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Abstract—Reinforcement learning has shown success in many
tasks that cannot provide explicit training samples and can only
provide rewards. However, because of a lack of robustness and
the need for hard hyperparameter tuning, reinforcement learning
is not easily applicable in many new situations. One reason
for this problem is that the existing methods do not account
for the uncertainties of rewards and policy parameters. In this
paper, for parameter-based policy exploration, we use a Bayesian
method to define an objective function that explicitly accounts
for reward uncertainty. In addition, we provide an algorithm
that uses a Bayesian method to optimize this function under
the uncertainty of policy parameters in continuous state and
action spaces. The results of numerical experiments show that
the proposed method is more robust than comparing method
against estimation errors on finite samples, because our proposal
balances reward acquisition and exploration.

Index Terms—Reinforcement Learning, Parameter-Based
method, Bayesian Learning, Variational Approximation, Contin-
uous Control, Exploration and Exploitation Trade-Off

I. INTRODUCTION

Reinforcement learning has been successfully used in many
closed simulation domains such as video games [1] and the
game Go [2]. However, using reinforcement learning for real-
world tasks, such as robot control, remains difficult. This
paper focuses on two issues that make it difficult to apply
reinforcement learning in continuous control domains.

First, the stochastic policy that determines the action at each
time stochastically does not produce smooth trajectories. This
results in large variances in the estimated gradient with policy
gradient methods such as REINFORCE [3]. Several methods
such as the Deep Deterministic Policy Gradient (DDPG) [4]
and the Twin Delayed Deep Deterministic policy gradient
(TD3) [5] have been proposed to use deterministic policies to
avoid this difficulty. Parameter-based policy exploration, such
as Policy Gradients with parameter-based exploration [6], is
a way to introduce a distribution of policy parameters. This
hierarchy maps policy searches to the parameter space and
makes deterministic policies available.

Second, the various existence methods do not account for
the uncertainties of rewards and policy parameters. Overlook-
ing uncertainty can lead to unstable behavior of policies and
overestimation of rewards during exploration. This problem,
called the exploration and exploitation trade-off, requires
careful adjustment of hyperparameters and makes it difficult
to apply reinforcement learning in new situations. Bayesian

methods consider estimation uncertainties in a principled way.
In this direction, K-Learning [7], [8] addresses the uncertainty
of rewards with the Bayesian approach, thus demonstrating its
effectiveness in solving exploration and exploitation trade-off.
However, the formulation of K-Learning requires problems
with discrete state and action spaces; direct application to
continuous state and action spaces is not straightforward.

In this paper, we propose a parameter-based deterministic
policy exploration algorithm based on the Bayesian method
that considers uncertainties of rewards and policy parameters
in continuous state and action spaces. The contributions of this
paper to reinforcement learning are as follows:

• We explicitly define an objective function that accounts
for the uncertainty of the reward with the Bayesian
method.

• We provide an algorithm for solving this objective func-
tion with uncertainty in policy parameters using the
approximate Bayesian method.

• We perform numerical experiments to show that the
proposed method is more robust than comparing method
against estimation errors on finite samples, because our
proposal balances reward acquisition and exploration.

II. PARAMETER-BASED POLICY EXPLORATION

A. Problem Definition

Let us assume a Markov decision problem in which the joint
distribution of T timestamp of states x1:T+1, actions u1:T , and
rewards r1:T is written by

p(x1:T+1, u1:T , r1:T )

= p(x1)
T∏
t=1

p(xt+1|xt, ut)p(rt|xt, ut)p(ut|xt),

where p(x1) is the initial state probability, p(xt+1|xt, ut) is
the transition probability, p(rt|xt, ut) is the reward probability,
and p(ut|xt) is the policy probability.

In parameter-based policy exploration, the policy π is the
deterministic function from the current state xt and policy
parameters θ to the current action ut.

ut = π(xt, θ).
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The evaluation of the parameter θ is based on the trajectory of
one-episode h and the total reward for trajectory rh is defined
by

h ≡ (x1, u1, . . . , xT , uT , xT+1), rh ≡
T∑
t=1

rt.

We formalize the problem to find the optimal distribution of
policy parameters p(θ) that maximizes the expectation of the
total reward J(p).

J(p) =

∫
r(θ)p(θ)dθ,

where

r(θ) =

∫
rhp(rh|θ)drh.

Furthermore, the final evaluation of the distribution of policy
parameters p(θ) is made by the action u∗t , which is the
ensemble average of the output of the policy by p(θ).

u∗t =

∫
π(xt, θ)p(θ)dθ.

B. Policy parameter uncertainty
We consider the problem of maximizing the integral I(ρ)

with respect to ρ.

I(ρ) =

∫
w(θ)p(θ|ρ)dθ, w(θ) ≥ 0

where p(θ|ρ) is the probability distribution of the policy
parameters θ with the hyperparameter ρ and w(θ) is the weight
function of θ. We show that the maximization of I(ρ) indicates
that it can be considered a weighted likelihood problem.
This display allows us to apply Bayesian methods to handle
uncertainties in policy parameters.

First, we evaluate the ratio of I(ρ′) to I(ρ), where ρ is the
current parameter and ρ′ is the optimization parameter. Using
Jensen’s inequality, we obtain

log
I(ρ′)

I(ρ)
= log

∫
w(θ)p(θ|ρ)

I(p)

p(θ|ρ′)
p(θ|ρ)

dθ

≥
∫
w(θ)p(θ|ρ)

I(ρ)
log

p(θ|ρ′)
p(θ|ρ)

dθ.

If we define Q(ρ′, ρ) as

Q(ρ′, ρ) =

∫
w(θ)p(θ|ρ) log p(θ|ρ′)dθ, (1)

then we obtain the following inequality:

log I(ρ′) ≥ log I(p) +
Q(ρ′, ρ)−Q(ρ, ρ)

I(ρ)
.

This inequality shows that maximizing Q(ρ′, ρ) with respect
to ρ′ maximizes the lower bound of I(ρ′) [9]. In addition, we
approximate (1) with J pairs of θj which are samples from
p(θ|ρ) and the corresponding weights w(θj).

Dp ≡ {(θ1, w(θ1)), . . . , (θJ , w(θJ))}, θj ∼ p(θ|ρ),

Q(ρ′, ρ) ≈ 1

J

J∑
j=1

w(θj) log p(θj |ρ′).

The first-order condition for maximizing Q with respect to ρ′

is
J∑
j=1

w(θj)∇ρ′ log p(θj |ρ′) = 0. (2)

This equation shows that Q is related to the weighted log
likelihood

J∏
j=1

p(θj |ρ′)w(θj), (3)

and [10], [11] show that the maximizer of the weighted like-
lihood with respect to parameter ρ′ converges to the solution
of (2) as J →∞.

Using this relation of the weighted likelihood representation,
we obtain a Bayesian estimate of the distribution of policy
parameters p∗(θ) as the predicted distribution given by

p∗(θ) =

∫
p(θ|ρ)p(ρ|Dp)dρ,

p(ρ|Dp) =

∏J
j=1 p(θj |ρ)w(θj)p(ρ)∫ ∏J
j=1 p(θj |ρ)w(θj)p(ρ)dρ

, θj ∼ p∗old(θ),

where p(ρ) is a prior distribution for the hyperparameter ρ.

C. Mean Reward uncertainty
With parameter-based policy exploration, we cannot know

the true distribution of episode rewards given a parameter
p(rh|θ). Therefore, we need to somehow estimate the mean
r(θ) =

∫
rhp(rh|θ)drh. Many studies use a simple sample

average of episodes r̃(θ) = 1
K

∑K
k=1 rhk , with a fixed θ.

However, this estimator does not account for the uncertainty
of the estimator. O’Donoghue [7] and O’Donoghue et al.
[8] proposed using K-learning for this problem. The authors
used the Bayesian method to estimate the cumulant of the
mean instead of the simple average. The cumulant gives
a more exploratory “optimistic” behavior and has excellent
properties such as additivity. Although their algorithm shows
an approximation of the cumulant of discrete state and action
spaces, extending them to continuous state and action spaces
is not straightforward.

In the parameter-based exploration setting, we use Bayesian
regression to predict the reward r using the policy parameter
θ

p(r|θ, w), (4)

where w is the regression parameter and the prior distribution
of the regression parameter is p(w). Under given K samples
D ≡ {(r1, θ1), . . . , (rK , θK)}, the posterior distribution of the
parameter is written by

p(w|D) =

∏K
k=1 p(rk|θk, w)p(w)∫ ∏K
k=1 p(rk|θk, w)p(w)dw

.

Next, the cumulant generating function of the mean reward
parameterized by γ is defined as

K(θ, γ) ≡ logEp(w|D)[exp(γ

∫
rp(r|θ, w)dr)],



and K(θ, 1) gives the cumulant [12]. The second-order ap-
proximation of K(θ, 1) is given by

K(θ, 1) ≈ d

dγ

∣∣∣∣
γ=0

K(θ, γ) +
1

2

d2

dγ2

∣∣∣∣
γ=0

K(θ, γ).

The first and second derivatives give the mean and variance
of the mean, respectively described by

d

dγ

∣∣∣∣
γ=0

K(θ, γ) =

∫
p(w|D)

∫
rp(r|θ, w)drdw ≡ r̃(θ),

d2

dγ2

∣∣∣∣
γ=0

K(θ, γ) =

∫
p(w|D)

(∫
rp(r|θ, w)dr

)2

dw

−
(∫

p(w|D)

∫
rp(r|θ, w)drdw

)2

≡ ṽ(θ).

Therefore, the approximation of the cumulant is given by the
sum of the mean r̃(θ) and the variance of the mean ṽ(θ) that
reflects the uncertainty of the estimator. It is noted that the
variance ṽ(θ) is not the variance of the predicted distribution
of r but rather an estimator of the mean strongly associated
with Thompson sampling [13].

D. Gaussian Approximation

In this paper, the policy π(x, θ) is represented by a neural
network. Furthermore, we restrict both the distribution of
policy parameters p(θ|ρ) and the distribution of the reward
p(r|θ, w) to the Gaussian distribution. Under this restriction,
our method can connect to other methods, such as the EM-
based policy hyperparameter exploration [9] and the Co-
variance Matrix Adaptation Evolution Strategy [14]. These
algorithms differ in their weight function, covariance structure,
and estimation method (with or without Bayes).

The Bayesian estimation of the Gaussian distribution with
the conjugate prior follows [15]. The likelihood is assumed by
Gaussian distribution.

p(x|µ, σ2) = N (x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
.

In addition, the prior distribution is conjugate Normal-Gamma

NG(µ, λ, µ0, κ0, α0, β0) = N (µ|µ0, (κ0λ)−1)G(λ|α0, β0)

=
1

ZNG
λ

1
2 exp

(
−κ0λ

2
(µ− µ0)2

)
λα0−1 exp(−λβ0), (5)

ZNG =
Γ(α0)

βα0
0

(
2π

κ0

) 1
2

,

and the Student-t Distribution is defined by

tν(x|µ, σ2) = c

[
1 +

1

ν

(x− µ)

σ

2
]− ν+1

2

,

c =
Γ(ν/2 + 1/2)

Γ(ν/2)

1√
νπσ

.

In that case, for the distribution of policy parameters
p(θ|ρ) given J pairs of weights and samples Dp ≡

{(θ1, w(θ1)), . . . , (θJ , w(θJ))}, the predictive distribution is
described by

p(θ|Dp) = t2αJ

(
θ|µJ ,

βJ(κJ + 1)

αJκJ

)
, (6)

where

J̄ =

J∑
j=1

w(θj), θ̄ =

∑J
j=1 w(θj)θj

J̄
,

µJ =
κ0µ0 + J̄ θ̄

κ0 + J̄
, κJ = k0 + J̄ ,

αJ = α0 +
J̄

2
,

βJ = β0 +
1

2

J∑
j=1

w(θj)(θj − θ̄)2 +
k0J̄(θ̄ − µ0)2

2(κ0 + J̄)
.

For the distribution of mean reward pθ(r|w) under fixed θ,
the Gaussian assumption is related to a problem that solves
the J-arm Gaussian bandit iteratively [16]. Given K samples
Dr ≡ (r1, . . . , rK), the mean r̃(θ) and the variance of the
mean ṽ(θ) are respectively obtained by

r̃(θ) = µK , (7)

ṽ(θ) =
βK

(αK − 1)κK
, (8)

where

r̄ =

∑K
k=1 rk
K

,

µK =
κ0µ0 +Kr̄

κ0 +K
, κK = k0 +K,

αK = α0 +
K

2
,

βK = β0 +
1

2

K∑
k=1

(rk − r̄)2 +
k0K(r̄ − µ0)2

2(κ0 +K)
.

Equations (7), (8) are derived from the marginal posterior
distribution of the mean.

pθ(µ|Dr) = t2αK

(
µ|µK ,

βK
αKκK

)
.

III. PROPOSED METHOD

In this section, we describe our proposed algorithm. Let q(θ)
be an any optimization distribution of policy parameters, p(θ)
be the distribution of the current distribution of data generation
policy parameters, and φ(θ) be the prior distribution of policy
parameters. First, we consider minimizing the following KL-
divergence under the variational method:

KL(q(θ)||p̃(θ)),

where

p̃(θ) =
exp(E(θ))

Z
, Z =

∫
exp(E(θ))dθ,



and

E(θ) ≡βr̃(θ) +
β2

2
ṽ(θ) + α log p(θ) + (1− α) log φ(θ).

In this definition, 0 ≤ α ≤ 1 determines the strength of the
entropy regularization, and β > 0 is the inverse temperature.
In our algorithm, we treat α as a constant specified by the
user and β is an optimization variable.

Using the positivity of KL-divergence gives the following
key inequality:

J̃(q) =

∫
r̃(θ)q(θ)dθ

≤
∫ (

r̃(θ) +
β

2
ṽ(θ)

)
q(θ)dθ

+
α

β
(c1 −KL(q(θ)|p(θ)))

+
1− α
β

(c2 −KL(q(θ)|φ(θ)))

≤ 1

β
(logZ + αc1 + (1− α)c2)) ,

(9)

where c1 and c2 are constants that satisfy

c1 ≥ KL(q(θ)||p(θ)), c2 ≥ KL(q(θ)||φ(θ)).

Therefore, if we define objective function F (β) as

F (β) ≡ 1

β
(logZ + αc1 + (1− α)c2),

then minimizing β for F (β) gives an upper bound on J̃(q).
The main term of our objective function logZ with α = 1
is the approximation of a cumulant of the mean reward
with respect to the posterior distribution of the regression
parameters p(w|Dr) and the predictive distribution of the
policy parameters p(θ|Dp):

logZ ≈ logEp(θ|Dp)[Ep(w|Dr)[exp(β

∫
rp(r|θ, w)dr)]].

It is noted that the second expression of (9) has a clear
interpretation and connection to the existing method [17].

The first term relates to K-learning, which uses the cumulant
of the mean reward instead of the mean reward to prevent
underexploration [7], [8]. The second term, KL(q(θ)||p(θ)), is
KL-divergence from the current distribution of policy param-
eters to the new distribution of policy parameters, penalizing
large movements in the policy. Choosing this term properly
prevents policy instability and is used by the Trust Region
Policy Optimization [18] and the Relative Entropy Policy
Search (REPS) [19]. The third term, KL(q(θ)||φ(θ)), is the
KL-divergence from the current distribution of policy param-
eters to the prior distribution of policy parameters. If we set
p(φ) ≡ 1 (we use this setting in the numerical experiments),
this term is reduced to entropy of q(θ) and is used by such as
Soft Actor Critic (SAC) [20].

Next, we estimate F (β) by importance sampling given by

F (β) ≈ 1

β
log

1

J

J∑
j=1

exp(H(θj) + αc1 + (1− α)c2), (10)

where θj ∼ p(θ) and

H(θ) ≡βr̃(θ) +
β2

2
ṽ(θ) + (1− α)(log φ(θ)− log p(θ)).

(11)

In that case, the weighting coefficient w̃(θj) for each parameter
is determined by

w̃(θj) =
exp(H(θj))∑J
j=1 exp(H(θj))

. (12)

The two constants c1 and c2 are determined by the fol-
lowing considerations. We set the constant c2 to satisfy
c2 ≈ KL(q(θ)||φ(θ)), which gives the tight bound of (9).
We approximate the constant c2 with a data generation policy
p(θ) instead of the target policy q(θ).

c2 ≈
∫
p(θ) log

p(θ)

φ(θ)
dθ ≈ 1

J

J∑
j=1

log
p(θj)

φ(θj)
, θj ∼ p(θ).

(13)

For the constant c1, we set the c1 to satisfy KL(q(θ)||p(θ)) <
δ1. This constraint determines the trade-off between learning
speed and robustness, similar to the learning coefficient for
gradient-based methods. Furthermore, the robustness of the
algorithm depends on the accuracy of the importance sampling
(10). The accuracy of importance sampling is assessed by the
effective sample size (ESS) [21] which is defined by

ESS ≡ 1∑J
j=1 w̃(θj)2

.

Therefore, we set the c1 to the maximum value that satisfies
the two constraints

c1 ≤ δ1, ESS ≤ δ2. (14)

We optimize c1, β using line search of the c1. Starting from
0, increase c1 and minimize β at each c1 while the condition
(14) is satisfied.

The description of our proposed algorithm is Alg. 1. The
computational cost of the proposed method is almost the same
as other parameter-based explorations.

IV. NUMERICAL EXPERIMENT

We performed numerical experiments to demonstrate the
effectiveness of the proposed algorithm. We used two per-
spectives to evaluate the experiment. One was to confirm
the robustness of the proposed algorithm, the other was
to confirm that the proposed algorithm solves the trade-off
between reward acquisition and exploration which is measured
by the entropy of the distribution of policy parameters. For
this purpose, we compared the proposed algorithm with the
EM-based policy hyperparameter exploration using the REPS
weighting scheme (EPHE-RW) [9]. EPHE-RW matches the
non-Bayesian version of our algorithm, where the distribution
of policy parameters is updated with a maximum likelihood of
(3) and no variance of the mean ṽ(θ) ≡ 0. Thus, comparing



Algorithm 1 Algorithm for proposed method
Input: initial distribution of policy parameters p(θ0), entropy

coefficient α, KL-constraint δ1, ESS-constraint δ2,
Output: the distribution of policy parameters p(θ)

1: for i = 1 to iteration I do
2: for j = 1 to population J do
3: sample θj ∝ p(θ)
4: E[j]← log p(θj)
5: for k = 1 to episode length K do
6: execute one episode by policy θj and R[k]← rh
7: end for
8: compute r̃(θj), ṽ(θj) by R[.] (7), (8)
9: end for

10: calculate c2 by E[.] (13)
11: optimize β, c1 by (10) under constraints (14)
12: calculate w̃(θ.) by (12)
13: update p(θ) by θ. and w(θ.) = J × w̃(θ.) (6)
14: end for
15: return p(θ)

TABLE I
REWARD OF “PENDULUM-V1” EXPERIMENT

Reward (Mean) Reward (Std)
proposed -159.330 14.269

EPHE-RW -306.554 193.666

the two algorithms revealed the effectiveness of Bayesian
uncertainty handling in parameter-based policy exploration.

We selected the task “Pendulum-v1” in OpenAI Gym [22],
which is a non-linear control task with continuous state and
action spaces. The policy network was a simple three layered
neural network that had two hidden layers with 40 units and
we used the “tanh” activation function. We updated I = 1000
steps of the distribution of policy parameters with population
size J = 26 and episode length of K = 26. The entropy
coefficient α was set to α = 1− 1

|θ| , where |θ| is the number of
policy parameters. The initial distribution of policy parameters
p0(θ) was the standard normal distribution N (θ|0, 1.0), the
KL-divergence parameter was δ2 = 0.5 and the ESS restriction
was δ1 = 0.5 × J . The parameters of Normal-Gamma prior
(5), were set to µ0 = 0, α0 = −0.5, β0 = 0.5e − 7, and
κ0 = 1.0e − 6. This prior was almost non-informative, and
α0 was set using reference prior [23], [24]. The experiment
was performed with 10 different initializations. Over the
last 100 steps, we evaluated the reward and entropy of the
distribution of policy parameters divided by the number of
policy parameters.

The rewards obtained in the experiment are shown in Table.
I. This result shows that the proposed method has higher mean
reward and lower standard deviation than EPHE-RW.

Fig. 1 shows the profile of the learning steps for a detailed
comparison. This figure show that, in the early stage, the speed
of getting rewards was faster with EPHE-RW than with the
proposed method. However, EPHE-RW often continued to use

TABLE II
ENTROPY OF THE DISTRIBUTION OF POLICY PARAMETERS

“PENDULUM-V1” EXPERIMENT

Entropy (Mean) Entropy (Std)
proposed -0.620 0.333

EPHE-RW -5.344 0.006
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Fig. 1. Reward profiles of 10 trials (left proposed, right EPHE-RW)

the sub-optimal solution and could not escape from it, whereas
the proposed method progressively found an almost optimal
solution consistently.

Table. II and Fig. 2 show clear differences in the entropy
of the distribution of policy parameters between the proposed
method and EPHE-RW. Fig. 2 shows that the entropy of the
proposed method decreased first and then gradually increased
in about 400 steps, at which point the algorithm found a near
optimal solution. This behavior indicates that the algorithm
balances reward acquisition with the entropy of the distribution
of policy parameters and prevents underexploration. However,
the entropy of EPHE-RW decreased monotonically to a mini-
mum, indicating no trade-off between reward acquisition and
the entropy of the distribution of policy parameters.
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Fig. 2. Entropy profiles of 10 trials (left proposed, right EPHE-RW)



V. DISCUSSION

A. Sample efficiency

There are two ways our algorithm can use samples more
efficiently.

First, we explicitly solve the Bayesian reward regression
(4) using neural networks. Because this regression problem is
stationary over iterations of the algorithm, it can use samples
efficiently to estimate the mean r̃(θ) and ṽ(θ) accurately.
Furthermore, in many cases, when the sample tends to infinity,
ṽ(θ) converges to 0, guaranteeing the convergence of the
algorithm. However, the extra computational cost of Bayesian
regression is high. Therefore, we need to design a trade-off
between computational cost and sample efficiency for each
problem.

The second way of using samples more efficiently is an esti-
mate of the distribution of policy parameters p(θ). Although,
the distribution of policy parameters p(θ) is non-stationary
over iterations of the algorithm, importance sampling can be
used [25]. Let p(θ) be the current policy and p̂(θ) be the old
policy. Using the importance weight p(θ)

p̂(θ) , we modify H(θ)
(11) as

Ĥ(θ) ≡ H(θ) + log p(θ)− log p̂(θ),

where we evaluate Ĥ(θ) with samples from the old policy
θj ∼ p̂(θ).

VI. CONCLUSION

For the lack of robustness and underexploration problem
in reinforcement learning, we developed a Bayesian frame-
work that explicitly includes uncertainties in rewards and
policy parameters. In addition, in continuous state and action
spaces, we approximated this formulation and constructed an
algorithm whose computational cost was equivalent to the
ordinal parameter-based exploration method. The results of
numerical experiments showed that the proposed algorithm is
more robust than comparing method against estimation errors
on finite samples, because our proposal solves the trade-off
between reward acquisition and entropy of the distribution of
the policy parameters that facilitates exploration. However, to
solve a wider problem more accurately, we need to develop an
algorithm that does not use the simple Gaussian approxima-
tion. For example, using neural networks for reward regression
and Gaussian mixture for distribution of policy parameters can
be done in future work.
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10-15, 2018, ser. Proceedings of Machine Learning Research, J. G. Dy
and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 1856–1865. [Online].
Available: http://proceedings.mlr.press/v80/haarnoja18b.html

[21] A. Kong, “A note on importance sampling using standardized weights,”
University of Chicago, Tech. Rep., 1992.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[23] J. M. Bernardo and A. F. Smith, Bayesian theory. John Wiley & Sons,
2009, vol. 405.

[24] S. Watanabe, “Bayesian cross validation and waic for predictive prior
design in regular asymptotic theory,” arXiv preprint arXiv:1503.07970,
2015.

[25] T. Zhao, H. Hachiya, V. Tangkaratt, J. Morimoto, and M. Sugiyama,
“Efficient sample reuse in policy gradients with parameter-based
exploration,” Neural Computation, vol. 25, no. 6, pp. 1512–1547, 2013.
[Online]. Available: https://doi.org/10.1162/NECO a 00452




