
Intrusion Detection with Segmented Federated
Learning for Large-Scale Multiple LANs

Yuwei Sun
Graduate School of Information

Science and Technology
The University of Tokyo

Tokyo, Japan
sywtokyo@hongo.wide.ad.jp

Hideya Ochiai
Graduate School of Information

Science and Technology
The University of Tokyo

Tokyo, Japan
jo2lxq@hongo.wide.ad.jp

Hiroshi Esaki
Graduate School of Information

Science and Technology
The University of Tokyo

Tokyo, Japan
hiroshi@wide.ad.jp

Abstract—Traditional approaches to cybersecurity issues
usually protect users from attacks after the occurrence of
specific types of attacks. Besides, patterns of recent cyberattacks
tend to be changeable, which add up to unpredictability of them.
On the other hand, machine learning, as a new method used to
detect intrusion, is attracting more and more attention.
Moreover, through the sharing of local training data, the
centralized learning approach has proven to improve a model’s
performance. In this research, a segmented federated learning
is proposed, different from a collaborative learning based on
single global model in a traditional federated learning model, it
keeps multiple global models which allow each segment of
participants to conduct collaborative learning separately and
rearranges the segmentation of participants dynamically as
well. Furthermore, these multiple global models interact with
each other for updating parameters, thus being adaptable to
various participants’ LANs. A dataset covering two months’
traffic data from 20 participants’ LANs in the LAN-Security
Monitoring Project is used. We adopt three types of knowledge-
based methods for labeling network events and train a CNN
model based on the dataset. At last, we achieve validation
accuracies of 0.923, 0.813 and 0.877 individually with these
labeling methods.

Keywords—LAN, cybersecurity, machine learning, segmented
federated learning, CNN

I. INTRODUCTION

 In former research of the LAN-Security Monitoring
Project [1], a smart device is designed and connected to a
router in a LAN, thus collecting and transporting network
traffic data securely to the central server. Moreover, the
collected traffic data include broadcast data in a LAN and any
communication directly sent to the device. Then an algorithm
at the central server is used to detect abnormal behavior inside
LANs based on these data. In total, more than fifty devices
have been set up mainly in LANs of university laboratories
and research institutes. In addition, all data are packaged and
transported to the central server on a daily basis, which means
each data file includes one day’s traffic data in a LAN.

 Considering the privacy of participants transporting their
local data and diversity of their LANs, a segmented federated
learning is proposed in this research, which allows participants
to share parameters of local training models instead of original
data as well as adjusting itself according to variance among
LANs. Through parameters sharing and structure
transformation, this scheme is supposed to improve the overall
performance of intrusion detection in large-scale networked
LANs. This scheme consists of two main parts: intrusion
detection in LANs and segmented federated learning.

 First, to detect malware in the network, a discriminator
consisting of nine types of protocol information is used in this
research, as follows: ARP, IP, TCP, UDP, HTTP, HTTPS,

mDNS, DHCP, and Others. After that, we use a structure
called the Hilbert curve to convert these various types of
information into a feature map based on the frequency of each
type’s communication, representing a network event defined
in 128 seconds. Then we adopt three types of knowledge-
based approaches for labeling these network events, which
include detection of a SYN445 to the monitor device,
detection of TCP SYN from an IP with a frequency of more
than three times, and detection of a UDP unicast to the monitor
device (except the case of NTP communications between the
monitoring device and the central server and the case of DNS
communications).

 Then, a four-layer convolutional neural network model,
consisting of two convolution layers, each of which is
followed by a maxpooling layer, and two fully-connected
layers, is adopted and trained based on the local dataset, with
feature maps as the input data and types of network events
obtained by knowledge-based approaches as the labels.
Furthermore, we use a learning function called RMSProp and
mini-batch learning in this model. After training, we are
supposed to obtain a model that can tell if a network event is
malicious or not through the classification of its feature map.

 Moreover, a segmented federated learning method is
adopted in this research for parameters sharing among
participants as well as adapting itself to various networks.
Here, for every day, the model conducts a learning progress,
called a round. For each round, selected participants will train
local models using local datasets, which are generated based
on a specific day’s traffic data in participants’ networks.
Furthermore, for every six rounds, the system will conduct a
performance evaluation of each participant under the current
global branch using the variance of all participants’ average
accuracies during the recent six rounds, which is used to
decide if a participant continues staying at the current branch.
On the other hand, if it shows a result under a specific
threshold, this one will be transferred to another branch, which
is initialized accompanied by the judgment. Consequently,
from the next round, these participants will train on their
dataset under different global models.

 Furthermore, we use a dataset that is separated from the
dataset for the segmented federated learning to initialize a
global model, with a learning rate of 0.00001, a batch size of
200, and an epoch of five. This dataset includes 782 benign
feature maps and 1186 malicious feature maps. On the other
hand, we train local models at each round with a learning rate
of 0.00001, a batch size of 50, and an epoch of one. Then, for
each round, parameters of selected participants’ models will
be uploaded to the central server. Then, the corresponding
global model conducts aggregation based on these parameters,
including ones of a former global model, and ones of the other
global models, each of which is with different ratios, to update

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

the global model. After that, all participants under this global
model will download the updated global model to replace their
local models.

 For evaluation of this monitor system, we record accuracy
of all participants for intrusion detection with each
knowledge-based labeling method and visualize the
segmentation of the system when it encounters with
participants with relatively disadvantaged performance under
a global model.

This paper is organized as follows. Section 2 discusses
related works about intrusion detection with approaches of
machine learning and applications of the federated learning on
cybersecurity issues. Section 3 provides an overview of the
scheme, including representation of network events,
classification with the CNN, and parameters sharing with the
segmented federated learning. Section 4 presents the
performance evaluation of this system based on the precision,
visualizing global models’ segmentation with various
knowledge-based labeling methods. Section 5, we conclude
the paper and give out the future work of this research.

II. RELATED WORK

 Intrusion detection has been a new trend in the
cybersecurity area nowadays. Especially, in a local area
network (LAN), the number of monitored intrusion is
increasing. Traditional approaches to this issue include an
application of several knowledge-based rules on network
communication, and once these rules are satisfied, a network
event will be considered as malicious. Moreover, several
traditional machine learning methods such as support vector
machine (SVM) and neural network (NN) have been used to
address issues of network attacks detection in personal
computers and critical infrastructure [2][3]. However, due to
the limitations of these methods on dealing with big data and
adaptability to various network environments, they have
shown disadvantages in solving complicated detection
problems.

 On the other hand, since the advancement of deep
learning in recent years, a large-scale data analysis on network
traffic data has become possible and shown great performance
as well. For instance, Salama et al. [4] presented an intrusion
detection hybrid scheme using deep belief network (DBN) and
SVM, classifying the intrusion into two clusters: normal or
attack. They adopt DBN for reducing the dimension of
features and SVM for the classifier. They evaluated their
scheme with the NSL-KDD dataset [5] and achieved an
accuracy of above 0.9 at last. Moreover, in another research
conducted by Yang et al. [6], they use restricted Boltzmann
machine (RBM) to extract high-level feature representation of
traffic data and train SVM with stochastic gradient descent
(SGD) for classification of it. Duy et al. [7] discriminated the
application of feedforward neural network (FFNN) on
network intrusion detection based on the NSL-KDD dataset.
Their model achieves an F1 score of 0.962 for evaluation. In
addition, this FFNN model includes four hidden layers of 60
neurons, using an activation function of ReLU and a learning
rate of 0.001 for training. Furthermore, Saxe et al. [8]
proposed a deep neural network (DNN) based malware
detector that employs two-dimensional binary program
features to detect malware. Yousefi-Azar et al. [9] gave out a
generative feature learning-based approach for malware
classification, where latent features from the hidden layer of
autoencoder (AE) are adopted for anomaly detection.

 Moreover, as former research, a centralized learning,
where local training data of participants are transported to a
central server for centralized learning, is used to improve the
performance of intrusion detection with machine learning
[10]. However, several privacy issues accompanying the
transportation progress have been given up. On the contrast,
the federated learning (FL) is proposed to access these issues,
by allowing participants to achieve the purpose of
collaborative learning without sharing their private local data,
instead, sharing local model parameters. Furthermore, there
have been several pieces of research focusing on the
application of the federated learning on cybersecurity issues.
For example, Abeshu et al. [11] proposed a cyberattack
detection model using FL, with edge nodes as participants. In
this model, to improve the accuracy in detecting attacks, each
participant sends its trained model based on a local dataset to
the server for parameters sharing. Through this approach, they
are aimed to enhance the privacy of participants and reduce
the traffic load of networks while transporting as well. Nguyen
et al. [12] presented an approach of adopting Internet of things
(IoT) gateways as participants and an IoT security service
provider as the server node for the aggregation of machine
learning model parameters. At last, they achieved an accuracy
of 0.956 for intrusion detection in a real-world smart home
deployment setting.

However, research mentioned above has limits in intrusion
detection in various network environments as well as a stable
and resilient learning progress as well. Different from former
research, we propose a segmented federated learning, in which
the system structure is adjusted automatically according to
performance of each participant, thus having great adaptivity
to various networks. At the same time, different from adopting
traditional machine learning approaches, we use a
convolutional neural network, which is one kind of deep
learning, for purposes of the extraction of high-level feature
representation and network events classification. As a result,
this system is supposed to have the ability of dealing with big
data of network traffic as well as a collaborative learning with
a stable and robust progress.

III. INTRUSION DETECTION IN LANS WITH SEGMENTED
FEDERATED LEARNING

In this research, we extend the traditional federated
learning method and apply it on intrusion detection in LAN
based on a dataset from 20 participants in the LAN-security
Monitoring Project [1]. Instead of uploading local traffic data
to a central server, we allow participants to initialize and train
a machine learning model in the local. Moreover, through
uploading parameters of these trained models, the central
server conducts an aggregating function to generate a global
model for the intelligence sharing among all participants. For
every round, only selected participants retrain their local
models, and for every six rounds, the system conducts a
performance evaluation of each participant based on the recent
six records of validation accuracy of local models. The ones
showing relatively disadvantaged performance are removed
from the current global model and transferred to a new
initialized global model (Fig. 1).

Considering diversity between networks of participants,
independently trained local models are greatly different from
each other. Through aggregating parameters of these local
models as well as other global models, it is aimed to generate
models with resilience and adaptivity to intrusion detection
issues in various network environments. Furthermore, since

original traffic data are kept in the local, the application of a
federated-learning-based approach also proves to enhance the
privacy of participants in large-scale networked systems.

Fig. 1. The initial structure of the large-scale networked monitor systems. P1,
P2, and P3 represent participants. A validation model is adopted for every six
rounds to evaluate performance of each participant. The participants who
show relatively good performance are kept under a current global model,
while participants who show relatively poor performance under the current
one are removed from the current global model and further processed for
segmentation.

A. Experiment data
In this research, we adopt experiment data from 20

participants’ LANs in the LAN-security Monitoring Project.
In this project, a smart device (a node) is connected to a router
in a LAN for collecting network traffic data. Then these data
are packaged and transported to a central server for anomaly
detection on a daily basis. The collected network traffic data
include all broadcast traffic in a LAN and any communication
sent directly to the devices. Moreover, all data are collected in
the format of pcap capture files, and the NTP (Network Time
Protocol) is used for clock synchronization between a node
and the central server in this project.

For the experiment data in this research, we extract two
months’ collected network traffic data from 20 participants in
the LAN-security Monitoring Project, from 1st October to 29th
November 2019, a total of 60 days. Consequently, for these
participants, the same amount of traffic data during the same
period are adopted in this research.

B. Feature representation
 To represent features of network traffic data, we adopt
communication frequencies of nine types of protocols as
discriminators, including the IP, ARP, TCP, HTTP, HTTPS,
UDP, mDNS, DHCP and other. In detail, we compute each
record using how many packets of each protocol are
transmitted or received within a period of 0.5 second.
Furthermore, a total amount of 256 records are used to
generate one feature map of a specific protocol, and a
parameter called fineness is adopted to adjust how finely we
consider information hidden in network traffic data. The time
period represented by each feature map is expressed as in (1).
Through utilizing these parameters (fineness and size), we
bring features of traffic data different in recording period and
fineness into images with the same size. In this research, we
put communication frequency information of protocols into
one feature map, with a period of 128 seconds.

𝑇 =	𝑇!" ∙ 𝑓𝑖𝑛𝑒𝑛𝑒𝑠𝑠 ∙ 𝑠#																												(1)	

Where 𝑇 is the period represented by a feature map, Tst (time
standard) is a standard interval for each recording with a value
of one second here and s is the size of the generated feature
map of each protocol. In this research, the fineness has a value
of 0.5 and the s has a value of 16.

 Moreover, we further convert these frequency information
into pixel values using (2). Then we adopt a structure called
the Hilbert curve to project these 256 records in the format of
pixel values into specific positions in a feature map with a
width and height of 16 pixels, considering the adaptivity of
generated feature maps to a machine learning model as well.
Here, the Hilbert curve is a method used to transform the
structure of data so that it fills up all space in an image.

 𝑝$ = %!
&'((%)

∙ 255	 																							(2)	

Where 𝑝$ represents the corresponding pixel value, 𝑐$ shows
the communication frequency of each protocol, and 𝑐
represents all records of the frequency during the period of
128 seconds in one feature map. As a result, %!

&'((%)
 has a

value in an interval of (0, 1], and 𝑝$ has a value in an interval
of (0, 255].

 Furthermore, we project the feature maps of these nine
types of protocols mentioned above into different arears of an
upper image through the array exchange, as well as adding an
arear for records of the other protocols, to represent features
of network traffic data in LAN with one image (Fig. 2).
Consequently, it is considered that features of network traffic
data in LAN can be represented by a series of time-related
feature maps, each of which has a size of 48 × 48. And the
generated feature maps using the dataset from 20 participants’
networks are shown below (Fig. 3).

Fig. 2. Feature representation of network traffic data in a LAN based on the
Hilbert curve structure: For each protocol, time-related frequency information
is converted to pixel value of specific positions; feature maps of nine types of
protocol information are projected into specific areas in a feature map for
representation of a network event.

Fig. 3. Samples of network events’ feature maps with a size of 48 × 48 (Left:
A feature map of N009; right: A feature map of N011).

���5#�6�

��
�5#�6�

� 	�� �
�

���� ����. 0��

� 4�����. ��
�

���5#�6�

��
�5#�6�

���!85�1 5�8��5����"5 458� ���

Global model 1	(#)

Aggregation

P1

P2

P3

100 %

100 %

%: 90.0 %

': 10.0 %

Validation
model

Fitting Non-fitting

Segmentation

TABLE Ⅰ. Constitution of the dataset.

Partici
pants

Knowledge A Knowledge B Knowledge C Partici
pants

Knowledge A Knowledge B Knowledge C

Benign Malicious Benign Malicious Benign Malicious Benign Malicious Benign Malicious Benign Malicious

N001 46575 0 46497 78 46562 13 N011 43531 3044 13763 32812 38600 7975

N002 44512 0 44386 126 44381 131 N012 44688 1887 42568 4007 46569 6

N003 47138 706 44230 3614 46847 997 N013 46575 0 26644 19931 45950 625

N004 45589 0 45223 366 45585 4 N014 46073 502 26081 20494 42662 3913

N005 39140 6502 30639 15003 34364 11278 N015 45393 9 42521 2881 44363 1039

N006 46544 31 46433 142 43260 3315 N016 45949 3 45190 762 45689 263

N007 44541 2034 13639 32936 38613 7962 N017 46575 0 26652 19923 46575 0

N008 42248 2612 42228 2632 41654 3206 N018 46047 0 44604 1443 16303 29744

N009 46196 379 37671 8904 45747 828 N019 46113 2 41767 4348 45840 275

N010 46575 0 43913 2662 46575 0 N020 41925 4650 40489 6086 46567 8

C. Knowledge-based labeling
In this research, we adopt knowledge-based approaches

to label these feature maps of network events, thus dividing
them into two clusters, benign or malicious. We consider and
select three types of patterns for intrusion detection based on
former monitoring and analyzing of participants’ network
traffic data in the LAN-security Monitoring Project. And the
patterns we adopt for labeling are as the following:

• Knowledge A: Detection of any SYN445 to the
monitor device

• Knowledge B: TCP SYN from the same IP with a
frequency of more than three times

• Knowledge C: Detection of any UDP unicast to the
monitor device (except the communications of NTP
with a source port of 123 and DNS with a source port
of 53)

 Then we utilize these labels based on various patterns and
the generated feature maps of network events as local training
datasets. Moreover, the constitutions of each node’s datasets
based on three types of labeling patterns are shown above
(TABLE Ⅰ)

D. Classification with Convolutional Neural Network
We adopt a four-layer CNN model, consisting of two

convolution layers, each of which is followed by a
maxpooling layer, and two fully-connected layers, to train
local datasets mentioned above, where feature maps are used
as the input and network event labels are used as the output
(Fig. 4). In addition, a padding with a value of one is used in
this CNN model. For the first convolution layer, ten kernels
with a size of 3 × 3 are adopted with a stride of one. For the
second convolution layer, ten kernels with a size of 1 × 1 are
adopted with a stride of one. And the fully-connected layer
consists of 200 neurons. An output layer with two neurons for
classification between benign and malicious is adopted in this
model.

Fig. 4. The structure of the four-layer CNN model, with feature maps as the
input and results of knowledge-based labeling as labels.

 Moreover, we adopt a learning function called RMSProp
in this model, which is defined in the following (3) (4). It has
a characteristic that the emphasis is placed on the latest
gradient information more than the past gradient information
and gradually the past gradient information is forgotten,
instead, the new gradient information is greatly reflected.
Furthermore, softmax is used as the activation function at the
last layer to obtain possibilities of each cluster, thus
classifying the input of feature maps (5).

h+ = ρ ∗ h+,- + (1 − ρ) ∗
./
.0"

⊙ ./
.0"

																(3)	

W+1- = W+ − η
-

23"14
⊙ ./

.0"
												(4)	

Where L is the loss, W is the weight of the node, and 𝜌 is the
decay rate with a value of 0.9.

𝒚𝒊 =
𝒆𝒙𝒊

∑ 𝒆𝒙𝒋𝑵
𝒋'𝟏

 (5)

Where a standard exponential function is applied to each
element x8 of the input vector x, and thus normalizing these
values by dividing by the sum of all exponentials. Then, each
component including negative, greater than one, or might not
sum to 1, will be in the interval (0, 1), with a sum of 1.

�
--03����
	��3�1������× �

�

�
���0-����

	��3�1������× �

�

�
���0-����

��11:���33����-���

��������
��30�3
2
10�0���

Fig. 6. The scheme of the segmented federated learning when a participant’s local dataset doesn’t fit the current global model: A new global model is initialized
to fit this participant’s local dataset. At the same time, parameters of the aggregating algorithm for generating global models of the next round are adjusted
automatically based on a new structure of the segmented federated learning model.

E. Segmented Federated Learning
A segmented federated learning model consists of two

parts, the central server and participants. Different from a
centralized learning model which needs participants to upload
local data, in a scheme of the segmented federated learning,
participants conduct training locally and share parameters of
trained local models with the central server to achieve the
purpose of collaborative learning. On the other hand, an
aggregator in the central server is adopted to obtain a global
model based on the uploaded parameters as well as the former
global model. Moreover, the obtained global model is used
for updating the participants’ local models.

In detail, first, the center server initializes a global model
with pre-trained initialization parameters. Then, all
participants download the initialized global model to their
local networks. After that, for each round, all participants
download a global model at the central server to replace their
local ones. Then selected participants, using a roll based
approach in Algorithm 1, perform retraining of local models
using the current day’s dataset. After all selected participants
complete the retraining, these updated parameters of local
models are uploaded to the central server for aggregation.
Here, a round is defined as a processing section with a period
of one day, from all participants updating their local models
to the central server completing the aggregation. As such, at
the next round, all participants replace their local models with
the updated global models for a new processing section.

 Furthermore, since for every two rounds, all participants
complete a round of retraining, we conduct performance
evaluation for every six rounds (three rounds of retraining) in
order to achieve a more precise result. And a validation model
defined as (6) and (7), is used to evaluate performance of all
participants under the same global model in recent six rounds.

The average accuracies of participants during the last six
rounds are computed. Then we compute the difference
between these average accuracies of participants to evaluate
participants’ performance. At last, we adopt the Sigmoid
function, thus converting the evaluation results into an interval
of (0, 1).

𝑑$ =	𝑎𝑐𝑐$ −
∑ '%%!
)
!'*
9

			 									 					(6)	

𝑒$ =
-

-1:+,!
				 																															(7)	

Where n is the number of participants, 𝑎𝑐𝑐$ represents an
average test accuracy of participant i for last six rounds, 𝑑$
shows the extent of difference between each participant’s
accuracy and the average of them, and 𝑒$ is the output of the
Sigmoid function.

 Through this approach, the performance of a participant
under the current global model is represented with a value in
an interval of (0, 1). Then, according to the evaluation result,
we remove these participants with a result below the
threshold, which is adjusted to a value of 0.47. A new global
model is initialized with parameters from the average of these
participants’ local ones. Then these participants are moved to
this newly initialized global model for the next round’s
processing (Fig. 6). In addition, the threshold here is adjusted
and refined, considering that a relatively small threshold leads
to a few participants having the possibility to be transplanted
to a new global model, and a relatively large one leads to over
segmentation of participants.

 Moreover, for the aggregation in the central server, we
adopt (8) to compute the parameters of global models, based
on parameters of various sources including the former global

Global model 1	(#)

Aggregation

P1

P3
100 %

100 %

%: 89.0 %

Validation
model

Fitting
Non-fitting

Global model 2	(#)

Aggregation

P2
100 %

Validation
model Fitting

): 10.0 %

*: 1.0 %

): 10.0 %

%: 89.0 %

*: 1.0 %

model, uploaded local models of selected participants and the
other global models (Fig. 6).

𝑝" = 𝛼 ∙ 𝑝",- + 𝛽 ∙
∑ ;!
)
!'*
9

+ 𝛾 ∙ ∑ ;!
-
!'*
<

	(𝛼 + 𝛽 + 𝛾 = 1)		(8) 	

Where 𝑝" represents new parameters of a global model, 𝑝",-
represents parameters of the former global model, 𝑝$ shows
the uploaded parameters of the participants who conduct
training for the current round, 𝑞$ represents parameters of the
other global models, n is the number of participants
conducting local training, and m is the number of the other
global models. 𝛼, 𝛽	and	𝛾 represent ratios of each
component for aggregation, with a sum of 1. Here, considering
the balance of parameters updating with respect to various
components, 𝛽 is 0.1, 𝛾 is 0.01, and as a result, 𝛼 has a value
of (0.9 - 0.01 ∙ 𝑚). And the intact algorithm for the segmented
federated learning is defined as Algorithm 1.

IV. EVALUATION

 In this research, we adopt a batch size of 200 and an epoch
of one to train local models. We adopt a dataset consisting of
sixty days’ traffic data collected from 20 participants in the
LAN-security Monitoring Project to evaluate our scheme.
Moreover, as discussed above, a round is conducted with a
period of one day, hence a total of sixty rounds are conducted
for the segmented federated learning in this research.

 For performance evaluation of the segmented federated
learning, we adopt the presicion defined as (9) to show the
adpativity of each local model to the correspomding global
model. Moreover, the results of validation are all computed
at the beginning of each round. The corresponding test
accuracy of 20 participants when adopting three types of
knowledge-based labeling methods are shown below (Fig. 7,
Fig. 8, Fig. 9). In addition, as discussed above, these results
are also used for the judgement of segmentation for every six
rounds.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = =>
=>1?>

				(9)	

Where TP (True Positives) indicates the number of feature
maps of network events successfully classified by a local
CNN model, and FN (False Negative) represents the number
of unsuccessfully classified ones.

Fig. 7. Test accuracy with Knowledge A: Almost all participants’ local
models achieve a stable test accuracy after 60 rounds’ training.

Fig. 8. Test accuracy with Knowledge B: Several participants’ local models
show an unstable test accuracy during the whole course of training; while the
others achieve a stable test accuracy after 60 rounds’ training.

Algorithm 1 SEGMENTED FEDERATED LEARNING. 𝑁! is the total
number of participants. 𝐷" is the local dataset of participant t. G is all
global models. 𝐿# is a list including segment information of
participants. B is the batch size. E is the epoch. 𝛼, 𝛽	and	𝛾 are ratios of
each component for aggregation. threshold is influenced by fineness for
segmentation.

Server executes:
 initialize 𝑝$
 for each round t = 1, 2, . . . do

 for each global model g = 1, 2, . . . do
 𝑁" ¬ (𝑁#+1) // 2
 𝐵" ¬ (split 𝑁#into batches of size 𝑁")
 𝑠" ¬ 𝐵"[t % 2]
 𝑠% ¬ (set of participants without local training)
 for each participant t Î 𝑠" in parallel do

 Execute(𝑝", 𝐷")
 for each participant r Î 𝑠% in parallel do

 𝑝% ¬ 𝑝#
 𝑝# ¬ Aggregate(𝑝", t Î 𝑠"; 𝑝#, g Î G)
 If t % 6 == 0 do
 for each participant k Î 𝑠# do

𝑎𝑐𝑐& ¬ mean(validation accuracy of k in recent six rounds)
 𝐿# ¬ Segment(𝑎𝑐𝑐&, k Î 𝑠#; 𝐿#)

Execute(𝑝", 𝐷"):
 𝑝" ¬ 𝑝#
				𝐷'	¬ (split	𝐷"	into	batches	of	size	B)		
 for each local epoch i from 1 to E do
 for batch b ∈ 𝐷' do
 𝑝" ¬ 𝑝" − η▽l (𝑝"; b)
 return 𝑝" to server

Aggregate(𝑝", t Î 𝑠"; 𝑝#, g Î G):
 𝐺(¬ (the other global models except the current one)
 𝑝#	¬	𝛼 ∙ 𝑝# + 𝛽 ∙ 𝑚𝑒𝑎𝑛(𝑝", t Î 𝑠") + 𝛾 ∙ 𝑚𝑒𝑎𝑛(𝑝(, o Î 𝐺() 	(𝛼 +
		𝛽 + 𝛾 = 1)	

 return 𝑝# to server

Segment(𝑎𝑐𝑐&, k Î 𝑠#; 𝐿#):
 𝑒&	¬	sigmoid(𝑎𝑐𝑐& −mean(𝑎𝑐𝑐&, 𝑘	Î	𝑠#))
 if 𝑒& < threshold

 𝐿# ¬ (remove all participants k from the current global model)
 𝐿# ¬ (remove this global model if there are no participants left)
 initialize 𝑝)*+
 𝐿# ¬ (attach k to a newly initialized global model)
 return 𝐿# to server

(a) The segmentation of the model with Knowledge A as the labeling method.

(b) The segmentation of the model with Knowledge B as the labeling method.

(c) The segmentation of the model with Knowledge C as the labeling method.

Fig. 10. The segmentation of the learning model with different knowledge-based labeling methods. With the progress of the segmented federated learning, 20
participants are divided into several segments, each of which has an independent global model.

Segment 1

Segment 2

Segment 3

Segment 4

Round 0 6030

N001 ~
N020

N009,
N020

N001 ~ N003,
N005 ~ N008,
N010 ~ N014,
N016 ~ N019

N020

N015 N005

N001 ~ N008,
N010 ~ N019

N004

Segment 5
N002

N001, N003,
N005 ~ N008,
N010 ~ N014,
N016 ~ N019

N001, N003,
N005 ~ N008,
N010 ~ N014,
N016, N018,
N019

N004, N017 N004, N014,
N017

N001, N003,
N005 ~ N008,
N010 ~ N013,
N016, N018,
N019

N004,N011,
N014,N017

N001, N003,
N005 ~ N008,
N010, N012,
N013, N016,
N018, N019

N001, N003,
N005 ~ N007,
N010 ~ N013,
N016, N018,
N019

N004,N008,
N011,N014,
N017

N004,N006,
N008,N011,
N014,N017

N004,N006,
N008,N011,
N014,N017

N001, N003,
N005, N007,
N008, N010,
N012, N013,
N016, N018,
N019

N002

N001, N003,
N005, N007,
N008, N010,
N012, N013,
N016, N018,
N019

Segment 1

Segment 2

Segment 3

Segment 4

Round 0 6030

N001 ~
N020

N001 ~ N006,
N008 ~ N010,
N012, N015,
N016,
N018 ~ N020

N014

Segment 5

N007, N011,
N013, N014,
N017

N001 ~ N003, N005,
N006, N008 ~ N010,
N012, N015, N016,
N018 ~ N020

N004

N002, N003, N005,
N006, N008 ~ N010,
N012, N015, N016,
N018 ~ N020

N001, N011,
N017

N004

N007, N011,
N013, N017

N007, N013,
N017

N011

N007, N013

N011, N017

N002, N003, N005,
N006, N008 ~ N010,
N012, N015, N016,
N018 ~ N020

N007, N013

N014

N001 ~
N020

N007, N013,
N017

N001, N011,
N017

N001 ~ N003, N005,
N006, N008 ~ N010,
N012, N015, N016,
N018 ~ N020

Segment 1

Segment 2

Segment 3

Segment 4

Round 0 6030

N001 ~
N020

N018

N001, N002,
N004 ~ N017,
N019, N020

N018

N003,
N011

N003

N001 ~ N017,
N019, N020

Segment 5

N002,
N015

N001,
N004 ~ N014,
N016, N017,
N019, N020

N001,
N004 ~ N008,
N010 ~ N014,
N016, N019,
N020

N011

N009,
N017

N001,
N004 ~ N008,
N010 ~ N014,
N016, N019,
N020

N003,
N011

N009,
N017

N011

N002,
N015

Segment 6

Fig. 9. Test accuracy with Knowledge C: Almost all participants’ local
models achieve a stable test accuracy after 60 rounds’ training.

From the graphs, we can see most participants kept a
stable learning progress with Knowledge A and Knowledge
C, while several participants gave relatively low accuracy with
Knowledge B, however 14 participants among 20 achieved
more than 0.800 accuracy. At last, we compute the average
validation accuracies of all participants with three different
types of knowledge-based labeling methods, and achieve the
results as 0.923, 0.813 and 0.877 individually for the intrusion
detection.

 Furthermore, we visualize the progresses of the learning
model’s segmentation with three types of labeling methods
and give out the final segments of participants in the
segmented federated learning scheme (Fig. 10).

V. CONCLUSION

 In this research, a segmented federated learning is
adopted to solve the problem of various adaptivity of
participants’ network to the global model at the central server
as well as privacy issues of participants’ local data. We use
traffic data of 60 days from 20 participants in the LAN-
security Monitoring Project. Then we generate the feature
maps based on nine types of protocols’ communication
frequency. Moreover, three types of knowledge-based
methods are used for labeling.

 Furthermore, a four-layers CNN model is adopted as local
machine learning models as well as the global model. We
adopt a learning rate of 0.00001, a training batch size of 200,
and an epoch of one, conducting the learning for a total sixty
rounds. For every six rounds, performance evaluation is
conducted, and according to the results, the structure of the
learning model is adjusted automatically. It shows a good
performance when it comes to the task of intrusion detection
in LANs with the segmented federated learning. For future
work, a discussion on various training parameters’ influence
on the precision and stability of the learning model is
considered, such as the epoch, the learning rate, and the batch
size.

REFERENCES
[1] "LAN-Security Monitoring Project", www.lan-security.net, Accessed

5th Jan. 2020
[2] Nilamadhab Mishra, Sarojananda Mishra, Support Vector Machine

Used in Network Intrusion Detection, National Workshop on Internet
of Things (IoT), 2018

[3] T. Omrani, A. Dallali, B. C. Rhaimi and J. Fattahi, Fusion of ANN and
SVM classifiers for network attack detection, 18th International
Conference on Sciences and Techniques of Automatic Control and
Computer Engineering, 2017

[4] M.A. Salama, H.F. Eid, R.A. Ramadan, A. Darwish, A.E. Hassanien,
Hybrid intelligent intrusion detection scheme, Soft Computing in
Industrial Applications, pp.293–303, 2011

[5] Dhanabal, L. and S. P. Shantharajah, A Study on NSL-KDD Dataset
for Intrusion Detection System Based on Classification Algorithms,
2015

[6] J. Yang, J. Deng, S. Li, Y. Hao, Improved traffic detection with support
vector machine based on restricted boltzmann machine, Soft
Computing 21(11) (2017) 3101–3112, 2017

[7] P.H. Duy, N.N. Diep, Intrusion detection using deep neural network,
Southeast Asian Journal of Sciences 5 (2) (2017) 111–125, 2017

[8] J. Saxe, K. Berlin, Deep neural network based malware detection using
two dimensional binary program features, Proceedings of the 10th
International Conference on Malicious and Unwanted Software
(MALWARE), 2015

[9] M. Yousefi-Azar, V. Varadharajan, L. Hamey, U. Tupakula,
Autoencoder-based feature learning for cyber security applications,
Proceedings of the 2017 International Joint Conference on Neural
Networks (IJCNN), 2017

[10] Briland Hitaj, Giuseppe Ateniese, Fernando Perez-Cruz, Deep Models
Under the GAN: Information Leakage from Collaborative Deep
Learning, Session C3: Machine Learning Privacy, CCS’17, 2017

[11] Abeshu and N. Chilamkurti, Deep learning: the frontier for distributed
attack detection in fog-to-things computing, IEEE Communications
Magazine, vol. 56, no. 2, pp. 169–175, 2018

[12] T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and
A.-R. Sadeghi, A crowdsourced self-learning approach for detecting
compromised IoT devices, arXiv preprint, arXiv:1804.07474, 2018

[13] H. B. McMahan, E. Moore, Daniel Ramage, and B. A. Arcas, Federated
Learning of Deep Networks using Model Averaging, arXiv preprint,
arXiv:1602.05629v1, 2016

[14] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo, Cyber-
Physical Systems Security – A Survey, arXiv preprint, arXiv:
1701.04525v1, 2017

[15] lan Goodfellow, Yoshua Bengio, Aaron Courvile, Deep Learning
(Adaptive Computation and Machine Learning), Francis Bach, The
MIT Press, 2016

[16] Eric Krokos, Alexander Rowden, Kirsten Whitley, and Amitabh
Warshney, Visual Analytics for Root DNS Data, IEEE Symposium on
Visualization for Cyber Security, 2018

[17] Anna L. Buczak and Erhan Guven, A Survey of Data Mining and
Machine Learning Methods for Cyber Security Intrusion Detection,
IEEE Communications Surveys & Tutorials, Vol. 18, No. 2, 2016

[18] A. Elsaeidy, K. S. Munasinghe, D. Sharma, and Abbas Jamalipour,
Intrusion detection in smart cities using Restricted Boltzmann
Machines, Journal of Network and Computer Applications 135 76–83,
2019

