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Abstract—This paper designs a multi-compartment soma-
dendrite-spine model having nonlinear dynamics of an asyn-
chronous cellular automaton. The model can exhibit various
propagations of action potentials observed in neurons and these
propagations are analyzed in detailed. Then, using the analysis re-
sults, a novel systematic design method of the model is proposed.
It is shown that the model designed by the proposed method
can realize robust conditioning based on spike-timing dependent
plasticity (STDP). Also, the designed model is implemented by a
field programmable gate array (FPGA) and experiments validate
its STDP-based conditioning function. It is then shown that the
designed model consumes fewer hardware resources and lower
power compared to an ODE-based multi-compartment model.

Index Terms—Multi-Compartment Neuron Model, Asyn-
chronous Cellular Automaton, Nonlinear Dynamics, STDP, Pavlo-
vian Conditioning, FPGA, VLSI

I. INTRODUCTION

A neuron typically consists of a soma, dendrites, spines, and
axons, where the dendrite sometimes has complicated physical
structure such as the one in Fig. 1(a) [1]. A wide variety
of dendritic phenomena have been observed [2]-[8] such as
forward and backward propagations of action potentials and
their combinations. It has been suggested such various den-
dritic phenomena play important roles in neural information
processing and spike-timing dependent plasticity (STDP) [9],
where various STDP models have been also investigated in
recent years [10]-[12]. One of the major modeling methods
of the neuron reflecting its physical structure is a multi-
compartment modeling method as shown in Fig. 1(b) [9]-[14],
where the dynamics of the neuron is modeled by a coupled
system of small compartments.

Concerning mathematical modeling and VLSI implemen-
tation methods of neural systems, there exist four approaches
depending on continuousness of time and state as follows [15].
The first approach is to model a neural system by a nonlinear
ordinary differential equation, which has a continuous time
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Fig. 1. (a) Anatomical structure of neuron [1]. (b) Multi-compartment soma-
dendrite-spine model [9]-[14]. Forward propagations of action potentials (from
dendrite to soma) and backward propagations of action potentials (from soma
to dendrite and from dendrite to dendrite) play important roles in conditioning
of the model based on spike timing dependent plasticity (STDP) in a spine.

and continuous states. Such a model can be implemented by a
nonlinear electronic circuit. The second approach is to model
a neural system by a nonlinear difference equation, which has
a discrete time and continuous states. Such a model can be im-
plemented by a switched capacitor circuit. The third approach
is to model a neural system by a numerical integration in a
fixed-point or a floating-point number format or by a cellular
automaton, which have discrete times and discrete states. Such
models can be implemented by digital processors or sequential
logics. The fourth approach is to model a neural system by
an asynchronous cellular automaton, which has a continuous
(state transition) time and discrete states. Such a model can
be implemented by an asynchronous sequential logic. Most
conventional neural systems are modeled and implemented
based on the first, the second, or the third approach [16].
On the other hand, our group and some other groups have
designed neural system models based on the fourth approach
[13]-[15][17]-[20] and have shown such neural system models
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consume much fewer hardware resources compared to the dig-
ital processor approach [13][15][17]-[19]. In these researches,
multi-compartment soma-dendrite-spine models designed by
the fourth approach are also designed [13][14]. However, the
following important questions are still unclear.

• how to design the multi-compartment soma-dendrite-
spine model having the nonlinear dynamics of the asyn-
chronous cellular automaton so that it can exhibit various
dendritic phenomena observed in neurons;

• how to design the model so that it can realize robust
conditioning or learning; and

• how to design the model so that it consumes few hardware
resources and low power.

In this paper, some clear answers to these questions are
provided. The main results of this paper and their novelties
and significances include the following points.

• This paper provides detailed analysis results of var-
ious propagations of action potentials in the multi-
compartment soma-dendrite-spine model having the non-
linear dynamics of the asynchronous cellular automaton
for the first time.

• The above analysis results can be used as powerful tools
to design the model. Actually, this paper proposes a novel
systematic design method of the model so that it can
realize robust Pavlovian conditioning [21] based on the
STDP, where the analysis results play central roles in the
proposed design method.

• It is shown that the model designed by the proposed
method consumes fewer hardware resources and lower
power compared to an ordinary differential equation
(ODE) multi-compartment neuron model.

• The above results suggest that this paper will contribute
to design biologically plausible neural network hardware
suitable for neural prosthetic devices [22] such as a
”biologically plausible, small, low power, and robustly
learnable brain implant chip.”

II. MULTI-COMPARTMENT SOMA-DENDRITE-SPINE MODEL

A. Structure of multi-compartment soma-dendrite-spine model

In this paper, the multi-compartment soma-dendrite-spine
model in Fig. 2 is designed and analyzed. Major features of
the structure of the model are as follows.

• The multi-compartment soma-dendrite-spine model have
Q membrane units {M0, M1, · · · , MQ−1}, where all
the membrane units are assumed to be connected, i.e.,
there is no isolated membrane unit. In the case of Fig. 2,
the number Q of the membrane unit is 6.

• The 0-th membrane unitM0 is used as a soma compart-
ment. The other membrane units {M1, · · · ,MQ−1} are
used as dendrite compartments and form a dendritic tree
structure.

• A spine unit Si can be connected to the membrane unit
Mi (not necessarily). In the case of Fig. 2, the spine units
S4 and S5 are connected to the membrane unitsM4 and
M5, respectively.

Fig. 2. Whole structure of the multi-compartment soma-dendrite-spine model
designed in this paper and roles of propagations of action potentials in STDP-
based Pavlovian conditioning.

The multi-compartment model can exhibit a wide variety of
propagations of action potentials in response to stimulations.
This paper studies how such various propagations of action
potentials can realize the Pavlovian conditioning in the multi-
compartment model as follows (see also Fig. 2).

• The stimulation I4 to the spine unit S4 corresponds to
giving a ”food” to the model.

• The stimulation I5 to the spine unit S5 corresponds to
ringing a ”bell” in front of the model.

• The action potential Y0 of the soma compartment M0

corresponds to ”salivation” of the model.
• The stimulations I4 and I5 and the salivation Y0 cause

various propagations of action potentials in the multi-
compartment model such as forward and backward prop-
agations of action potentials and their combinations.

• The spine unit S5 exhibits spike timing dependent plas-
ticity (STDP) in response to bell stimulations I5 (cor-
responding to pre-synaptic spikes) and backward prop-
agations of action potentials Y5 (corresponding to post-
synaptic spikes) from the dendrite compartment M5.

• Due to the STDP, the multi-compartment model is con-
ditioned so that it salivates in response to the bell stim-
ulation I5 without giving the food stimulation I4.

B. Asynchronous discrete dynamics of membrane unit
In Fig. 3, a circuit diagram of the membrane unit Mi is

shown. Each i-th membrane unitMi has two registers storing
the following two discrete states.
Discrete membrane potential

Vi ∈ {0, 1, · · · ,M − 1} = M ,



Fig. 3. Circuit diagrams of the membrane unit Mi and the spine unit Si.

Fig. 4. Typical asynchronous transitions of the discrete states of the membrane
unit Mi. The internal clocks CV i and CUi are assumed to be periodic, to
have different periods, and to be asynchronous.

Discrete recovery variable

Ui ∈ {0, 1, · · · , N − 1} = N ,

where the integer parameters M > 0 and N > 0 determine
the resolutions of the discrete membrane potential Vi and the
discrete recovery variable Ui, respectively. Also, as shown
in Fig. 3, each i-th membrane unit Mi has the following
asynchronous internal clocks.

Asynchronous internal clocks for vector field

CV i(t) =

{
1 if t ∈ {t(1)V i , t

(2)
V i , · · · },

0 otherwise,

CUi(t) =

{
1 if t ∈ {t(1)Ui , t

(2)
Ui , · · · },

0 otherwise,

where t(n)V i and t
(n)
Ui represent spike timings (or rising edges)

of the clocks. As shown in Fig. 4, the internal clocks CV i and
CUi are assumed to be periodic, to have different periods, and
to be asynchronous. As shown in Fig. 4, the internal clocks
CV i and CUi trigger the following asynchronous transitions
of the discrete states Vi and Ui of the membrane unit Mi.
Asynchronous state transitions by clocks CV i and CUi

Vi(t
+) = Vi(t) +DV (Vi, Ui) if CV i(t) = 1,

Ui(t
+) = Ui(t) +DU (Vi, Ui) if CUi(t) = 1,

(1)

where DV (Vi, Ui) : M ×N → {−1, 0, 1} and DU (Vi, Ui) :
M ×N → {−1, 0, 1} are discrete functions defined by

DV (Vi, Ui) = 1 if (Vi, Ui) ∈ S++
i ∪ S+−

i ,
DV (Vi, Ui) = −1 if (Vi, Ui) ∈ S−+

i ∪ S−−
i ,

DV (Vi, Ui) = 0 if (Vi, Ui) ∈ S0
i ,

DU (Vi, Ui) = 1 if (Vi, Ui) ∈ S++
i ∪ S−+

i ,
DU (Vi, Ui) = −1 if (Vi, Ui) ∈ S+−

i ∪ S−−
i ,

DU (Vi, Ui) = 0 if (Vi, Ui) ∈ S0
i ,

S++
i ≡ {(Vi, Ui)|Ui < fV (Vi), Ui ≤ fU (Vi)},

S−+
i ≡ {(Vi, Ui)|Ui ≥ fV (Vi), Ui < fU (Vi)},

S+−
i ≡ {(Vi, Ui)|Ui ≤ fV (Vi), Ui > fU (Vi)},

S−−
i ≡ {(Vi, Ui)|Ui > fV (Vi), Ui ≥ fU (Vi)},

S0
i ≡ {(Vi, Ui)|(Vi, Ui) 6∈ S++

i ∪ S+−
i ∪ S−+

i ∪ S−−
i },

where fV and fU are discrete functions defined by

fV (Vi) = γ(bk1(Vi)2 + k2Vi + k3c),
fU (Vi) = γ(bk4Vi + k5c),
k1 = f1M

N2 , k2 = −2k1bf2Nc,
k3 = k1(bf2Nc)2 + bf3Mc, k4 = f4M

N , k5 = bf5Mc,

where b·c is the floor function, γ(x) = x for −1 ≤ x ≤ M ,
and γ(x) = −1 for x < −1. Note that the discrete membrane
potential Vi (the discrete recovery variable Ui) is assumed to
be saturated at 0 and M − 1 (0 and N − 1) and to exist in its
range M (range N ) throughout the paper. The function DV

and DU determine a nonlinear vector field of the membrane
unit Mi and thus are called discrete vector field functions.
As shown in Fig. 3, the discrete vector field functions DV

and DU are implemented by logic gates or look-up-tables. As
shown in Fig. 3, the spine unit Si has a register storing the
following synaptic weight.
Discrete synaptic weight

Wi ∈ {0, 1, · · · ,Wmax},

where the integer parameter Wmax > 0 determines the reso-
lution of the discrete synaptic weight Wi. As shown in Figs.
2 and 3, the spine unit Si accepts the following stimulation.



Stimulation

Ii(t) =

{
1 if t ∈ {t(1)Ii , t

(2)
Ii , · · · },

0 otherwise,

where t
(n)
Ii represents spike timing (or rising edge) of the

stimulation Ii. As shown in Fig. 4, the stimulation Ii to the
spine unit Si triggers the following transition of the discrete
state Vi of the membrane unit Mi.
Asynchronous state transition by stimulation Ii

Vi(t
+) = Vi(t) +Wi if Ii(t) = 1. (2)

The membrane unit Mi also accepts a noise
Noise

Ni(t) =

{
1 if t ∈ {t(1)Ni, t

(2)
Ni, · · · },

0 otherwise,

where t(n)Ni represents spike timing (or rising edge) of the noise
Ni. As shown in Fig. 4, the noise Ni triggers the following
transition of the discrete state Vi of the membrane unit Mi.
Asynchronous state transition by noise Ni

Vi(t
+) = Vi(t) + 1 if Ni(t) = 1. (3)

As shown in Fig. 4, the membrane unit Mi exhibits the
following firing reset and generation of an action potential.
Firing reset

Vi(t
+) = B if Vi(t) =M − 1 and CV i(t) = 1, (4)

Action potential

Yi(t) =

{
1 if Vi(t) =M − 1 and CV i(t) = 1,
0 otherwise, (5)

where B ∈M is the value to which the membrane potential Vi
is reset. In this paper the parameter values of each membrane
unitMi are fixed to (M, N, f1, f2, f3, f4, f5, B) = (64, 64,
3.5, 0.45, −0.05, 1.5, −0.43, 10) in order to realize various
dendritic phenomena.

C. Asynchronous discrete coupling of membrane units

As shown in Fig. 3, each i-th membrane unit Mi has the
following internal clock.
Asynchronous internal clock for coupling

CGi(t) =

{
1 if t ∈ {t(1)Gi , t

(2)
Gi , · · · },

0 otherwise,

where t(n)Gi represents spike timing (or rising edge) of the clock.
In this paper, the internal clock CGi is assumed to be periodic
as shown in Fig. 5, to have different periods from the internal
clocks CV i and CUi, and to be asynchronous with CV i and
CUi. Now, as shown in Fig. 3, let us assume the membrane
units Mi and Mj are coupled. Then, as shown in Fig. 5,
the internal clock CGi triggers the following transition of the
discrete state Vi of the membrane unit Mi.
Asynchronous coupling by clock CGi

Vi(t
+) = Vi(t) +Gij(Vj − Vi) if CGi(t) = 1, (6)

Fig. 5. Asynchronous discrete coupling of membrane units Mi and Mj .

where Gij : {−(M−1), · · · ,−1, 0, 1, · · · ,M−1} → {−(M−
1), · · · ,−1, 0, 1, · · · ,M−1} is a discrete function defined by

Gij(V ) =

{
bgijV c if − Tij ≤ V ≤ Tij ,
0 otherwise,

where Tij ∈M and gij ∈ R are parameters determining the
nonlinearity of the coupling. In this paper, we assume g01 =
α/2, g12 = g23 = g35 = g34 = α, g56 = 0.3, g21 = g32 =
g43 = g53 = β, T01 = T12 = T21 = T23 = T32 = T34 =
T43 = T35 = T53 = 30, and T10 =M − 1.

D. Asynchronous discrete STDP of spine unit

As shown in Fig. 2, a spine unit Si can be connected to
the membrane unit Mi (not necessarily). Now, as shown in
Fig. 3, let us assume the spine unit Si is connected to the
membrane unit Mi. As shown in Fig. 3, each i-th spine unit
Si has registers storing the following discrete states.
Discrete LTP state

Pi ∈ {0, 1, · · · , Pmax},

Discrete LTD state

Di ∈ {0, 1, · · · , Dmax},

where the integer parameters Pmax > 0 and Dmax > 0
determine the resolutions of the discrete LTP state Pi and the
discrete LTD state Di, respectively. As shown in Fig. 3, the
spine Si has the following internal clock.
Asynchronous internal clock for STDP

CSi(t) =

{
1 if t ∈ {t(1)Si , t

(2)
Si , · · · },

0 otherwise,

where t(n)Si represents spike timing (or rising edge) of the clock.
In this paper, the internal clock CSi is assumed to be periodic
as shown in Fig. 6, to have different periods from the internal
clocks CV i, CUi, and CGi, and to be asynchronous with CV i,
CUi, and CGi. As shown in Fig. 6, the internal clock CSi, the
stimulation Ii, and the action potential Yi trigger asynchronous
transitions of the discrete states Pi and Di of the spine unit
Si as follows.
Asynchronous transitions of LTP and LTD states

Pi(t
+) = Pmax if Ii(t) = 1,

Pi(t
+) = Pi(t)− 1 if CSi(t) = 1,

Di(t
+) = Dmax if Yi(t) = 1,

Di(t
+) = Di(t)− 1 if CSi(t) = 1.

(7)



Fig. 6. Asynchronous discrete STDP of the spine unit Si.

Then, the stimulation Ii (i.e., pre-synaptic spike) to the spine
unit Si and the action potential Yi (i.e., post-synaptic spike)
from the membrane unit Mi trigger the following transitions
of the synaptic weight Wi as shown in Fig. 6, where Wi is
assumed to be saturated at 0 and Wmax and to exist in its
range {0, 1, · · · ,Wmax} throughout the paper.
Asynchronous discrete STDP

Wi(t
+) =Wi(t) + LTP (Pi(t)) if Yi(t) = 1,

Wi(t
+) =Wi(t)− LTD(Di(t)) if Ii(t) = 1,

(8)

where LTP : {0, 1, · · · , Pmax} → {0, 1} and LTD :
{0, 1, · · · , Dmax} → {0, 1} are discrete functions defined by

LTP (P ) =

{
0 if P ≤ 0,
1 if P > 0,

LTD(D) =

{
0 if D ≤ 0,
1 if D > 0.

As shown in Fig. 6, the synaptic weight Wi is increased if
an action potential Yi = 1 (i.e., post-synaptic spike) comes to
the spike unit Si after a stimulation Ii = 1 (i.e., pre-synaptic
spike) comes, and is decreased in the opposite case.

III. ANALYSIS AND DESIGN OF MULTI-COMPARTMENT
SOMA-DENDRITE-SPINE MODEL FOR STDP-BASED

PAVLOVIAN CONDITIONING

A. Analysis of various propagations of action potentials

The multi-compartment soma-dendrite-spine model in Fig. 2
can exhibit a wide variety of propagations of action potentials,
where some of typical ones are shown in Figs. 7-10. In these
figures, the model receives the same stimulation I4 from the
spine unit S4, whereas the model has different values of
the parameters α and β characterizing the coupling. Due to
the differences of the parameter values, the model exhibits
different propagations of action potentials as follows.

Type I propagation: In Fig. 7, the stimulation I4 evokes rise
of the membrane potential V4 of the membrane unit M4 and
generation of an action potential Y4 = 1. Also, the rise of the

membrane potential V4 evokes rise of the membrane potential
V3 of the membrane unit M3 and generation of an action
potential Y3 = 1. In addition, these action potentials propagate
to the soma compartmentM0 and the soma compartmentM0

generates an action potential Y0 = 1. We refer to such a
forward propagation of action potentials from spine to soma
as a type I propagation.

Failure of type I propagation: In Fig. 8, the stimulation I4
evokes rise of the membrane potential V4 of the membrane
unit M4 but the membrane unit M3 does not generate an
action potential Y3 = 1. We refer to such a phenomenon as
failure of type I propagation.

Type II propagation: In Fig. 9, the stimulation I4 evokes a
forward propagation of action potentials but the propagation
is not enough strong to make the soma compartment M0

fire. However, the rise of the membrane potential V3 of the
membrane unit M3 evokes rise of the membrane potential
V5 of the membrane unit M5 and generation of an action
potential Y5 = 1. We refer to such a backward propagation of
action potentials from dendrite to spine evoked by the forward
propagation as a type II propagation.

Type III propagation: In Fig. 10, the stimulation I4 evokes a
type I propagation, which evokes the following two backward
propagations. (i) The rise of the membrane potential V3 of the
membrane unitM3 evokes rise of the membrane potential V5
of the membrane unitM5 and generation of an action potential
Y5 = 1. (ii) The rise of the membrane potential V0 and the
action potential Y0 = 1 of the soma compartment M0 evokes
rise of the membrane potential V1 of the membrane unit M1

and generation of an action potential Y1 = 1. In addition,
these action potentials propagate to the dendrite compartment
M5 and then M5 generates an action potential Y5 = 1. We
refer to such of propagations of action potentials as a type III
propagation.

Fig. 11 shows parameter regions in which the multi-
compartment soma-dendrite-spine model exhibits the types I,
II, and III propagations as follows.

Parameter region A: In the parameter region A, the model
exhibits a type I propagation but does not exhibit a type II
propagation or a type III propagation.

Parameter region B: In the parameter region B, the model
does not exhibit a type I propagation, a type II propagation,
or a type III propagation.

Parameter region C: In the parameter region C, the model
exhibits a type II propagation but does not exhibit a type I
propagation or a type III propagation.

Parameter region D: In the parameter region D, the model
exhibits a type I propagation, a type II propagation, and a type
III propagation.

The above analysis results are used as key tools to design
the multi-compartment soma-dendrite-spine model to realize
STDP-based Pavlovian conditioning.



Fig. 7. Type I propagation. (α, β) = (0.35, 0.02) and W4 = 6.

Fig. 8. Failure of Type I propagation. (α, β) = (0.16, 0.08) and W4 = 6.

B. Design method for STDP-based Pavlovian conditioning

If the values of the parameters α and β are set in the
parameter region D in Fig. 11, the spine unit S5 receives more
action potentials Y5 (i.e., more post-synaptic spikes) from
the membrane unit M5 compared to the cases of the other
parameter regions. Hence, the parameter region D is suited
to realize conditioning or learning of the multi-compartment
soma-dendrite-spine model based on the STDP. Then the
following design method of the multi-compartment soma-
dendrite-spine model to realize robust Pavlovian conditioning
is proposed.

Design method for STDP-based Pavlovian conditioning
• Set the parameter values of each membrane unit Mi to

(M, N, f1, f2, f3, f4, f5, B) = (64, 64, 3.5, 0.45,
−0.05, 1.5, −0.43, 10) since this setting is suited to make
the membrane unit Mi fireable.

• Set the parameter values of each spine unit Si to
(Pmax, Dmax,Wmax) = (500, 500, 6) since this setting
is suited to cause action potentials of the membrane unit
Mi for a wide range of stimulation Ii.

Fig. 9. Type II propagation. (α, β) = (0.19, 0.27) and W4 = 6.

Fig. 10. Type III propagation. (α, β) = (0.4, 0.35) and W4 = 6.

• Set the values of the parameters α and β in the parameter
region D in Fig. 11 since this setting it suited to realize
the STDP of the spine unit M5 for a wide range of
stimulations I4 and I5.

Now, let us analyze Pavlovian conditioning of the multi-
compartment soma-dendrite-spine model. Fig. 12 shows typi-
cal time waveforms of the model before the conditioning. In
this case, the model salivates Y0 = 1 in response to the food
stimulation I4 = 1 but does not for the bell stimulation I5 = 1.
Then the model is conditioned by giving the food stimulation
I4 = 1 and the bell stimulation I5 = 1 repeatedly and ran-
domly. Figs. 13-16 show typical time waveforms of the model
after the conditioning. In Fig. 13, the model is designed by
the proposed design method. In this case, the model salivates
Y0 = 1 in response to both the food stimulation I4 = 1 and
the bell stimulation I5 = 1, and thus the model is properly
conditioned. On the other hand, in Figs. 14, 15, and 16, the
values of the parameters α and β are set in the parameter
regions A, B, and C, respectively. In these cases, the model
does not salivate Y0 = 1 in response to the bell stimulation



Fig. 11. Parameter regions of the propagations.

Fig. 12. Typical time waveforms of the model before STDP-based condition-
ing. (W4,W5) = (6, 0). The model salivates for the food stimulation I4 but
does not salivate for the bell stimulation I5.

Fig. 13. Typical time waveforms of the model after STDP-based conditioning.
The values of the parameters α and β are set in the parameter region D in
Fig. 11. The model salivates for both the food stimulation I4 and the bell
stimulation I5 and thus the model realizes the Pavlovian conditioning.

Fig. 14. Typical time waveforms of the model after STDP-based conditioning.
The values of the parameters α and β are set in the parameter region C in
Fig. 11. The model salivates only for the food stimulation I4 and thus the
model fails to realize the Pavlovian conditioning.

Fig. 15. Typical time waveforms of the model after STDP-based conditioning.
The values of the parameters α and β are set in the parameter region A in
Fig. 11. The model salivates only for the food stimulation I4 and thus the
model fails to realize the Pavlovian conditioning.

Fig. 16. Typical time waveforms of the model after STDP-based conditioning.
The values of the parameters α and β are set in the parameter region B in
Fig. 11. The model does not salivate and thus the model fails to realize the
Pavlovian conditioning.



Fig. 17. Oscilloscope snapshots of FPGA-implemented multi-compartment
soma-dendrite-spine model. (a) Before conditioning. (b) After conditioning.

I5 = 1 and thus the model is not properly conditioned. So, it
can be concluded that the proposed design method is useful
to design the multi-compartment soma-dendrite-spine model
capable of STDP-based conditioning.

IV. FPGA IMPLEMENTATION AND COMPARISONS

Recall that the dynamics of the multi-compartment soma-
dendrite-spine model is described by Eqs. (1)-(8). These
equations are rewritten as a register transfer level Verilog
code. Then the code is compiled by Xilinx’s design soft-
ware environment Vivado Design Suite 2019.2.1 and the
resulting bitstream file is implemented in Xilinx’s field pro-
grammable gate array (FPGA) XC7Z020-1CLG484. Fig. 17
shows oscilloscope snapshots from the FPGA-implemented
multi-compartment soma-dendrite-spine model designed by
the proposed design method before and after the conditioning.
It can be seen that the model salivates Y0 = 1 in response to
the food stimulation I4 = 1 and the bell stimulation I5 = 1
after the conditioning and thus the model is properly condi-
tioned. For comparison, a multi-compartment soma-dendrite-
spine model based on a numerical integration of the Izhikevich
neuron model [9] is implemented by the same design software
and in the same FPGA device. We confirmed that our model
consumes much less hardware resources (about 1700 slices)
and much less power (about 0.2 watt) compared to the model
in [9] (about 4000 slices and about 0.5 watt).

V. CONCLUSIONS

It was shown that the multi-compartment soma-dendrite-
spine model having the nonlinear dynamics of the asyn-
chronous cellular automaton can exhibit various propagations
of action potentials such as types I, II, and III propagations and
their combinations. The intensive analyses revealed the param-
eter regions in which the model exhibits these propagations.
Using the analysis results, the novel systematic design method
of the model was proposed. It was shown that the proposed
method is useful to design the model so that it can realize the
robust STDP-based conditioning. In addition, we confirmed
that the proposed method is effective for designing a multi-
compartment model having more complex structure compared
to that in this paper. It was also shown that the model designed
by the proposed method consumes few hardware resources

and low power. So, it can be concluded that the proposed
design method will be a useful tool to design a biologically
plausible neural network VLSI, whose applications include
a biologically plausible neural prosthesis chip [19] such as
a ”biologically plausible, small, low power, and robustly
learnable brain implant chip.”
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