1, ωi = 1.0, and fclk

i = 1800 for all i. The fixed
values of the initial states are Pi(0) = 0 for all i. (b1–2) Cartesian
coordinate representations at t = 0 and t = 5 corresponding to
the states indicated by the arrow (b) in (a). The initial states are
Φ0(0) = 0, Φ1(0) = 13, Φ2(0) = 25, Φ3(0) = 10, Φ4(0) = 15,
and Φ5(0) = 27. (c1–2) Cartesian coordinate representations at t = 0
and t = 5 corresponding to the states indicated by the arrow (c) in
(a). The initial states are Φ0(0) = 4, Φ1(0) = 10, Φ2(0) = 16,
Φ3(0) = 22, Φ4(0) = 28, and Φ5(0) = 34.

Instantaneous evaluation function for the target synchro-
nization pattern:

r(t) =
1

n

∣∣∣∣∣∣
n/2−1∑
i=0

ej2πΦ2i(t)/N + ej((2πΦ2i+1(t)/N)−π)

∣∣∣∣∣∣ , (7)

where 0 ≤ r(t) ≤ 1, j =
√
−1, and the indexes i are mapped

to the leg numbers in Fig. 4(a) as shown in Fig. 2(a).
The instantaneous evaluation function r close to 1 means the
target synchronization pattern has been achieved. Fig. 5(a)
shows time waveforms of the coupled CA phase oscillators
for Γ = −1. The states of the discrete phase variables Φi at t
indicated by the three dashed lines in Fig. 5(a) are consistent
with ones indicated by the three dashed lines in Fig. 4(b). On
the other hand, Fig. 5(b) shows the instantaneous evaluation
function r with respect to t. Actually, it can be seen that
the instantaneous function r is approaching 1 over time. In
addition, Figs. 5(c1)–(c3) show the three cases of the discrete
phase variables Φi on the Cartesian coordinates corresponding
to ones indicated by the arrows (c1)–(c3) in Fig. 5(b). The

features of the states of the discrete phase variables Φi in
Fig. 5(c3) consistent with the three features of the target
synchronization pattern. Hence, it can be said from the above
that the coupled CA phase oscillators in Fig. 5 is achieving the
target synchronization pattern. Here, let us see the following
example of the instantaneous evaluation function r for various
initial states of the discrete phase variables Φi.

Example (Failure to synchronize to target pattern): Fig. 6
shows the instantaneous evaluation function r with respect to
t for ten typical initial states (Φ0, · · · ,Φn−1). The other initial
states are fixed as Pi(0) = 0 for all i. Also, each parameter
f clki and ωi are respectively set to the same values for all i.
Note that this parameter setting is considered to be appropriate
from a view point of reducing hardware resources. In Fig.
6(a), the coupled CA phase oscillators for almost all initial
states achieve the target synchronization pattern but two cases
are failed. Figs. 6(b1–2) and (c1–2) show the states of the
discrete phase variables Φi on the Cartesian coordinate of the
two failed cases corresponding to the arrows (b) and (c) in
Fig. 6(a). The consequent synchronized states in Figs. 6(b2)
and (c2) differ from the features of the target synchronization
state and its Cartesian coordinate representation in Fig. 5(c3).

The example suggests that the coupled CA oscillators have
the target synchronization pattern and other synchronizations,
which do not exhibit the target synchronization pattern. Here,
let us clarify all the synchronization patterns that the coupled
CA oscillators have. The vector forms of the discrete variables
Pi, and Φi can be written by

P(t) = (P0(t), · · · , Pn−1(t)),

Φ(t) = (Φ0(t), · · · ,Φn−1(t)).
(8)

In order to characterize an equilibrium in terms of synchro-
nization, the following definition is introduced.

Definition 1 (Phase equilibrium state): The coupled CA
phase oscillators are said to be in a phase equilibrium state
if the coupled CA phase oscillators satisfy the following
conditions:

1. Each CA phase oscillator has the same value of the
parameter ωi, that is, ωi = ωj for all i and j.

2. P(t) ∈ P∗ and Φ(t) ∈ Φ∗ for some t, where

P∗ = {(P0, · · · , Pn−1) | Pi = Pj for all i and j},
Φ∗ = {(Φ0, · · · ,Φn−1) | h(∆Φ−i ,∆Φ+

i ) = 0 for all i}.
(9)

Also, it is said that the coupled CA phase oscillators exhibit
l-phase synchronization if the coupled CA phase oscillators
are in a phase equilibrium state, where

l =

1 if Φ+
i = 0,

N

|Φ+
i |

if Φ+
i 6= 0.

Note that Definition 1 doesn’t care whether a phase equi-
librium is stable or unstable. Hence, the coupled CA phase
oscillators are not necessarily phase-locked even if Definition



Fig. 7. Examples of the phase equilibrium states. There are L = 4
types of the l-phase synchronizations in the case of n = 6
and N = 36. (i) 1-phase synchronization. It is also called in-
phase synchronization. (ii) 2-phase synchronization. (iii) 2-phase
synchronization. (iv) 2-phase synchronization (Target synchronization
pattern). (v) 3-phase synchronization. (vi) 6-phase synchronization.

1 is satisfied. Fig. 7 shows examples of the phase equilibrium
states. As shown in this figure, there are L types of l-phase
synchronization depending on the parameters N and n, where
L can be estimated as follows.

L = #{m ∈ N | N(mod m) = 0 and n(mod m) = 0}.

where # denotes the number of elements in a set. For example,
as shown in Fig. 7, there are L = 4 types of the l (= 1, 2, 3
or 6)-phase synchronization in the case of n = 6 and
N = 36. Also, Definition 1 regards the target synchronization
patten as the 2-phase synchronization. Using the instantaneous
evaluation function r(t) and Definition 1, the next subsection
compares the synchronously coupled CA oscillators and the
asynchronously coupled CA oscillators.

C. Comparison of synchronous and asynchronous coupling

First, let us see the following example of the instantaneous
evaluation function r for initial states chosen from phase
equilibrium states.

Case I (Synchronous coupling of CA phase oscillators):
Fig. 8(a) shows the instantaneous evaluation function r with
respect to t for six initial states chosen from the sets Φ∗ and

Fig. 8. Instantaneous evaluation function r with respect to t for six
initial states Φ(0) ∈ Φ∗ and P(0) ∈ P∗ corresponding to (i)–(vi) in
Fig. 7. The values of parameters are n = 6, N = 36, M = 50,
and Γ = −2, ωi = 1.0 for all i. (a) Synchronous coupled CA
phase oscillators. fclk

i = 1800 for all i. (b) Asynchronously coupled
CA phase oscillators. fclk

0 = 1800, fclk
1 = 1800, fclk

2 = 1800,
fclk
3 = 1800, fclk

4 = 1800, and fclk
i = 2640.

P∗ corresponding to the six examples in Fig. 7. In this figure,
the all cases fail to synchronize to the target synchronization
pattern except for the case of the initial states corresponding
to the target synchronization pattern itself (i.e., the arrow (vi)
in Fig. 8(a)). In this example, the clock parameters f clki are
set to the same values for all i. Hence, the model is regarded
as the synchronous coupling of the CA phase oscillators.

The reason why the coupled CA phase oscillators in Case I
keep the initial states can be supposed as follows. When the
CA phase oscillators satisfy Definition 1, the function Hi has
the following constant value,

Hi(∆Φ−i ,∆Φ+
i ) =

⌊Fclk
Nωi

⌋
.

Hence, if Definition 1 is satisfied and the parameters f clki are
set to the same values for all i, the CA phase oscillators keep
holding its l-phase synchronization states since the discrete
state transitions defined by Eqs. (3) and (6) are always
triggered at the same time. Then, let us see the following
example of the instantaneous evaluation function r in the case
of the asynchronous coupling of the CA phase oscillators.

Case II (Asynchronous coupling of CA phase oscillators):
Fig. 8(b) shows the instantaneous evaluation function r with
respect to t for six initial states chosen from the sets Φ∗

and P∗ corresponding to the six examples in Fig. 7. In this
example, the values of the clock parameters are f clk0 = 1800,
f clk1 = 1800. f clk2 = 1800, f clk3 = 1800, f clk4 = 1800,
and f clk5 = 2640. Hence, the model is regarded as the
asynchronous coupling of the CA oscillators. As shown in Fig.
8(b), the all cases achieve the target synchronization pattern.



Fig. 9. Block diagram of the control system and the i-th servomotor.

The reason why the coupled CA phase oscillators in Case II
can achieve the target synchronization pattern unlike Case I
can be supposed as follows. When the values of the parameters
f clki differ by at least one, the asynchronously coupled CA
phase oscillators can escape from a phase equilibrium state
even if an initial condition is set to a phase equilibrium since
there are times that n clocks do not trigger at the same time.
Note that the oscillators that escapes from a phase equilibrium
may reenter the phase equilibrium. As a result, the advantage
of the asynchronous coupling of the CA oscillators can be
summarized as follows.

Remark on advantage of asynchronous coupling: The
coupled CA oscillators have generally some phase equilibria
as shown in Fig. 7. However, it is not preferable that the CPG
model has phase equilibrium states that exhibit synchroniza-
tion patterns different from the target synchronization pattern
as shown in Fig. 6(a). If the clock parameters are chosen so
that the n oscillators transit asynchronously, it may be possible
to synchronize to the target synchronization pattern for any
initial states as shown in Fig. 8(b). Hence, it can be said that
the asynchronous coupling of the CA oscillators is suitable for
the CPG model for a hexapod robot.

III. IMPLEMENTATION AND COMPARISON

A. Implementation
Fig. 9 shows the block diagram of a control system for the i-

th leg, where each leg has the two servomotors corresponding
to the 2-DOF. As shown in this figure, the discrete phase vari-
able Φi is converted to a Cartesian coordinate representation
from a polar coordinate representation as follows.
Conversion from polar to Cartesian:

Xi(t) = F (Φi(t)), Yi(t) = G(Φi(t)),

where the discrete functions F : ZN → Z and G : ZN → Z
are as follows.

F (Φ) = bE cos(2πΦ/N)c, G(Φ) = bE sin(2πΦ/N)c,

where E is a scaling parameter of resolution for pulse-width
modulation. The discrete functions F and G are implemented
on lookup tables. As shown in Fig. 9, the servomotors corre-
sponding to yaw axes are controlled by pulse width-modulated
signals of the discrete state variables Xi. Also, the servomotors
corresponding to roll axes are controlled by pulse width-
modulated signals of the following discrete variables binarized
from the discrete variables Yi.

Fig. 10. Snapshots of locomotion of the hexapod robot.

Binarization:

Ŷi(t) =

A if Yi(t) ≥ 0,

−A otherwise.

Recall that the dynamics of the presented CPG model is de-
scribed by Eqs. (3) and (6). These dynamics, the discrete states
{Φi, Pi, Xi, Yi, Ŷi}, and the discrete functions {Hi, F,G} are
written as a VHDL code in a register-transfer level description.
The code is compiled by Xilinx’s design software environment
Vivado 2018. 2 and a resulting bitstream file is downloaded to
Xilinx’s FPGA Artix-7 XC7A100T-1CSG324C [28] mounted
on Digilent’s Nexys 4 DDR evaluation platform [29]. Since the
FPGA device does not support asynchronous triggering, the
internal clocks Clki are generated from a common clock with
a high frequency (100 [MHz]). Fig. 10 shows snapshots of
locomotions of the hexapod robot controlled by the presented
CPG model. The laboratory experiments confirmed that the
hexapod robot can reproduce the tripod gait.

B. Comparison

The presented CPG model is compared with our previous
CPG model [24] and the following Hopf CPG model [2],
which is one of typical conventional CPG models.
Hopf CPG model[2]:

dxi
dt

= Fx(xi, yi) +

n∑
j=0

wi,jxj ,

dyi
dt

= Fy(xi, yi) +

n∑
j=0

wi,jyj ,

Fx(xi, yi) = (µ2
i − (x2

i + y2
i ))xi − θiyi,

Fy(xi, yi) = (µ2
i − (x2

i + y2
i ))yi + θixi,

(10)

where n = 6 is the number of oscillators, xi ∈ R and yi ∈ R
are state variables controlling phases of the 2-DOF legs, and
wi,j represents a coupling constant. In our previous paper [24],
the Hopf CPG model has implemented by the forward Euler
method on the same FPGA device and design software envi-
ronment for comparison with our previous CPG model, where
the bit-lengths of the state variables are shortened as short as
possible under the condition that the robot can reproduce the
tripod gait appropriately. Also, the robots controlled by the
three types of CPG model can move forward at the almost



identical gait speed. The comparison result suggests that the
presented CPG model can be implemented by about 59% of
FPGA slices of our previous CPG model and about 14% of
FPGA slices of the Hopf CPG model. Also, the presented
CPG model consumes about 69% of total on-chip power of
our previous CPG model and about 27% of total on-chip power
of the Hopf CPG model.

IV. CONCLUSION

This paper presented the novel class CTDS CPG model
based on the asynchronous coupling of the CA phase oscil-
lators for the hexapod robot. The difference in behaviors be-
tween the synchronously coupled CA phase oscillators and the
asynchronously coupled CA phase oscillators was analyzed.
As a result, it was shown that the asynchronously coupled CA
phase oscillators is suitable for the hexapod robot than the
synchronously coupled CA phase oscillators. The laboratory
experiments verified that the robot controlled by the presented
CPG model reproduces the tripod gait. It was shown that the
presented CPG model consumes much fewer circuit elements
and much less power compared to the conventional model
and our previous model. These results imply the presented
model will contribute to develop an ultra-small and ultra low-
power gait controller for a micro robot and an implantable
neural controller for prosthesis of rehabilitation of gaits. In
order to develop such gait controllers, the following problems
remain: (a) validation of robustness for disturbances such
as obstructions and slope changes by more experiments, (b)
reproduction of many types of gaits, (c) realization of smooth
gait transitions, gait velocity changes, and sudden braking,
and (d) theoretical analyses of synchronization and bifurcation
phenomena.
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