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Abstract—Traditional approaches to cybersecurity issues 
usually protect users from attacks after the occurrence of 
specific types of attacks. Besides, patterns of recent cyberattacks 
tend to be changeable, which add up to unpredictability of them. 
On the other hand, machine learning, as a new method used to 
detect intrusion, is attracting more and more attention. 
Moreover, through the sharing of local training data, the 
centralized learning approach has proven to improve a model’s 
performance. In this research, a segmented federated learning 
is proposed, different from a collaborative learning based on 
single global model in a traditional federated learning model, it 
keeps multiple global models which allow each segment of 
participants to conduct collaborative learning separately and 
rearranges the segmentation of participants dynamically as 
well.  Furthermore, these multiple global models interact with 
each other for updating parameters, thus being adaptable to 
various participants’ LANs. A dataset covering two months’ 
traffic data from 20 participants’ LANs in the LAN-Security 
Monitoring Project is used. We adopt three types of knowledge-
based methods for labeling network events and train a CNN 
model based on the dataset. At last, we achieve validation 
accuracies of 0.923, 0.813 and 0.877 individually with these 
labeling methods.  

Keywords—LAN, cybersecurity, machine learning, segmented 
federated learning, CNN 

I. INTRODUCTION

  In former research of the LAN-Security Monitoring 
Project [1], a smart device is designed and connected to a 
router in a LAN, thus collecting and transporting network 
traffic data securely to the central server. Moreover, the 
collected traffic data include broadcast data in a LAN and any 
communication directly sent to the device. Then an algorithm 
at the central server is used to detect abnormal behavior inside 
LANs based on these data. In total, more than fifty devices 
have been set up mainly in LANs of university laboratories 
and research institutes. In addition, all data are packaged and 
transported to the central server on a daily basis, which means 
each data file includes one day’s traffic data in a LAN.  

 Considering the privacy of participants transporting their 
local data and diversity of their LANs, a segmented federated 
learning is proposed in this research, which allows participants 
to share parameters of local training models instead of original 
data as well as adjusting itself according to variance among 
LANs. Through parameters sharing and structure 
transformation, this scheme is supposed to improve the overall 
performance of intrusion detection in large-scale networked 
LANs. This scheme consists of two main parts: intrusion 
detection in LANs and segmented federated learning.  

  First, to detect malware in the network, a discriminator 
consisting of nine types of protocol information is used in this 
research, as follows: ARP, IP, TCP, UDP, HTTP, HTTPS, 

mDNS, DHCP, and Others. After that, we use a structure 
called the Hilbert curve to convert these various types of 
information into a feature map based on the frequency of each 
type’s communication, representing a network event defined 
in 128 seconds. Then we adopt three types of knowledge-
based approaches for labeling these network events, which 
include detection of a SYN445 to the monitor device, 
detection of TCP SYN from an IP with a frequency of more 
than three times, and detection of a UDP unicast to the monitor 
device (except the case of NTP communications between the 
monitoring device and the central server and the case of DNS 
communications). 

 Then, a four-layer convolutional neural network model, 
consisting of two convolution layers, each of which is 
followed by a maxpooling layer, and two fully-connected 
layers, is adopted and trained based on the local dataset, with 
feature maps as the input data and types of network events 
obtained by knowledge-based approaches as the labels. 
Furthermore, we use a learning function called RMSProp and 
mini-batch learning in this model. After training, we are 
supposed to obtain a model that can tell if a network event is 
malicious or not through the classification of its feature map.  

 Moreover, a segmented federated learning method is 
adopted in this research for parameters sharing among 
participants as well as adapting itself to various networks. 
Here, for every day, the model conducts a learning progress, 
called a round. For each round, selected participants will train 
local models using local datasets, which are generated based 
on a specific day’s traffic data in participants’ networks. 
Furthermore, for every six rounds, the system will conduct a 
performance evaluation of each participant under the current 
global branch using the variance of all participants’ average 
accuracies during the recent six rounds, which is used to 
decide if a participant continues staying at the current branch. 
On the other hand, if it shows a result under a specific 
threshold, this one will be transferred to another branch, which 
is initialized accompanied by the judgment. Consequently, 
from the next round, these participants will train on their 
dataset under different global models.  

 Furthermore, we use a dataset that is separated from the 
dataset for the segmented federated learning to initialize a 
global model, with a learning rate of 0.00001, a batch size of 
200, and an epoch of five. This dataset includes 782 benign 
feature maps and 1186 malicious feature maps. On the other 
hand, we train local models at each round with a learning rate 
of 0.00001, a batch size of 50, and an epoch of one. Then, for 
each round, parameters of selected participants’ models will 
be uploaded to the central server. Then, the corresponding 
global model conducts aggregation based on these parameters, 
including ones of a former global model, and ones of the other 
global models, each of which is with different ratios, to update 

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



the global model. After that, all participants under this global 
model will download the updated global model to replace their 
local models.  

 For evaluation of this monitor system, we record accuracy 
of all participants for intrusion detection with each 
knowledge-based labeling method and visualize the 
segmentation of the system when it encounters with 
participants with relatively disadvantaged performance under 
a global model.  

This paper is organized as follows. Section 2 discusses 
related works about intrusion detection with approaches of 
machine learning and applications of the federated learning on 
cybersecurity issues. Section 3 provides an overview of the 
scheme, including representation of network events, 
classification with the CNN, and parameters sharing with the 
segmented federated learning. Section 4 presents the 
performance evaluation of this system based on the precision, 
visualizing global models’ segmentation with various 
knowledge-based labeling methods. Section 5, we conclude 
the paper and give out the future work of this research.  

II. RELATED WORK

 Intrusion detection has been a new trend in the 
cybersecurity area nowadays. Especially, in a local area 
network (LAN), the number of monitored intrusion is 
increasing. Traditional approaches to this issue include an 
application of several knowledge-based rules on network 
communication, and once these rules are satisfied, a network 
event will be considered as malicious. Moreover, several 
traditional machine learning methods such as support vector 
machine (SVM) and neural network (NN) have been used to 
address issues of network attacks detection in personal 
computers and critical infrastructure [2][3]. However, due to 
the limitations of these methods on dealing with big data and 
adaptability to various network environments, they have 
shown disadvantages in solving complicated detection 
problems. 

 On the other hand, since the advancement of deep 
learning in recent years, a large-scale data analysis on network 
traffic data has become possible and shown great performance 
as well. For instance, Salama et al. [4] presented an intrusion 
detection hybrid scheme using deep belief network (DBN) and 
SVM, classifying the intrusion into two clusters: normal or 
attack. They adopt DBN for reducing the dimension of 
features and SVM for the classifier. They evaluated their 
scheme with the NSL-KDD dataset [5] and achieved an 
accuracy of above 0.9 at last. Moreover, in another research 
conducted by Yang et al. [6], they use restricted Boltzmann 
machine (RBM) to extract high-level feature representation of 
traffic data and train SVM with stochastic gradient descent 
(SGD) for classification of it. Duy et al. [7] discriminated the 
application of feedforward neural network (FFNN) on 
network intrusion detection based on the NSL-KDD dataset. 
Their model achieves an F1 score of 0.962 for evaluation. In 
addition, this FFNN model includes four hidden layers of 60 
neurons, using an activation function of ReLU and a learning 
rate of 0.001 for training. Furthermore, Saxe et al. [8] 
proposed a deep neural network (DNN) based malware 
detector that employs two-dimensional binary program 
features to detect malware. Yousefi-Azar et al. [9] gave out a 
generative feature learning-based approach for malware 
classification, where latent features from the hidden layer of 
autoencoder (AE) are adopted for anomaly detection.  

 Moreover, as former research, a centralized learning, 
where local training data of participants are transported to a 
central server for centralized learning, is used to improve the 
performance of intrusion detection with machine learning 
[10]. However, several privacy issues accompanying the 
transportation progress have been given up. On the contrast, 
the federated learning (FL) is proposed to access these issues, 
by allowing participants to achieve the purpose of 
collaborative learning without sharing their private local data, 
instead, sharing local model parameters. Furthermore, there 
have been several pieces of research focusing on the 
application of the federated learning on cybersecurity issues. 
For example, Abeshu et al. [11] proposed a cyberattack 
detection model using FL, with edge nodes as participants. In 
this model, to improve the accuracy in detecting attacks, each 
participant sends its trained model based on a local dataset to 
the server for parameters sharing. Through this approach, they 
are aimed to enhance the privacy of participants and reduce 
the traffic load of networks while transporting as well. Nguyen 
et al. [12] presented an approach of adopting Internet of things 
(IoT) gateways as participants and an IoT security service 
provider as the server node for the aggregation of machine 
learning model parameters. At last, they achieved an accuracy 
of 0.956 for intrusion detection in a real-world smart home 
deployment setting. 

However, research mentioned above has limits in intrusion 
detection in various network environments as well as a stable 
and resilient learning progress as well. Different from former 
research, we propose a segmented federated learning, in which 
the system structure is adjusted automatically according to 
performance of each participant, thus having great adaptivity 
to various networks. At the same time, different from adopting 
traditional machine learning approaches, we use a 
convolutional neural network, which is one kind of deep 
learning, for purposes of the extraction of high-level feature 
representation and network events classification. As a result, 
this system is supposed to have the ability of dealing with big 
data of network traffic as well as a collaborative learning with 
a stable and robust progress. 

III. INTRUSION DETECTION IN LANS WITH SEGMENTED
FEDERATED LEARNING

In this research, we extend the traditional federated 
learning method and apply it on intrusion detection in LAN 
based on a dataset from 20 participants in the LAN-security 
Monitoring Project [1]. Instead of uploading local traffic data 
to a central server, we allow participants to initialize and train 
a machine learning model in the local. Moreover, through 
uploading parameters of these trained models, the central 
server conducts an aggregating function to generate a global 
model for the intelligence sharing among all participants. For 
every round, only selected participants retrain their local 
models, and for every six rounds, the system conducts a 
performance evaluation of each participant based on the recent 
six records of validation accuracy of local models. The ones 
showing relatively disadvantaged performance are removed 
from the current global model and transferred to a new 
initialized global model (Fig. 1). 

Considering diversity between networks of participants, 
independently trained local models are greatly different from 
each other. Through aggregating parameters of these local 
models as well as other global models, it is aimed to generate 
models with resilience and adaptivity to intrusion detection 
issues in various network environments. Furthermore, since 



original traffic data are kept in the local, the application of a 
federated-learning-based approach also proves to enhance the 
privacy of participants in large-scale networked systems. 

 

Fig. 1.  The initial structure of the large-scale networked monitor systems. P1, 
P2, and P3 represent participants. A validation model is adopted for every six 
rounds to evaluate performance of each participant. The participants who 
show relatively good performance are kept under a current global model, 
while participants who show relatively poor performance under the current 
one are removed from the current global model and further processed for 
segmentation.    

 

A. Experiment data 
In this research, we adopt experiment data from 20 

participants’ LANs in the LAN-security Monitoring Project. 
In this project, a smart device (a node) is connected to a router 
in a LAN for collecting network traffic data. Then these data 
are packaged and transported to a central server for anomaly 
detection on a daily basis. The collected network traffic data 
include all broadcast traffic in a LAN and any communication 
sent directly to the devices. Moreover, all data are collected in 
the format of pcap capture files, and the NTP (Network Time 
Protocol) is used for clock synchronization between a node 
and the central server in this project.  

For the experiment data in this research, we extract two 
months’ collected network traffic data from 20 participants in 
the LAN-security Monitoring Project, from 1st October to 29th 
November 2019, a total of 60 days. Consequently, for these 
participants, the same amount of traffic data during the same 
period are adopted in this research.  

B. Feature representation 
       To represent features of network traffic data, we adopt 
communication frequencies of nine types of protocols as 
discriminators, including the IP, ARP, TCP, HTTP, HTTPS, 
UDP, mDNS, DHCP and other. In detail, we compute each 
record using how many packets of each protocol are 
transmitted or received within a period of 0.5 second. 
Furthermore, a total amount of 256 records are used to 
generate one feature map of a specific protocol, and a 
parameter called fineness is adopted to adjust how finely we 
consider information hidden in network traffic data. The time 
period represented by each feature map is expressed as in (1). 
Through utilizing these parameters (fineness and size), we 
bring features of traffic data different in recording period and 
fineness into images with the same size. In this research, we 
put communication frequency information of protocols into 
one feature map, with a period of 128 seconds.  

𝑇 =	𝑇!" ∙ 𝑓𝑖𝑛𝑒𝑛𝑒𝑠𝑠 ∙ 𝑠#																												(1)	

Where 𝑇 is the period represented by a feature map, Tst (time 
standard) is a standard interval for each recording with a value 
of one second here and s is the size of the generated feature 
map of each protocol. In this research, the fineness has a value 
of 0.5 and the s has a value of 16.  

 Moreover, we further convert these frequency information 
into pixel values using (2). Then we adopt a structure called 
the Hilbert curve to project these 256 records in the format of 
pixel values into specific positions in a feature map with a 
width and height of 16 pixels, considering the adaptivity of 
generated feature maps to a machine learning model as well. 
Here, the Hilbert curve is a method used to transform the 
structure of data so that it fills up all space in an image.  

      𝑝$ = %!
&'((%)

∙ 255	 																							(2)	

Where 𝑝$ represents the corresponding pixel value, 𝑐$ shows 
the communication frequency of each protocol, and 𝑐 
represents all records of the frequency during the period of 
128 seconds in one feature map. As a result,  %!

&'((%)
  has a 

value in an interval of (0, 1], and 𝑝$ has a value in an interval 
of (0, 255]. 

       Furthermore, we project the feature maps of these nine 
types of protocols mentioned above into different arears of an 
upper image through the array exchange, as well as adding an 
arear for records of the other protocols, to represent features 
of network traffic data in LAN with one image (Fig. 2). 
Consequently, it is considered that features of network traffic 
data in LAN can be represented by a series of time-related 
feature maps, each of which has a size of 48 × 48. And the 
generated feature maps using the dataset from 20 participants’ 
networks are shown below (Fig. 3). 

Fig. 2.  Feature representation of network traffic data in a LAN based on the 
Hilbert curve structure: For each protocol, time-related frequency information 
is converted to pixel value of specific positions; feature maps of nine types of 
protocol information are projected into specific areas in a feature map for 
representation of a network event.  

 

Fig. 3.  Samples of network events’ feature maps with a size of 48 × 48 (Left: 
A feature map of N009; right: A feature map of N011). 
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TABLE Ⅰ.  Constitution of the dataset. 

Partici
pants 

Knowledge A Knowledge B Knowledge C Partici
pants 

Knowledge A Knowledge B Knowledge C 

Benign  Malicious Benign  Malicious Benign  Malicious Benign  Malicious Benign  Malicious Benign  Malicious 

N001 46575 0 46497 78 46562 13 N011 43531 3044 13763 32812 38600 7975 

N002 44512 0 44386 126 44381 131 N012 44688 1887 42568 4007 46569 6 

N003 47138 706 44230 3614 46847 997 N013 46575 0 26644 19931 45950 625 

N004 45589 0 45223 366 45585 4 N014 46073 502 26081 20494 42662 3913 

N005 39140 6502 30639 15003 34364 11278 N015 45393 9 42521 2881 44363 1039 

N006 46544 31 46433 142 43260 3315 N016 45949 3 45190 762 45689 263 

N007 44541 2034 13639 32936 38613 7962 N017 46575 0 26652 19923 46575 0 

N008 42248 2612 42228 2632 41654 3206 N018 46047 0 44604 1443 16303 29744 

N009 46196 379 37671 8904 45747 828 N019 46113 2 41767 4348 45840 275 

N010 46575 0 43913 2662 46575 0 N020 41925 4650 40489 6086 46567 8 

C. Knowledge-based labeling
In this research, we adopt knowledge-based approaches

to label these feature maps of network events, thus dividing 
them into two clusters, benign or malicious. We consider and 
select three types of patterns for intrusion detection based on 
former monitoring and analyzing of participants’ network 
traffic data in the LAN-security Monitoring Project. And the 
patterns we adopt for labeling are as the following: 

• Knowledge A: Detection of any SYN445 to the
monitor device

• Knowledge B: TCP SYN from the same IP with a
frequency of more than three times
 

• Knowledge C: Detection of any UDP unicast to the
monitor device (except the communications of NTP
with a source port of 123 and DNS with a source port
of 53)

       Then we utilize these labels based on various patterns and 
the generated feature maps of network events as local training 
datasets. Moreover, the constitutions of each node’s datasets 
based on three types of labeling patterns are shown above 
(TABLE Ⅰ) 

D. Classification with Convolutional Neural Network
We adopt a four-layer CNN model, consisting of two

convolution layers, each of which is followed by a 
maxpooling layer, and two fully-connected layers, to train 
local datasets mentioned above, where feature maps are used 
as the input and network event labels are used as the output 
(Fig. 4). In addition, a padding with a value of one is used in 
this CNN model. For the first convolution layer, ten kernels 
with a size of 3 × 3 are adopted with a stride of one. For the  
second convolution layer, ten kernels with a size of 1 × 1 are 
adopted with a stride of one. And the fully-connected layer 
consists of 200 neurons. An output layer with two neurons for 
classification between benign and malicious is adopted in this 
model.   

Fig. 4. The structure of the four-layer CNN model, with feature maps as the 
input and results of knowledge-based labeling as labels.

 Moreover, we adopt a learning function called RMSProp 
in this model, which is defined in the following (3) (4). It has 
a characteristic that the emphasis is placed on the latest 
gradient information more than the past gradient information 
and gradually the past gradient information is forgotten, 
instead, the new gradient information is greatly reflected. 
Furthermore, softmax is used as the activation function at the 
last layer to obtain possibilities of each cluster, thus 
classifying the input of feature maps (5).  

h+ = ρ ∗ h+,- + (1 − ρ) ∗
./
.0"

⊙ ./
.0"

																(3)	

W+1- = W+ − η
-

23"14
⊙ ./

.0"
												(4)	

Where L is the loss,  W is the weight of the node, and 𝜌 is the 
decay rate with a value of 0.9. 

𝒚𝒊 =
𝒆𝒙𝒊

∑ 𝒆𝒙𝒋𝑵
𝒋'𝟏

            (5) 

Where a standard exponential function is applied to each 
element x8 of the input vector x, and thus normalizing these 
values by dividing by the sum of all exponentials. Then, each 
component including negative, greater than one, or might not 
sum to 1, will be in the interval (0, 1), with a sum of 1.  
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Fig. 6. The scheme of the segmented federated learning when a participant’s local dataset doesn’t fit the current global model: A new global model is initialized 
to fit this participant’s local dataset. At the same time, parameters of the aggregating algorithm for generating global models of the next round are adjusted 
automatically based on a new structure of the segmented federated learning model.
 

E. Segmented Federated Learning 
A segmented federated learning model consists of two 

parts, the central server and participants. Different from a 
centralized learning model which needs participants to upload 
local data, in a scheme of the segmented federated learning, 
participants conduct training locally and share parameters of 
trained local models with the central server to achieve the 
purpose of collaborative learning. On the other hand, an 
aggregator in the central server is adopted to obtain a global 
model based on the uploaded parameters as well as the former 
global model. Moreover, the obtained global model is used 
for updating the participants’ local models.    

In detail, first, the center server initializes a global model 
with pre-trained initialization parameters. Then, all 
participants download the initialized global model to their 
local networks. After that, for each round, all participants 
download a global model at the central server to replace their 
local ones. Then selected participants, using a roll based 
approach in Algorithm 1, perform retraining of local models 
using the current day’s dataset. After all selected participants 
complete the retraining, these updated parameters of local 
models are uploaded to the central server for aggregation. 
Here, a round is defined as a processing section with a period 
of one day, from all participants updating their local models 
to the central server completing the aggregation. As such, at 
the next round, all participants replace their local models with 
the updated global models for a new processing section.  

       Furthermore, since for every two rounds, all participants 
complete a round of retraining, we conduct performance 
evaluation for every six rounds (three rounds of retraining) in 
order to achieve a more precise result. And a validation model 
defined as (6) and (7), is used to evaluate performance of all 
participants under the same global model in recent six rounds. 

 

The average accuracies of participants during the last six 
rounds are computed. Then we compute the difference 
between these average accuracies of participants to evaluate 
participants’ performance. At last, we adopt the Sigmoid 
function, thus converting the evaluation results into an interval 
of (0, 1).  

𝑑$ =	𝑎𝑐𝑐$ −
∑ '%%!
)
!'*
9

			 									 					(6)	

𝑒$ =
-

-1:+,!
				 																															(7)	

Where n is the number of participants, 𝑎𝑐𝑐$  represents an 
average test accuracy of participant i for last six rounds, 𝑑$ 
shows the extent of difference between each participant’s 
accuracy and the average of them, and 𝑒$ is the output of the 
Sigmoid function. 

       Through this approach, the performance of a participant 
under the current global model is represented with a value in 
an interval of (0, 1). Then, according to the evaluation result, 
we remove these participants with a result below the 
threshold, which is adjusted to a value of 0.47. A new global 
model is initialized with parameters from the average of these 
participants’ local ones. Then these participants are moved to 
this newly initialized global model for the next round’s 
processing (Fig. 6). In addition, the threshold here is adjusted 
and refined, considering that a relatively small threshold leads 
to a few participants having the possibility to be transplanted 
to a new global model, and a relatively large one leads to over 
segmentation of participants.  

       Moreover, for the aggregation in the central server, we 
adopt (8) to compute the parameters of global models, based 
on parameters of various sources including the former global 
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model, uploaded local models of selected participants and the 
other global models (Fig. 6).  

𝑝" = 𝛼 ∙ 𝑝",- + 𝛽 ∙
∑ ;!
)
!'*
9

+ 𝛾 ∙ ∑ ;!
-
!'*
<

	(𝛼 + 𝛽 + 𝛾 = 1	)		(8)                                         	

Where 𝑝" represents new parameters of a global model, 𝑝",- 
represents parameters of the former global model, 𝑝$  shows 
the uploaded parameters of the participants who conduct 
training for the current round, 𝑞$ represents parameters of the 
other global models, n is the number of participants 
conducting local training, and m is the number of the other 
global models. 𝛼, 𝛽	and	𝛾  represent ratios of each 
component for aggregation, with a sum of 1. Here, considering 
the balance of parameters updating with respect to various 
components, 𝛽 is 0.1,  𝛾 is 0.01, and as a result, 𝛼 has a value 
of (0.9 - 0.01 ∙ 𝑚). And the intact algorithm for the segmented 
federated learning is defined as Algorithm 1. 

IV. EVALUATION

       In this research, we adopt a batch size of 200 and an epoch 
of one to train local models. We adopt a dataset consisting of 
sixty days’ traffic data collected from 20 participants in the 
LAN-security Monitoring Project to evaluate our scheme. 
Moreover, as discussed above, a round is conducted with a 
period of one day, hence a total of sixty rounds are conducted 
for the segmented federated learning in this research.  

       For performance evaluation of the segmented federated 
learning, we adopt the presicion defined as (9) to show the 
adpativity of each local model to the correspomding global 
model. Moreover, the results of validation are all computed 
at the beginning of each round. The corresponding test 
accuracy of 20 participants when adopting three types of 
knowledge-based labeling methods are shown below (Fig. 7, 
Fig. 8, Fig. 9). In addition, as discussed above, these results 
are also used for the judgement of segmentation for every six 
rounds.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = =>
=>1?>

				(9)	

Where TP (True Positives) indicates the number of feature 
maps of network events successfully classified by a local 
CNN model, and FN (False Negative) represents the number 
of unsuccessfully classified ones. 

Fig. 7. Test accuracy with Knowledge A: Almost all participants’ local 
models achieve a stable test accuracy after 60 rounds’ training.  

Fig. 8. Test accuracy with Knowledge B: Several participants’ local models 
show an unstable test accuracy during the whole course of training; while the 
others achieve a stable test accuracy after 60 rounds’ training.   

Algorithm 1 SEGMENTED FEDERATED LEARNING. 𝑁! is the total 
number of participants. 𝐷" is the local dataset of participant t. G is all 
global models. 𝐿#  is a list including segment information of 
participants. B is the batch size. E is the epoch. 𝛼, 𝛽	and	𝛾 are ratios of 
each component for aggregation. threshold is influenced by fineness for 
segmentation.  

Server executes: 
   initialize 𝑝$ 
   for each round t = 1, 2, . . . do 

  for each global model g = 1, 2, . . . do 
           𝑁" ¬ (𝑁#+1) // 2 
           𝐵" ¬ (split 𝑁#into batches of size 𝑁") 
           𝑠" ¬ 𝐵"[t % 2] 
           𝑠% ¬ (set of participants without local training) 
           for each participant t Î 𝑠" in parallel do 

            Execute(𝑝", 𝐷") 
    for each participant r Î 𝑠% in parallel do 

  𝑝% ¬ 𝑝# 
           𝑝# ¬ Aggregate(𝑝", t Î 𝑠"; 𝑝#, g Î G) 
           If t % 6 == 0 do 
              for each participant k Î 𝑠# do 

𝑎𝑐𝑐& ¬ mean(validation accuracy of k in recent six rounds)  
              𝐿# ¬ Segment(𝑎𝑐𝑐&, k Î 𝑠#; 𝐿#)  

Execute(𝑝", 𝐷"): 
    𝑝" ¬ 𝑝# 
				𝐷'	¬ (split	𝐷"	into	batches	of	size	B	)		
    for each local epoch i from 1 to E do 
       for batch b ∈ 𝐷' do 
          𝑝" ¬ 𝑝" − η▽l (𝑝"; b) 
    return 𝑝" to server     

Aggregate(𝑝", t Î 𝑠"; 𝑝#, g Î G): 
    𝐺( ¬ (the other global models except the current one) 
    𝑝#	¬	𝛼 ∙ 𝑝# + 𝛽 ∙ 𝑚𝑒𝑎𝑛(𝑝", t Î 𝑠") + 𝛾 ∙ 𝑚𝑒𝑎𝑛(𝑝(, o Î 𝐺() 	(𝛼 +
		𝛽 + 𝛾 = 1)	

    return 𝑝# to server 

Segment(𝑎𝑐𝑐&, k Î 𝑠#; 𝐿#): 
    𝑒&	¬	sigmoid(𝑎𝑐𝑐& −mean(𝑎𝑐𝑐&, 𝑘	Î	𝑠#)) 
    if 𝑒& < threshold 

 𝐿# ¬ (remove all participants k from the current global model) 
       𝐿# ¬ (remove this global model if there are no participants left) 
       initialize 𝑝)*+ 
       𝐿# ¬ (attach k to a newly initialized global model) 
    return 𝐿# to server 



 
(a)     The segmentation of the model with Knowledge A as the labeling method. 

 

 
(b)     The segmentation of the model with Knowledge B as the labeling method. 

 

 
(c)     The segmentation of the model with Knowledge C as the labeling method. 

Fig. 10. The segmentation of the learning model with different knowledge-based labeling methods. With the progress of the segmented federated learning, 20 
participants are divided into several segments, each of which has an independent global model. 
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Fig. 9. Test accuracy with Knowledge C: Almost all participants’ local 
models achieve a stable test accuracy after 60 rounds’ training. 

From the graphs, we can see most participants kept a 
stable learning progress with Knowledge A and Knowledge 
C, while several participants gave relatively low accuracy with 
Knowledge B, however 14 participants among 20 achieved 
more than 0.800 accuracy. At last, we compute the average 
validation accuracies of all participants with three different 
types of knowledge-based labeling methods, and achieve the 
results as 0.923, 0.813 and 0.877 individually for the intrusion 
detection.     

      Furthermore, we visualize the progresses of the learning 
model’s segmentation with three types of labeling methods 
and give out the final segments of participants in the 
segmented federated learning scheme (Fig. 10).  

V. CONCLUSION

       In this research, a segmented federated learning is 
adopted to solve the problem of various adaptivity of 
participants’ network to the global model at the central server 
as well as privacy issues of participants’ local data. We use 
traffic data of 60 days from 20 participants in the LAN-
security Monitoring Project. Then we generate the feature 
maps based on nine types of protocols’ communication 
frequency. Moreover, three types of knowledge-based 
methods are used for labeling. 

       Furthermore, a four-layers CNN model is adopted as local 
machine learning models as well as the global model. We 
adopt a learning rate of 0.00001, a training batch size of 200, 
and an epoch of one, conducting the learning for a total sixty 
rounds. For every six rounds, performance evaluation is 
conducted, and according to the results, the structure of the 
learning model is adjusted automatically. It shows a good 
performance when it comes to the task of intrusion detection 
in LANs with the segmented federated learning. For future 
work, a discussion on various training parameters’ influence 
on the precision and stability of the learning model is 
considered, such as the epoch, the learning rate, and the batch 
size.   
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