
OptiGAN: Generative Adversarial Networks for
Goal Optimized Sequence Generation

Mahmoud Hossam∗, Trung Le∗, Viet Huynh∗, Michael Papasimeon† and Dinh Phung∗
∗Faculty of Information Technology, Monash University, Australia

†School of Computing and Information Systems, The University of Melbourne, Australia

Abstract—One of the challenging problems in sequence gen-
eration tasks is the optimized generation of sequences with
specific desired goals. Current sequential generative models
mainly generate sequences to closely mimic the training data,
without direct optimization of desired goals or properties specific
to the task. We introduce OptiGAN, a generative model that
incorporates both Generative Adversarial Networks (GAN) and
Reinforcement Learning (RL) to optimize desired goal scores
using policy gradients. We apply our model to text and real-
valued sequence generation, where our model is able to achieve
higher desired scores out-performing GAN and RL baselines,
while not sacrificing output sample diversity.

Index Terms—Sequential Data, Generative Adversarial Net-
works, Reinforcement Learning, Policy Gradients.

I. INTRODUCTION

Learning to generate realistic sequences from existing data
is essential to many artificial intelligence applications, includ-
ing text generation, drug design, robotics, and music synthesis.
In these applications, a generative model learns to generate
sequences of different data types according to each task.
For instance, natural language and speech are sequences of
words or utterances, in robot motion planning, a trajectory
is an action sequence learned from experiences or sensory
data. Recently, there has been a growing interest in deep
models for sequence generation following the success of
Generative Adversarial Networks (GANs) [1] and Variational
Autoencoders (VAEs) [2] in image generation tasks [3], [4],
[5], [6], [7].

However, realizing the full potential of these models in
aforementioned applications has many challenges, and one of
these key challenges is the absence of mechanisms to optimize
the generated outputs according to certain metrics or useful
properties. Most of current work on generative sequence mod-
els mainly learn to “resemble” the data, meaning to generate
outputs that are close to the real distribution. However, in many
applications, we are not only interested in generating data
similar to the real ones, but we need them to have specific
useful properties or attributes. For example, in drug design,
useful properties include solubility and ease of synthesis [8],
[9]. In music generation, we might want the music to have
specific pitch or tempo, or in text applications, the user
might be interested in generating sentences according certain
sentiment or tense [10]. Therefore, the lack of optimization
mechanisms in current models hinders their practical use in
wide range of real world applications.

In this paper, we propose a new sequential generative
framework, named OptiGAN1, that can generate sequences
resembling those in a given dataset and achieving high scores
according to an optimized goal (e.g., solubility and ease of
synthesis in drug design). Our proposed framework leverage
GAN for mimicking real data and policy gradient reinforce-
ment learning (RL) [11] for optimizing a score of interest.
It is very well-known that although GANs can resemble real
data, they face the mode collapsing problem [12], [13], [14],
[15], [16], hence leading to generate less diverse examples.
To tackle this issue in the context of sequence generation,
we propose a principled combination of maximum likelihood
and GANs (see Section IV-A) in which we prove that in the
final optimization problem, Kullback-Leibler (KL) and Jensen-
Shannon (JS) divergences between real data distribution and
generated data distribution are simultaneously maximized,
hence relieving the mode collapsing problem, concurring with
[13]. We then leverage policy gradient RL into our model
for optimizing a score of interest according to a desired goal
(see Section IV-B). We observe that when incorporating policy
gradient RL to our current framework -which is based on GAN
and maximum likelihood- the variance in estimating gradient
is very high, hence leading to unstable training. To resolve this
issue, we resort the Monte Carlo rollout in [17] with a slight
modification (see Section IV-C).

We demonstrate the capacity of our OptiGAN in two
applications: text generation (discrete data) and air combat
trajectory generation (real-valued data). For text generation
task, we aim to generate sentences resembling real sentences
in a given text corpus, while optimizing the BLEU [18]
score for obtaining better sentences from human justification.
For aircraft trajectory generation task, we aim to generate a
trajectory plan for air-combat maneuver scenario between two
aircrafts and optimize the McGrew score [19] which reflects
the tactic quality of aircraft trajectories in an air combat
[19]. In both applications, we show that we can generate
high quality outputs and achieve higher scores than current
related models aided by the RL component, while preserving
the diversity of generated outputs using our hybrid maximum
likelihood GAN.

The main contributions of our paper include:

• We propose OptiGAN which has the following advan-
tages: (i) an end-to-end generative framework with in-
corporated goal optimization mechanism, (ii) general

1Our code is available here : https://github.com/mahossam/OptiGAN

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

formulation that can be used for wide variety of different
goals and models, and (iii) optimizing for desired goals
without sacrificing output sample diversity.

• We investigate the problems of interest comprehensively
and our findings would advance the understanding of the
behavior when incorporating a generative model and a
RL component. Specifically, we empirically found that
if we apply pure RL component to maximize a score of
interest, we might obtain generated examples with high
scores but poor diversity. For instance, in the case of text
generation, the model somehow cheats the BLEU score
by generating sentences in which a few words repeated
all the times. In contrast, if we apply only a generative
model to resemble real data, we cannot achieve higher
values for the score of interest. Our solution is to leverage
both generative model and RL to simultaneously obtain
realistic diverse outputs with good scores. In addition, to
obtain diverse outputs, the applied generative model is
able to avoid the mode collapsing problem, aided by our
proposed maximum likelihood GAN.

II. BACKGROUND AND RELATED WORK

A. Background

Generative Adversarial Networks (GAN): Generative Ad-
versarial Networks (GAN) [1] use adversarial training between
two players to learn the density function of input data. The
goal of the first player, the generator G, is to get good at
generating data that is close to the real data distribution pd(x).
The goal of the second player, the discriminator D, is to
distinguish real data from fake data generated by the generator.
The standard GAN objective to optimize is the minimax game
between D and G is :

min
G

max
D

(Ex∼pd logD(x) + Ez∼pz log(1−D(G(z)))) ,

(1)
where z is the random noise input to G and pz is the
prior distribution of the z. After the training is finished, the
generator is used to generate data from any random input z.

Reinforcement Learning using Policy Gradients: Reinforce-
ment learning [20] is a general learning framework in which an
agent learns how to take actions to maximize cumulative future
rewards in the environment. Rewards received by the agent
during learning encourage it to learn a policy that maximizes
cumulative rewards (the returns).

Policy gradients [20] are group of methods in reinforcement
learning that enable optimizing future returns by direct opti-
mization of the policy. The objective is to maximize the return
rewards over an episode of T time steps J(θ) = Eπ [Ut] ,
where π is the “policy” and Ut specifies the cumulative reward
of an episode which is defined as follows:

Ut
.
= Rt + γRt+1 + γ2Rt+2 + · · ·+ γT−tRT ,

where γ is a discount factor, and Rt is the reward received
from the environment.

A policy could be parameterized by some parameters θ
and be directly optimized through taking the gradient of J(θ)
with respect to θ . This method is called policy gradients. A

well-known policy gradients algorithm is REINFORCE [11],
a Monte Carlo algorithm to find the optimal policy π. The
model is updated via gradient ascent with:

∇J(θ) = Eπ [Ut∇θ log π (at | st, θ)] , (2)

where at is an action chosen at time step t by the agent’s
policy π given the current state of the environment st.

B. Related work

In general, sequential deep generative models are either
based on the variational approximation of maximum likelihood
(like Variational Autoencoders VAE [2]) or on GANs [1].
Models based on variational approximation [21], [22], [23],
[24] are mainly based on autoregressive models like Long
Short-Term Memory (LSTM) [25], incorporated into VAE
training framework. These models were applied to many
sequence generating tasks including handwriting and music
generation. However, training VAE based models with autore-
gressive networks suffers from the problem of “posterior col-
lapse”, where the latent variables are often ignored, especially
when trained for discrete data like text [26].

The other group of models based on GANs are mainly fo-
cused on discrete data like text. There are two main approaches
for these models; they either use reinforcement learning [17],
[27], or a fully differentiable GAN [28], [29], [30], [31]. The
first approach uses policy gradients in an adversarial training
framework. The other approach however, employs a fully
differentiable GAN network, where they use Gumbel-Softmax
trick [32], [33] or distance measure on feature space [29] to
overcome the non-differentiability problem for discrete data.

Some recent work tried to address the goal optimized
generation problem. In [34], authors used convolutional GAN
or autoregressive VAE to generate music with specific pitch
and timbre. For text generation, [10] uses semi-supervised
VAE approach to generate text based on sentiment and tense.
Interest is growing as well in the biological sequences and
drug design applications [35], where VAE latent space or
GAN based model with reinforcement learning are used for
molecular design. However, these models either optimize using
a RL objective or employ feature learning in the generative
VAE or GAN model. There is not much work on using
RL to guide GAN learning for goal optimization, combining
benefits of GAN unsupervised learning with goal optimization.
MolGAN [8], is a recent work in that direction, that uses
both GAN and RL for optimized graph generation. However,
MolGAN uses a different RL technique to ours, that needs
more network parameters to learn the rewards.

III. PROBLEMS OF INTEREST

We demonstrate the capacity of our proposed framework
in two applications of interest: text generation and air com-
bat trajectory generation. For each application, our task is
to generate sequences that achieve two concurrent goals: i)
mimicking those in a given dataset and ii) obtaining high
scores specified by an optimized goal which might be varied
for specific tasks.

Fig. 1. “Stern Conversion” Flight Maneuver.

A. Text generation
We need to generate sentences that are similar to real sen-

tences in a given text corpus and have high quality from human
justification. A well-known score used to measure the quality
of generated sentences is BLEU score [18]. Specifically, the
BLEU score for each sentence computes the ratio of n-grams
generated from the model that matches with a true ground
truth, called reference sentences and is defined as follows:

BLEU(N) =

N∑
n=1

Count(Model generated n-grams ∩Xtest−ngrams)
Count(Model generated n-grams)

In our proposed model, beside generating realistic sen-
tences, we also aim to maximize the BLEU score of generated
sentences. As shown later, we utilize the BLEU score as
reward function in our RL inspired framework.

B. Air combat trajectory generation

For air combat missions, pilots are trained to conduct certain
maneuvers according the combat situation they face. There
are well known maneuvers that the pilots are trained on,
either defensive, offensive, or neutral. We consider a specific
air combat maneuver between two fighters called “Stern
Conversion” maneuver [36]. In this maneuver, the opponent
(the red aircraft) flies in a straight and level line, and does not
detect the blue aircraft, while the blue aircraft, on the other
hand, tries to get behind the opponent aircraft, in order to
increase the chance to engage it (see Fig. 1).

In this specific task, in addition to generating realistic
trajectories, we also need to maximize the McGrew score [19],
which measures the score of how well an aircraft was doing
relative to another aircraft in an attempt to get behind the
other aircraft (refer to [19] for more detail). Due to security
restrictions, we cannot access the real trajectories sensory data.
Instead, we use ACE-Zero [37] air combat flight simulator
to generate the training data. This simulator was developed
by domain experts to imitate the real aircraft trajectories.
As demonstrated in the experiments section, our model can
generate novel trajectories with high McGrew score close to
the average scores for ACE-Zero trajectories.

IV. PROPOSED FRAMEWORK

In what follows, we present in details our proposed frame-
work. We employ a neural autoregressive model G (e.g., Bi-
RNN or RNN) as a generator to map from a noise z ∼ pz
to a sequence that can mimic those in a given dataset and
achieve high score corresponding to the desired goal. In terms
of modeling, we start from the maximum likelihood (ML)
principle and then propose to incorporate adversarial learning
to the learning process in a principled way. The coupling of

ML and adversarial learning principles helps us to generate
realistic and diverse sequences to imitate those in a given
dataset. Moreover, to reach high scores according to a given
desired goal, we propose to incorporate policy gradient RL that
allows us to train our model end-to-end. Finally, to stabilize
the training process, we apply variance reduction technique
when training with policy gradients. The final model is named
OptiGAN whose overview architecture is shown in Fig. 2.

A. Maximum likelihood and adversarial training

A sample X in our setting is defined as a sequence of T
tokens denoted by X = [x1, x2, ..., xT], where we assume that
all samples have length T . For our autoregressive model with
model parameters θ, the log-likelihood can be written as:

log pG(X | θ) =
T∑
i=2

log pG(xi | hi−1, θ) + log pG(x1 | θ),

This is the default neural autoregressive model formulation.
Now we start introducing an adversarial learning framework
for this model by introducing a latent variable z to the
autoregressive model, where we rewrite log p(x1 | θ) as
marginalization over the z:

log pG(x1 | θ) = log
∑
z

pG(x1, z | θ) > (3)

−IKL(q(z | x1, φ) || p(z)) + Eq(z|x1,φ)[log pG(x1 | z, θ)],

where IKL is Kullback–Leibler divergence, q(z | x1, φ) is an
approximation of the posterior p (z | x1, θ) and p(z) is a prior
distribution to z. The right hand side of Eq. (3) is a lower
bound for log pG(x1 | θ). We can then write log pG(X | θ)
in terms of a lower bound as:

log pG(X | θ) >
T∑
i=2

log pG(xi | hi−1, θ) (4)

− IKL(q(z | x1, φ) ‖ p(z)) + Eq(z|x1,φ)[log pG(x1 | z, θ)].

We propose to incorporate adversarial learning to
autoregressive sequential model in a principled way. One
generator G (z) and one discriminator D (X) are employed to
create a game like in GAN while the task of the discriminator
is to discriminate true data and fake data and the task of
the generator is to generate fake data that maximally make
the discriminator confused. In addition, the generator G
is already available which departs from a noise z ∼ pz ,
uses the conditional distribution p (x1 | z, θ) to generate
x1, and follows the autoregressive model to consecutively
generate x2:T . We come with the following minimax problem:

max
G

min
D

[
EX∼pd [log pG (X | θ)]− EX∼pd [log D (X)]

− Ez∼pz [log [1−D (G (z))]]

]
, (5)

where the generator G consists of the decoder p (x1 | z, θ), the
autoregressive model, hence G is parameterized by (θ, φ), and
log pG (X | θ) is substituted by its lower bound in Eq. (4).We
can theoretically prove that the minimax problem in Eq. (5)

𝑥1 𝑥2 𝑥𝑇…

Discriminator D

Real Data

Reward Computation

𝑳𝑮𝑮𝑨𝑵 + 𝑳𝑹𝑳 𝑳𝑫𝑮𝑨𝑵

Rewards Real / Fake

Fake Sequence ෩𝑿 Real Sequence 𝑿

𝕊 (𝑆𝑡𝑎𝑟𝑡)

ℎ0

Autoregressive Generator G

ℎ1 ℎ2 ℎ𝑇…

𝑥1
𝑟 𝑥2

𝑟 𝑥𝑇
𝑟…

GAN

RL

Fig. 2. Overview of OptiGAN framework. The Reinforcement Learning (RL) component is incorporated with sequence GAN model. The generator G is
trained by combining two losses, the GAN loss and the RL loss, LGGAN and LRL.

is equivalent to the following optimization problem (see the
proof in Appendix A):

min
G

IKL (Pd ||PG) + IJS (Pd ||PG) , (6)

where IJS is Jenshen-Shannon divergence and PG is the
generative distribution. The optimization problem in Eq. (6)
reveals that at the Nash equilibrium point the generative distri-
bution PG is exactly the data distribution Pd, thus overcoming
the mode-collapse issue caused by original GAN formulation
[13].

To train our model, we alternatively update G and D with
relevant terms. We note that in the optimization for updating
G regarding log pG (X | θ), we maximize its lower bound in
Eq. (4) instead of the likelihood function.

Training procedure. To train our model, we alternatively
update the discriminator and generator:
• Update D:

max
D

EX∼pd [log D (X)] + Ez∼pz [log [1−D (G (z))]] .

• Update G:

max
G

EX∼pd [log p (X | θ)]− Ez∼pz [log [1−D (G (z))]]

= max
G

EX∼pd [log p (X | θ)] + Ez∼pz [log D (G (z))] . (7)

It is worth noting that for discrete data (e.g. text), we define
the likelihood p(xi | hi) = softmax(Wohi) where Wo is the
output weight matrix. In addition, to allow end to end training,
we apply Gumbel softmax [32], [33] trick for the discrete
case, and fix start token to p(x1|z) = 0, as we depend on
Gumbel Softmax for random output sampling. For real-valued
data (e.g., air combat trajectory), we employ p(xi | hi) =
N
(
Wohi, σ

2
)

where σ is the standard deviation parameter.

B. Optimizing score corresponding to a goal with reinforce-
ment learning

To incorporate the ability to model the data to maximize
rewards from the environment, we use policy gradient to learn
a policy that maximizes the total rewards from environment.

Following [20], the learning objective to maximize the return
rewards over an episode from t = [0, 1, ..., T − 1, T] is:

J(θ) = Eπ [Ut log π (At|St,θ)] ,

where π is the “policy”, or the probability distribution of
actions given states of environment, At and St are the action
and state at time t, θ are the parameters of π and Ut is “the
return rewards” at time t.

In our model, the policy is the generator G, and the state
at time t is the hidden state of the generator ht. Thus the
objective becomes:

J(θ) = EX∼Pd [Ut log p (X | ht,θ)] .

We use the REINFORCE [11] to find the optimum param-
eters for policy G by gradient ascent of the gradient of J as

∇J(θ) = EX∼Pd [Ut∇θ log p (X | ht,θ)] ,

where Ut is computed as

Ut
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γ(T−t−1)RT

= Rt+1 + γUt+1,

where Rt is the reward value from the environment at time t,
γ ∈ [0, 1.0] is the “discount factor” of future rewards. Note
that for the text generation task, we use the BLEU score as
reward value and for the air combat trajectory generation task,
we use the McGrew score as reward value.

Total loss. The final total loss to train the generator G with
adversarial training and policy gradients is:

max
G

EX∼pd
[
log p (X | θ) + λEz∼pz [logD (G (z))]

+αEX∼Pd
[
Ut log p (X | ht,θ)

]]
,

where λ and α are hyper-parameters that control how much
the effect of adversarial training and policy gradients are on
the total loss.

C. Reducing policy gradients variance
In order to reduce the variance of policy gradients, we use

an algorithm similar to the Monte Carlo rollout in [17] with
a slight modification. We generate few complete sentences at
each time step onward, and take their average as Ut at that time
step. Instead of getting the reward value from a discriminator
as in [17], we directly compute the reward according to the
chosen score.

In addition, to further reduce the variance of the policy
gradients and to help policy gradients converge faster toward
optimal solution, we use policy gradients with baseline [20],
where policy gradient is defined as:

∇J(θ) = Eπ [(Ut − b (St))∇θ log π (At | St, θ)]
=Eπ [(Ut − b (ht))∇θ log p (X | ht,θ)] ,

where b (st) is a baseline, a function that can be estimated
or learned during training. The use of a baseline does not
change the gradient expected value, but in practice, reduces its
variance. In our experiments, b(st) is a fixed value equivalent
to the average of computed rewards over training time.

V. EXPERIMENTS

A. Baselines
We evaluate our proposed model for both discrete (in our

case, text generation) and real-valued data (air-craft trajectory
generation), summarized in Table I.

TABLE I
COMPARISON BASELINES

Discrete Data Real-valued Data
(Text) (Trajectories)

SeqGAN* � –
LSTM – �
OptiGAN-OnlyRL � –
OptiGAN-OnlyGAN � �
OptiGAN � �

*SeqGAN works only with discrete data, not real-valued data

For text generation, we compare with three baselines:
1) SeqGAN [17]: is a well-known baseline for sequential

generative models that uses a discriminator as a reward
signal for training the generator in reinforcement learn-
ing framework.

2) OptiGAN-OnlyRL: This model is the vanilla rein-
forcement learning using policy gradients. For fairness,
we implement it by using our own model with GAN
component canceled, by zeroing out the GAN loss part.

3) OptiGAN-OnlyGAN: The sequence GAN with LSTM
and discrete relaxation nodes, without any policy gra-
dient component. We implement it using our model
with RL component canceled, by zeroing out the policy
gradient loss.

The GAN network implementation of our model is based on
RELGAN with same hyperparamters and temperature schedul-
ing, but using LSTM unit instead of relational memory.

For trajectory generation, we implement two different mod-
els to compare with; LSTM (The LSTM component of our
model without adversarial training) and OptiGAN-OnlyGAN
(our model without RL component), and we conduct ablation
study for the effect of the RL component.

B. Text generation

1) Evaluation Metrics: We use both BLEU score and
negative log-likehood (NLL) mentioned below to evaluate the
quality of our model.

BLEU Score: As discussed in Section III-A, BLEU score
[18] is well-known text quality score in machine translation
and text generation tasks.

The higher the BLEU score is, the more the number
of matching n-grams with the test set. In practice, and as
discussed later, the BLEU score can be easily cheated by
repeating few matching n-grams in one sentence, or by gener-
ating only one or few high quality sentences from the model
after training. This situation implies low output quality or
diversity from the model.

Negative Log-Likelihood (NLL): We use the negative log-
likelihood of the generator [28] to measure diversity, defined
as:

NLLgen = −Ex1:T∼Pd logPGθ (x1, · · · , xT)

where Pd and PGθ are the real data and generated data
distributions, respectively. The lower the value, the closer the
model distribution is to the empirical data distribution.

2) Datasets: Two text datasets were used in our experi-
ments for text generation are
• The MS-COCO image captions dataset [38] includes

4,682 unique words with the maximum sentence length
37. Both the training and test data contain 10,000 text
sentences.

• The EMNLP2017 WMT News dataset [39] consists of
5,119 unique words with the maximum sentence length
49 after using first 10,000 sentences from [28]. Both the
training and test data contain 10,000 sentences.

3) Experimental settings and results: For MS-COCO
dataset, we use policy gradient baseline value b (st) = 2.5 and
α = 2.0 for both Vanilla-RL and our model. The number of
Mone Carlo samples we use during training is 3. For EMNLP
News, we use b (st) = 2 and 5 Monte Carlo samples.

In all experiments, we use gradient clipping value of 10.0
for the generator. In Tables II and III we report the means and
standard deviations of test BLEU scores and training negative
likelihoods values of our model compared to other baselines.

Quality and diversity discussion
Tables II and III show that, except for the OptiGAN-OnlyRL

special case, our model outperforms the baselines in BLEU
scores on MS-COCO dataset and all but BLEU-2 for EMNLP
News dataset. Our model also achieves a competitive NLL
value with the best model, OptiGAN-OnlyGAN. This means
that our model does not sacrifice the diversity of generated
output when optimizing for the given score. We find that
SeqGAN suffers the worst NLL score, even when compared
to OptiGAN-OnlyRL. Since SeqGAN modified generator ob-
jective does not encourage matching the model distribution to
data distribution, it can be susceptible to diversity loss. On
the other hand, GANs that use Gumbel-Softmax to keep the
standard generator objective, like ours, are more able to match
the model to data distribution.

TABLE II
BLEU SCORES AND NLL VALUES ON MS-COCO DATASET

BLEU-2 ↑ BLEU-3 BLEU-4 BLEU-5 NLL ↓
SeqGAN 75.09± 0.84 51.58± 1.06 32.06± 0.98 20.03± 0.68 0.830± 0.176

OptiGAN-OnlyRL 79.23± 3.76 59.23± 6.21 40.65± 7.15 27.11± 6.36 0.803± 0.106

OptiGAN-OnlyGAN 75.96± 0.71 53.79± 0.99 34.34± 0.86 21.51± 0.56 0.735 ± 0.080

OptiGAN (RL+GAN) 76.42 ± 0.70 54.40 ± 0.99 35.06 ± 0.90 22.25 ± 0.66 0.737± 0.082

TABLE III
BLEU SCORES AND NLL VALUES ON EMNLP NEWS 2017 DATASET

BLEU-2 ↑ BLEU-3 BLEU-4 BLEU-5 NLL ↓
SeqGAN 76.05 ± 1.67 47.60± 1.51 23.88± 0.88 12.05± 0.40 2.359± 0.272

OptiGAN-OnlyRL 79.16± 2.18 53.57± 4.00 31.26± 4.66 16.67± 3.14 2.267± 0.154

OptiGAN-OnlyGAN 73.15± 2.35 48.00± 1.32 26.12± 1.00 13.77± 0.71 2.234± 0.152

OptiGAN (RL+GAN) 74.03± 1.69 48.73 ± 1.08 26.64 ± 1.07 14.05 ± 0.79 2.226 ± 0.148

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Iterations

N
eg
at
iv
e
L
og

L
ik
el
ih
o
o
d
(N

L
L
)

NLL Values on MS-COCO

SeqGAN
OptiGAN-OnlyRL
OptiGAN-OnlyGAN
OptiGAN (RL+GAN)

1

Fig. 3. NLL values on MS-COCO Dataset. Unlike SeqGAN, OptiGAN does
not sacrifice output diversity.

In the case of OptiGAN-OnlyRL, we find that pure rein-
forcement learning can achieve a higher BLEU score than
other models (with very high variance). However, it has worse
NLL values, which means it has worse diversity than our
model. Fig. 3 shows that OptiGAN-OnlyRL fails to converge
to low NLL, unlike our model, which has competitive NLL
values with OptiGAN-OnlyGAN.

Moreover, although pure reinforcement learning can reach
high BLEU scores, yet the sentences mostly are not realistic.
We show in Table IV sentences from OptiGAN-OnlyRL,
where we find that many of the generated sentences are
unrealistic repetitions of certain n-grams in the test set. In the
case of MS-COCO dataset, the generated sentences lengths are
shorter than the average length of the dataset. This behavior
possibly means that in the absence of the GAN objective part
of the loss, pure reinforcement learning does not have incentive
to generate sentences close to the real data distribution. In this
case, the model only has to achieve high BLEU score to reduce
the optimization loss.

Sentences quality of OptiGAN

Table V shows generated sentences of OptiGAN. The
sentences generally look meaningful, structured and diverse,
hence showing the capacity of OptiGAN in generating good
and diverse sentences.

TABLE IV
SENTENCES FROM OPTIGAN-ONLYRL. PURE RL LOOSES STRUCTURE

WITH BLEU REWARDS, REPEATING CERTAIN N-GRAMS

Generated sentences from OptiGAN-OnlyRL

the party has pledged a plate coach and don ’ t think it was good to the real head .

and i ’ ve been - it ’ i ’ i ’ i have that thing a couple to hear the end but i ’ m , “

it ’ s really people were going to do , ’ it ’ he work .

i ’ d like , when i ’ d like to give them to that it , there , and it ’ ll happen looking to
doubt that everybody challenges ...

if i ’ ve got no evidence , it ’ s it ’ i expect ’ there ’ he ’ he ’ it ’ he ’ it ’ out , and
information it ’ it ’ ...

’ i ’ i ’ it ’ we ’ i think i ’ we spent a escape i ’ i ’ ve been on the ...

TABLE V
GENERATED SAMPLE SENTENCES FROM OUR MODEL

Samples from MS-COCO

a roadside vendor sells food to passersby on there are two multitcolored towels .

an older man sitting at a kitchen with stainless steel appliances .

a woman standing in a field with mountains in the view of a field and a bus stop .

a clean bathroom with a blue toilet .

a group of people is watching buses next to a tall building .

a woman in a white shirt and jeans walking up a air gondola wears a
costume decorations in a red jacket hides building

three small dogs under a towel rack .

a bathroom with a toilet and a large mirror

a city street with cars vehicles parked on the ground .

a large passenger jet flying through the air flying a kite and an airport .

Samples from EMNLP News

people had gone in a few weeks ago , it ’ s really very quiet tonight to do .

she is me but it ’ s a concept , the girls can build high strength .

i ’ ve got a shock for their parents law to the same offence .

they ’ re going to acknowledge that their football leader will be able to get
every most republicans .

a tory source said : ’ the 22 fall in the family in all of the newcastle day .
at cbs, that is more difficult, this is that the social stuff isn’t quite any tribute for britain

it ’ s a safe model from making a book of the first lady who had to respond .

C. Air-Combat Trajectory Generation

1) Evaluation metrics: We use the McGrew score[19]
which measures how good is the aircraft positioned in an
attempt to get behind the other aircraft. McGrew score is well-
known by domain experts in air-combat maneuvers.

2) Datasets: For trajectory generation task, we used sim-
ulated data from ACE-Zero simulator [37]. We created simu-
lated trajectory data for the Stern Conversion maneuver [36]
(Fig. 1) with two fighters; the blue and the red. We created
6,000 trajectories under this scenario 2.Each trajectory contains
16 featuresfor each of the two fighters.

3) Experimental settings and results: In all of our exper-
iments, we use 40 simulation time steps (tokens) for each
fighter trajectory. We use 256 units hidden layer for LSTM unit
with 2 hidden layers. For the VAE part of the model, we use
12 hidden units and latent dimension of size 10. We pretrained
the generator for 80 epochs before starting the adversarial and
policy gradients training. In all experiments we set σ = 0 for
sampling xt. We show samples of the training data trajectories
and generated trajectories by our model in supplementary
materials. We can see from the generated trajectories is that
the model is able to capture the correct behavior, were the
blue trajectory tries to get behind the red aircraft.

TABLE VI
BLUE FIGHTER ENGAGEMENT SCORES (MCGREW SCORE)

λ α McGrew Score
SeqGAN* N/A
LSTM – – 6.21
OptiGAN-OnlyGAN 1.0 – 7.34
OptiGAN 0.2 0.75 8.41
ACE0 Simulator Dataset – – 8.53

*SeqGAN works only with discrete data, not real-valued data

TABLE VII
EFFECT OF HYPER-PARAMTER λ FOR GAN-ONLY TRAINING

λ McGrew Score

OptiGAN-OnlyGAN 1.0 7.34
0.2 6.79

Score optimization
We want the generated trajectories to be more optimized

towards better engagement position against the red fighter.
The desired outcome is a higher McGrew score, which means
better engagement positions along the generated trajectory. We
evaluate the effect of using policy gradients on the McGrew
score of the blue aircraft and show the results in Table VI. In
all experiments, we use γ = 0.9.

We compare with three baselines, Our model for real-valued
data without adversarial training or policy gradients (LSTM),
GAN without policy gradients (OptiGAN-OnlyGAN), and the
average McGrew score of the training data (from simulator).

In all baselines, we generate 6,000 trajectories. . We can see
that full OptiGAN model with the policy gradients achieve
higher McGrew scores than other baselines, and closest to
the real physics simulator. Although the GAN without policy
gradients was able to achieve a slightly less score, the policy

2All trajectory data is available at https://bit.ly/33k1AkT

gradient model was run with the small value λ = 0.2. This
means that the adversarial training did not contribute to the
high score achieved by policy gradients model, rather, it was
mainly the effect of policy gradients. As shown in Table VII,
GAN with no PG model with λ = 0.2 did not achieve the
same score as the the one with λ = 1.0.

Trajectories quality of OptiGAN
Fig. 4 shows the trajectories generated by OptiGAN com-

pared to real trajectories. It can be observed that OptiGAN
can generate high-quality trajectories resembling real data.

Fig. 4. Samples of the training data and generated trajectories from the model.
Top row: samples from the training trajectories in 2D position plane. Bottom
row: generated trajectories from the trained model (McGrew score = 6.03).

VI. CONCLUSION

In this paper we presented a sequential deep generative
model, OptiGAN, that integrates both generative adversarial
networks and reinforcement learning for goal optimized gen-
eration. In many applications, goal optimization is a useful
mechanism to give desired properties to generated outputs. We
applied our model to text and air-combat trajectory generation
tasks, and showed that the model generated high quality
sentences with higher desired scores. In addition, OptiGAN
preserves the diversity of outputs close to the real data. Our
model serves as a general framework, that can be used for any
GAN model to enable it to directly optimize a desired goal
according to the given task.

In future work, we plan to improve the quality of real-valued
outputs (e.g. trajectories) to make it more realistic to the data
and physically constrained. We further look to incorporate
latent space in the discrete case, which can be leveraged
to guide the generation process along learned disentangled
features of the data.

ACKNOWLEDGMENTS

We gratefully acknowledge the partial support from the
Defence Science and Technology (DST) Group for this work.

APPENDIX

A. Proof of the final objective function

Consider this optimization problem:

max
G

min
D

[
EX∼pd [log pG (X | θ)]− (8)

EX∼pd [log D (X)]− Ez∼pz [log [1−D (G (z))]]

]
.

Given a generator G, the optimal D∗ (G) is determined as:

D∗G (X) =
pd (X)

pG (X) + pd (X)
,

where pG (X) is the distribution induced from G (X) where X ∼ pd (X).
Substituting D∗G back to Eq. (8), we obtain the following optimization

problem regarding G:

max
G

(Epd [log pG (X)]− IJS (Pd‖PG)) . (9)

The objective function in Eq. (9) can be written as

Epd [log pG (X)]− IJS (Pd‖PG)
= −IJS (Pd‖PG)− IKL (Pd‖PG)− Epd [log pd (X)]

= −IJS (Pd‖PG)− IKL (Pd‖PG) + const.

Therefore, the optimization problem in Eq. (9) is equivalent to:

min
G

(IJS (Pd‖PG) + IKL (Pd‖PG)) .

At the Nash equilibrium point of this game, we hence obtain:
pG (X) = pd (X).

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
in Advances in neural information processing systems, 2014.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd
International Conference on Learning Representations, ICLR, 2014.

[3] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, pp. 1–16, 2015.

[4] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of Wasserstein GANs,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems.
Red Hook, NY, USA: Curran Associates Inc., 2017.

[5] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” 2018.

[6] N. Dam, Q. Hoang, T. Le, T. D. Nguyen, H. Bui, and D. Phung, “Three-
player Wasserstein GAN via amortised duality,” in International Joint
Conference on Artificial Intelligence, 2019.

[7] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse
high-fidelity images with vq-vae-2,” in Advances in Neural Information
Processing Systems, 2019, pp. 14 837–14 847.

[8] N. De Cao and T. Kipf, “MolGAN: An implicit generative model
for small molecular graphs,” ICML 2018 workshop on Theoretical
Foundations and Applications of Deep Generative Models, 2018.

[9] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and
A. Aspuru-Guzik, “Objective-reinforced generative adversarial networks
(ORGAN) for sequence generation models,” 2017.

[10] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward
controlled generation of text,” in Proceedings of ICML, vol. 70, 2017.

[11] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” in Machine Learning, 1992, pp.
229–256.

[12] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, pp. 1–57, 2016.

[13] T. Nguyen, T. Le, H. Vu, and D. Phung, “Dual discriminator generative
adversarial nets,” in Advances in Neural Information Processing Systems,
2017, pp. 2670–2680.

[14] Q. Hoang, T. D. Nguyen, T. Le, and D. Phung, “MGAN: Training
generative adversarial nets with multiple generators,” in International
Conference on Learning Representations, 2018.

[15] T. Le, H. Vu, T. Nguyen, and D. Phung, “Geometric enclosing networks,”
in In Proc. of International Joint Conference on Artificial Intelligence
(IJCAI), 2018.

[16] T. Le, Q. Hoang, H. Vu, T. D. Nguyen, H. Bui, and D. Phung,
“Learning generative adversarial networks from multiple data sources,”
in International Joint Conference on Artificial Intelligence, 2019.

[17] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient.” in Proc. of AAAI, 2017, pp. 2852–
2858.

[18] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, July
6-12, 2002, Philadelphia, PA, USA., 2002, pp. 311–318.

[19] J. S. McGrew, J. P. How, B. Williams, and N. Roy, “Air-combat strategy
using approximate dynamic programming,” Journal of guidance, control,
and dynamics, vol. 33, no. 5, pp. 1641–1654, 2010.

[20] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
2011.

[21] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio,
“A recurrent latent variable model for sequential data,” in NIPS, 2015.

[22] H. Le, T. Tran, T. Nguyen, and S. Venkatesh, “Variational memory
encoder-decoder,” in Advances in Neural Information Processing Sys-
tems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 1508–
1518.

[23] M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther, “Sequential
neural models with stochastic layers,” in Advances in neural information
processing systems, 2016, pp. 2199–2207.

[24] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, “A hier-
archical latent vector model for learning long-term structure in music,”
arXiv preprint arXiv:1803.05428, 2018.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[26] S. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Ben-
gio, “Generating sentences from a continuous space.” in Proceedings of
CoNLL., 2016.

[27] W. Fedus, I. Goodfellow, and A. M. Dai, “MaskGAN: Better text
generation via filling in the,” in ICLR, 2018, pp. 1–15.

[28] W. Nie, N. Narodytska, and A. Patel, “RelGAN: Relational generative
adversarial networks for text generation,” in International Conference
on Learning Representations, 2019.

[29] L. Chen, S. Dai, C. Tao, D. Shen, Z. Gan, H. Zhang, Y. Zhang, and
L. Carin, “Adversarial text generation via feature-mover’s distance,” in
NIPS, 2018.

[30] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin,
“Adversarial feature matching for text generation,” in ICML, 2017.

[31] M. J. Kusner and J. M. Hernández-Lobato, “GANs for sequences of dis-
crete elements with the gumbel-softmax distribution,” arXiv:1611.04051,
2016.

[32] C. J. Maddison, A. Mnih, and Y. W. Teh, “The CONCRETE dis-
tribution: A continuous relaxation of discrete random variables,”
arXiv:1611.00712, 2016.

[33] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[34] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “GANSynth: Adversarial neural audio synthesis,” in Inter-
national Conference on Learning Representations, 2019.

[35] E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. V. Aladinskaya,
A. Aliper, and A. Zhavoronkov, “Adversarial threshold neural computer
for molecular de novo design,” Molecular Pharmaceutics, vol. 15,
no. 10, pp. 4386–4397, 2018.

[36] F. Austin, G. Carbone, H. Hinz, M. Lewis, and M. Falco, “Game
theory for automated maneuvering during air-to-air combat,” Journal
of Guidance, Control, and Dynamics, vol. 13, no. 6, pp. 1143–1149,
1990.

[37] M. Ramirez, M. Papasimeon, L. Behnke, N. Lipovetzky, T. Miller, and
A. R. Pearce, “Real–time uav maneuvering via automated planning
in simulations,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 5243–5245.

[38] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and
C. L. Zitnick, “Microsoft coco captions: Data collection and evaluation
server,” arXiv preprint arXiv:1504.00325, 2015.

[39] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text
generation via adversarial training with leaked information,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

