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Abstract—In this paper, the distributed fault accommodation
problem is studied for a class of interconnected nonlinear systems
with event-triggered control and inter-subsystem communica-
tions. Each subsystem is subject to potential faults resulting
from the local dynamics and/or transmitted from neighboring
subsystems. The time periods before and after the fault detection
in each subsystem are considered and corresponding event-
triggered controllers are proposed, where the neural network
based adaptive approximation technique is used to estimate the
fault effect online. The closed-loop stability of the interconnected
system with the proposed event-triggered fault accommodation
controllers is rigorously analyzed.

Index Terms—fault accommodation, nonlinear systems, neural
network, event-triggered control

I. INTRODUCTION

To enhance the reliability and safety of interconnected
systems, various fault-tolerant control and fault accommoda-
tion methods have been reported under different fault and
system scenarios. To mention a few, the cyclic-small-gain
methodology is used in [1] to form a decentralized fault ac-
commodation scheme, the backstepping method with adaptive
approximation is employed to deal with the delayed process
fault [2], the dead zone phenomenon and bias actuator fault are
considered in [3], a neural network-based decentralized fault
accommodation is proposed in [4, 5], fuzzy approximation-
based actuator fault-tolerant is proposed in [6], and partial
and coordinated communication based fault accommodation
schemes are proposed in [7, 8], respectively. Note that the
above mentioned results are all based on continuous inter-
subsystem measurement and control implementation.

For the distributed control scheme of the interconnected
system, inter-subsystem communication is essential. As each
subsystem may not be collocated, the inter-subsystem com-
munication burden may increase significantly with increasing
the scale of interconnected systems. Moreover, the actuator
has to respond to the control signal updating all the time. To
reduce communication burden and extend the lifetime of the
actuators, there is a need to balance the control performance,
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communication resources, and signal quality. To address this
problem, the event-triggering approach provides a promising
alternative since signals are aperiodically sampled and trans-
mitted when needed, instead of all the time. The basic stability
and triggering scheme dynamics (nonzero inter-event time or
exclusion of Zeno behavior) of event-triggered control have
been studied, e.g., see [9–12].

In this study, we focus on balancing the communication
burden, control performance, and, most critically, fault toler-
ance; thus, an event-triggered fault accommodation scheme
for a class of nonlinear uncertain systems is first proposed.
In contrast to [11, 13], both the inter-subsystem communica-
tion and the controller to actuator communication are event-
triggered. Each subsystem is subject to modeling uncertainty,
interconnections with neighboring subsystems, and potential
process faults arising from the local dynamics or transmit-
ted from a neighboring subsystem. A full lifecycle of fault
accommodation is designed, where the time periods before
the occurrence of a fault, after the detection of a fault, and
within the occurrence time and detection time of a fault (fault
detection delay) are considered. An event-triggered nominal
controller is proposed for the time period before the detection
of a fault, and the event-triggered fault accommodation control
scheme is proposed for the time period after the detection of a
fault, where the neural network based adaptive approximation
technique is employed to approximate the unknown fault
effect with the event-triggered inter-subsystem measurement.
The fault accommodation system stability during the overall
lifecycle is rigorously analyzed. The main contribution of
this work is the fault accommodation strategy design and
analysis for the interconnected system with event-triggered
inter-subsystem and control signal communications.

The rest of the paper is organized as follows. The system
description, triggering scheme, and problem to be solved are
presented in Section II. The event-triggered nominal controller
design and analysis are given in Section III, and the details
of fault accommodation scheme are given in Section IV.
Concluding remarks are given in the last section.
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II. PROBLEM FORMULATION

We consider a class of nonlinear systems, comprised of m
interconnected subsystems. The i-th subsystem, i ∈ M =
{1, ...,m}, is described by:

ẋij = xi(j+1), j = 1, ...ni − 1,

ẋini = fi(xi) + gi(xi)ui + ηi(xi, t)

+ γi(x̄i) + βi(t− T i0)hi(x̄
a
i ),

(1)

where xi = col{xi1, ...xini} ∈ Rni and ui ∈ R are the
state and input of the i-th subsystem, respectively. Let Mi

be the index set containing all the neighboring subsystems
affecting the i-th subsystem, then M̄i = Mi ∪{i} is the index
containing all the subsystems affecting the i-th subsystem.
Based on the index sets, x̄i = col{..., xj , ...} ∈ Rn̄i is the
state of the neighbors of the i-th subsystem, where j ∈ Mi;
x̄ai = col{..., xl, ...} ∈ Rn̄

a
i is the augmented neighboring

state of the i-th subsystem, where l ∈ M̄i. The functions
fi : Rni 7→ R and gi : Rni 7→ R are continuously differen-
tiable functions representing the nominal dynamics of the i-th
subsystem (gi 6= 0), while ηi : Rni×R+ 7→ R is a continuous
function representing the unknown and unstructured modeling
uncertainty of the i-th subsystem; γi : Rn̄i 7→ R is a con-
tinuous function characterizing the interconnections between
the i-th subsystem and its neighbors; hi(x̄ai ) : Rn̄

a
i 7→ R

represents the fault effect in the i-th subsystem resulting from
its local dynamics and/or neighboring dynamics due to the
interconnections; and scalar function βi(t− T i0) characterizes
the time profile function for the potential system fault in the
i-th subsystem and T i0 is the fault occurrence time in the i-
th subsystem. In this study, we consider abrupt faults, where
βi(t−T i0) = 0 when t < T i0 and βi(t−T i0) = 1 when t ≥ T i0.

In this paper we consider the fault accommodation design
problem, which is initiated after a fault is detected. Let
the fault detection time be T id for the i-th subsystem. The
following assumptions will be used for control design.

Assumption 1. For i ∈ M and T i0 ≤ t ≤ T id, it holds that
|hi(x̄ai )| ≤ εf,i, where εf,i ∈ R+ is an unknown constant.

Assumption 2. For i ∈M , x̄i ∈ Rn̄i , and ˆ̄xi ∈ Rn̄i , it holds
that

∣∣γi(x̄i)− γi(ˆ̄xi)
∣∣ ≤ lγ,i ∥∥x̄i − ˆ̄xi

∥∥, where lγ,i ∈ R+ is the
known Lipschitz constant.

Assumption 3. For i ∈ M , xi ∈ Rni , and t ≥ 0, it
holds that |ηi(xi, t)| ≤ η̄i(xi, t), where η̄i(xi, t) is a known
continuously differentiable bounding function.

Assumption 1 means that the magnitude of the possible
fault in each subsystem remains bounded before the fault is
detected. This is a reasonable assumption for control design
as in the literature [14]. Assumption 2 presents a general
requirement about the structure of the interconnections. To
focus on the fault accommodation controller design and save
computation resources, the global Lipschitz condition is as-
sumed; however, the piecewise Lipschitz condition also works
for the proposed controllers as can be seen in the following.
Assumption 3 characterizes the upper bound of the local
modeling uncertainty for the i-th subsystem.

Considering the distributed location of each subsystem, the
event-triggered scheme for the inter-subsystem information
transmission is adopted to save the communication resources.
Thus, for the local controller, its neighbors’ state information
is not continuously accessible, but determined by an event-
triggered scheme. To ensure the control performance, the
local measurement is available to the local controller. At the
same time, to reduce the updating of the actuator and extend
the lifetime of actuators, an event-triggered control signal
transmission/updating scheme is considered. To characterize
the event-triggered signal transmission, two monotonically
increasing sequences for the i-th subsystem are introduced:

τ is,k =

{
0, k = 0,
inf{t > τ is,k−1|Sis}, k ∈ N+,

(2)

τ ic,k =

{
0, k = 0,
inf{t > τ ic,k−1|Sic}, k ∈ N+,

(3)

where τ is,k is the time sequence for the state infor-
mation transmission and τ ic,k is the time sequence for
the control signal transmission. Sis and Sic are Boolean
variables denoting the corresponding triggering condi-
tions: Sis

∆
= ‖xi − x̂i‖ ≥ wis ‖x̂i‖ + zis and

Sic
∆
= {‖ui − ûi‖ ≥ wic ‖ui‖+ zic ∨ t = τ js,l}, where l ∈ N+,

j ∈ Mi, x̂i is the received state by the controller of the
connected subsystems with the i-th subsystems, ûi is the
received control signal by the i-th subsystem (actuator output
or system input of the i-th subsystem), and ui since here is the
controller output as the event-triggered control implementation
is used. Nonnegative scalars wis, z

i
s, w

i
c, and zic are the event-

triggering parameters and wic ∈ [0, 1).
Based on (2) and (3), for the i-th subsystem with j ∈ Mi,

we obtain:

x̂j(t) = xj(τ
i
s,k−1), t ∈

[
τ is,k−1, τ

i
s,k

)
, (4)

ûi(t) = ui(τ
i
c,k−1), t ∈

[
τ ic,k−1, τ

i
c,k

)
. (5)

The definitions in (3) and (5) imply two triggering scenarios
of control signal transmission in the local controller. The first
one is triggered by the neighboring system state information
updating in the local controller, and the second one is triggered
by the local controller output evolution. For the considered
distributed control scheme, the neighboring system state and
the local control signal are the input and output of the local
controller, respectively. Hence, both the input and output
changing of the local controller can trigger events for local
control signal transmission. This triggering scheme design is
motivated by the distributed control scheme and the dynamics
of the controller.

In this study, an event-triggered fault accommodation strat-
egy will be proposed to cover three time periods for each sub-
system: fault-free period (t < T i0), fault detection delay period
(T i0 ≤ t < T id), and post-fault detection period (t ≥ T id). For
the event-triggered fault accommodation strategy, a nominal
controller will be designed for each subsystem for the period



before the detection of any fault. Based on the adaptive ap-
proximation approach, an event-triggered fault accommodation
law will be initialized to reconfigure the nominal controller
after a fault is detected in the local subsystem. The stability
under event-triggering properties of the overall closed-loop
system will be presented for each of the three time periods
of control.

III. EVENT-TRIGGERED NOMINAL CONTROLLER

In this section, an event-triggered control design is proposed
for each subsystem in the time period before any fault is
detected (t < T i0 and T i0 ≤ t < T id). The closed-loop stability
analysis will be established as well.

A. Event-Triggered Nominal Controller Design

For the i-th subsystems, where i ∈ M , the original system
description is rewritten as:

ẋi = Axi +B[fi(xi) + gi(xi)ûi + ηi(xi, t)

+ γi(x̄i) + βi(t− T i0)hi(x̄
a
i )],

(6)

where

A =

[
0(ni−1)×1 Ini−1

0 01×(ni−1)

]
, B =

[
0(ni−1)×1

1

]
.

Note that ûi is utilized in (6), due to the event-triggered control
implementation.

For the event-triggered controller design, the event-induced
discrepancies in the controller input and system input for each
subsystem will be analyzed. Based on (2), we have

‖xj − x̂j‖ ≤ wjs ‖x̂j‖+ zjs , j ∈Mi. (7)

Based on (7), the overall event-induced discrepancy in the
input of the i-th local controller is characterized as∥∥x̄i − ˆ̄xi

∥∥ ≤ ∑
j∈Mi

(wjs ‖x̂j‖+ zjs). (8)

Regarding the control input, based on the definition of Sic in
(3), we obtain that

|ui − ûi| ≤ wic |ui|+ zic, i ∈M, (9)

where the “or” logic operation in Sic ensures the existence of
the upper bound for |ui − ûi|. Based on (9), we have

ûi = (1 + δi1w
i
c)ui + δi2z

i
c, (10)

where δi1, δ
i
2 ∈ [−1, 1]. Here, the unknown parameters δi1 and

δi2 are introduced to denote the discrepancy in system input,
compared to the corresponding controller output. Resulting
from the relative and constant triggering portion design in
Sic, both multiplicative and additive discrepancy portions can
be found for system input ûi. Thus, taking (8) and (10) into
consideration, a nominal controller for the i-th subsystem is
designed as follows:

ui(t) = uo,i (11)

=− 1

gi(xi)(1− wic)

{[
Kixi + fi(xi) + γi(ˆ̄xi)

]
× tanh

[
ei
Kixi + fi(xi) + γi(ˆ̄xi)

ωi,1

]
+ η̄i(xi, t) tanh

[
ei
η̄i(xi, t)

ωi,2

]
+ lγ,i

∑
j∈Mi

(wjs ‖x̂j‖+ zjs)

× tanh

ei lγ,i
∑
j∈Mi

(wjs ‖x̂j‖+ zjs)

ωi,3


+ zicgi(xi) tanh

[
ei
gi(xi)

ωi,4

]}
.

where ei = BTPixi, ωi,l ∈ R+ (l = 1, 2, 3, 4) are the
controller parameters, and Ki is the stabilization gain such
that A−BKi is Hurwitz. For a given Qi > 0, positive definite
Pi is the solution of (A−BKi)

TPi +Pi(A−BKi) = −Qi.

B. Event-Triggered Nominal Controller Analysis

In this section, the stability of the considered interconnected
nonlinear system will be analyzed.

Consider the Lyapunov function Vi = 1
2x

T
i Pixi for the i-th

subsystem. First, we will focus on the time period t < T i0
for the i-th subsystem. Based on the actuator output and the
system dynamics in (6), the time derivative of Vi is deduced
as

V̇i =− 1

2
xTi (ATPi + PiA)xi + ei[fi(xi)

+ gi(xi)ûi + ηi(xi, t) + γi(x̄i)]. (12)

The following lemma will be used in the sequel.
Lemma 1 [15]. For any a ∈ R+ and b ∈ R, it holds that

|b| − b tanh

(
b

a

)
≤ ca, (13)

where c satisfies that c = e−(c+1) (c ≈ 0.2785).
Based on the designed event-triggered nominal controller

in (11) and Assumption 2, the following inequalities can be
obtained:

V̇i ≤−
1

2
xTi [(A−BKi)

TPi + Pi(A−BKi)]xi

+ ei[Kixi + fi(xi) + γi(ˆ̄xi) + gi(xi)ûi

+ ηi(xi, t) + γi(x̄i)− γi(ˆ̄xi)]

≤− 1

2
xTi Qixi + ei[Kixi + fi(xi)

+ γi(ˆ̄xi) + gi(xi)ûi]

+ |eiηi(xi, t)|+ lγ,i |ei|
∥∥x̄i − ˆ̄xi

∥∥ . (14)

Next, we replace ûi in (14) by (10). Since the parameters δi1
and δi2 are unknown in (10), we will quantify their effect first.



Now, let’s check the term eigi(xi)(1 + δi1w
i
c)ui. Recalling the

property that “tanh” is an increasing function with tanh(0) =
0, we have that ei tanh(ei) ≥ 0. Since wic ∈ [0, 1), based on
(11), we obtain

eigi(xi)ui ≤ 0. (15)

Thus, we have

V̇i ≤−
1

2
xTi Qixi + ei[Kixi + fi(xi) + γi(ˆ̄xi)

+ gi(xi)(1 + δi1w
i
c)ui + gi(xi)δ

i
2z
i
c]

+ |eiηi(xi, t)|+ lγ,i |ei|
∥∥x̄i − ˆ̄xi

∥∥
≤− 1

2
xTi Qixi + ei[Kixi + fi(xi) + γi(ˆ̄xi)

+ gi(xi)(1− wic)ui] + |eiηi(xi, t)|
+ lγ,i |ei|

∥∥x̄i − ˆ̄xi
∥∥+ |eigi(xi)| zic. (16)

Based on Lemma 1, the controller given in (11), the event-
induced discrepancy in (7), and Assumption 3, the following
result can be obtained from (16):

V̇i ≤ −
1

2
xTi Qixi + cωi, (17)

where ωi = ωi,1 + ωi,2 + ωi,3 + zicωi,4. For the overall
interconnected system in the fault-free case, let V =

∑
i∈M

Vi,

then

V̇ ≤
∑
i∈M

(
−1

2
xTi Qixi + cωi

)
≤
∑
i∈M

(−δp,iVi + cωi), (18)

where δp,i = σmin(Qi)
σmax(Pi)

> 0. Based on (18), we know that the
overall interconnected system is uniformly ultimately bounded
for the time period when all the subsystems are fault-free and
controlled by the nominal controllers given in (11), since cωi
is bounded.

Now, considering the fault detection delay case for the i-th
subsystem (T i0 ≤ t < T id), where βi(t−T i0)hi(x̄

a
i ) 6= 0. Based

on (17), the time derivative of Vi satisfies that

V̇i ≤
1

2
[−xTi Qixi + 2cωi + 2eihi(x̄

a
i )]. (19)

Referring to Assumption 1, we obtain

2eihi(x̄
a
i ) ≤ χixTi xi + χ−1

i ε2
f,iB

TP 2B, (20)

where χi > 0. Note that, as Qi > 0, ∃χi > 0 such that
Qχ,i = Qi − χiI > 0, for example, χi < σmin(Qi). Thus,
combining (19) with (20) yields

V̇i ≤ −δχ,iVi + cωχ,i, (21)

where δχ,i =
σmin(Qχ,i)
σmax(Pi)

and cωχ,i = cωi+
1
2χ
−1
i ε2

f,iB
TP 2B.

Since the fault occurrence time and fault detection time
among subsystems are different, the case considered here is
to verify the stability of the overall interconnected system,
where some subsystems are subject to fault detection delay

and controlled by the corresponding event-triggered nominal
controllers as in (11). As some subsystems are faulty, based
on (18), we have

V̇ ≤
∑
i∈M

(−δχ,iVi + cωχ,i). (22)

Comparing (22) and (21) with (18) and (17), respectively,
one knows that the bounded stability conclusion for the
interconnected system during the fault-free time period holds
before any fault is detected, but may correspond to a larger
state upper bound.

We summarize the above discussion of closed-loop stability
for the interconnected nonlinear system by the following
Theorem.

Theorem 1. Let Assumptions 1-3 hold. The event-triggered
nominal controllers in (11) with the triggering scheme (2)-(5)
guarantees that the state of the interconnected nonlinear system
(1) is uniformly ultimately bounded, prior to the detection of
a fault in any subsystems.

IV. EVENT-TRIGGERED FAULT ACCOMMODATION
CONTROLLER

In this section, the event-triggered fault accommodation
controller design and analysis will be presented. Adaptive
approximation approach with the event-triggered measurement
will be used to deal with the fault effect for any the i-th
subsystem after t ≥ T id, where i ∈M .

A. Event-Triggered Fault Accommodation Controller Design

For the i-th subsystem, to get sufficient information of the
occurred fault after t ≥ T id, we employ the following neural
network-based approximation model:

ĥi(x̄
a
i , θi) = θTi πi(x̄

a
i ), (23)

where ĥi is the approximation of hi, θi ∈ Rnθ,i is the neural
network weight vector, and πi is the preselected Radial Basis
Function vector.

To measure the performance of the adaptive approximation
based on (23), an optimal weight vector θ∗i is introduced:

θ∗i = arg inf
θi∈Rnθ,i

{
sup

x̄ai ∈Xai

∣∣∣ĥi(x̄ai , θi)− hi(x̄ai )
∣∣∣} , (24)

where Xa
i ⊂ Rn̄

a
i .

To facilitate the fault accommodation controller design,
based on the optimal approximation weight vector, the approx-
imation error or parameter uncertainty is further characterized
by the following assumption.

Assumption 4. For x̄ai ∈ Xa
i , t ≥ T id, and i ∈ M , it

holds that
∣∣∣ĥi(x̄ai , θ∗i )− hi(x̄ai )

∣∣∣ ≤ ρi, where ρi ∈ R+ is an
unknown bounding parameter.

Regarding the unknown bounding parameter ρi and the
optimal weight vector θ∗i , their estimation ρ̂i and θ̂i are in-
troduced for a feasible fault accommodation controller design,
respectively. Due to the online estimation of these parameters,
the fault accommodation controller will be dynamic, which is
different from the nominal controller.



Taking the even-induced discrepancies in (8) and (9) and
the fault approximation in (23) into consideration, the event-
triggered adaptive approximation-based fault accommodation
control law is designed as follows:

ui = uo.i + uf,i,

uf,i =− 1

gi(xi)(1− wic)

{[
θ̂Ti π(ˆ̄x

a
i ) + ρ̂is(ei)

]
× tanh

[
ei
θ̂Ti π(ˆ̄x

a
i ) + ρ̂isi(ei)

ωi,5

]}
, (25)

{
˙̂
θi = Πiπi(ˆ̄x

a
i )ei − κiθΠiθ̂i,

˙̂ρi = Γieisi(ei)− κiρρ̂i,
(26)

where uo.i is given as in (11) and si(ei) = tanh
(

ei
ωi,6

)
. ωi,5,

ωi,6, κiθ, and κiρ are the positive controller parameters. Πi > 0

and Γi > 0 are the learning rate for θ̂i and ρ̂i, respectively.
It can be seen that ui in (25) is modularized, where uo.i is

used to deal with the general dynamics of the i-th subsystem
and uf,i is designed to deal with the general fault effect.

B. Event-Triggered Fault Accommodation Controller Analysis

In this section, the stability analysis will be presented for
the faulty interconnected nonlinear system.

With (23) and (24), we can rewrite (6) by using the
approximation model as

ẋi = Axi +B[fi(xi) + gi(xi)ûi + ηi(xi, t)

+ γi(x̄i) + hi(x̄
a
i )− ĥi(x̄ai , θ∗i ) + ĥi(x̄

a
i , θ
∗
i )]. (27)

For the i-th subsystem after t ≥ T id, consider a Lyapunov
function:

Vf,i = Vi +
1

2
θ̃Ti Π−1

i θ̃i +
1

2Γi
ρ̃2
i , (28)

where θ̃i = θ̂i− θ∗i , ρ̃i = ρ̂i− ρi, and Vi is defined in Section
III. Taking (27) with (10) into (28), the time derivative of Vf,i
is obtained as

V̇f,i =− 1

2
xTi (ATPi + PiA)xi + ei[fi(xi) + gi(xi)

× (1 + δi1w
i
c)ui + gi(xi)δ

i
2z
i
c + ηi(xi, t)

+ γi(x̄i) + hi(x̄
a
i )− ĥi(x̄ai , θ∗i ) + ĥi(x̄

a
i , θ
∗
i )]

+
˙̂
θTi Π−1

i θ̃i +
1

2Γi
ρ̃i ˙̂ρi. (29)

Based on (16) and the conclusion for uo,i in (18), (29) can be
deduced as

V̇f,i ≤−
1

2
xTi (ATPi + PiA)xi + ei[fi(xi) + gi(xi)

× (1− wic)ui + ηi(xi, t) + γi(x̄i)

+ hi(x̄
a
i )− ĥi(x̄ai , θ∗i ) + ĥi(x̄

a
i , θ
∗
i )]

+ |eigi(xi)| zic +
˙̂
θTi Π−1

i θ̃i +
1

2Γi
ρ̃i ˙̂ρi

≤− 1

2
xTi Qixi + cωi + ei[gi(xi)(1− wic)uf,i

+ hi(x̄
a
i )− ĥi(x̄ai , θ∗i ) + ĥi(x̄

a
i , θ
∗
i )]

+
˙̂
θTi Π−1

i θ̃i +
1

2Γi
ρ̃i ˙̂ρi. (30)

Substituting uf,i in (25) with (26) into (30) yields

V̇f,i ≤−
1

2
xTi Qixi + cωi + ei[gi(xi)(1− wic)uf,i

+ πTi (x̄ai )θ∗i + ρ̂isi(ei)] + eiπ
T (ˆ̄x

a
i )θ̂i

− eiπT (ˆ̄x
a
i )θ∗i − κiθ θ̂Ti θ̃i

−
κiρ
Γi
ρ̃iρ̂i + cωi,6ρi

≤− 1

2
xTi Qixi + ‖eiθ∗i ‖ π̄i + cωi − κiθ θ̂Ti θ̃i

−
κiρ
Γi
ρ̃iρ̂i + cωi,5 + cωi,6ρi, (31)

where π̄i ∈ R+ is the maximum of πi (it can be known
that π̄i ≥

∥∥πi(x̄i)− πi(ˆ̄xi)
∥∥). Note that the term ‖eiθ∗i ‖ π̄i

is resulted from the event-induced state discrepancy for the
local controller.

Similar to (20), we have

‖eiθ∗i ‖ π̄i ≤
π̄i$i

2
xTi xi +

π̄i
2$i

σmax(BTP 2B) ‖θ∗i ‖
2
, (32)

where $i is a positive scalar such that Q$,i = Qi−π̄i$iI > 0

(e.g., $i <
σmin(Qi)

π̄i
). By completing the squares for the cross

terms in (31) and based on (32), we have

V̇f,i ≤− δh,iVf,i + ch,i, (33)

where

δh,i = min

{
σmin(Q$,i)

σmax(Pi)
,

κiθ
σmax(Π−1

i )
, κiρ

}
,

ch,i =
(κiθ

2
+

π̄i
2$i

σmax(BTP 2B)
)
‖θ∗i ‖

2

+
κiρ
2Γi

ρ2
i + cωi + cωi,5 + cωi,6ρi.

For the case that some subsystems are controlled by the
event-triggered fault accommodation controller as in (25),
combining results in (17) and (21) with (33) implies that the
overall interconnected system is uniformly ultimately stable
(following from the conclusion for (22)). Note that, due to the
asynchronous fault accommodation controller switch among
different subsystems, the event-triggered nominal controller



and fault accommodation controller may be used simultane-
ously for the interconnected system. Comparing (33) with (21)
and (17), it can be known that the controller switch will not
destabilize the corresponding subsystem and also the overall
interconnected system. The difference is that the residual cωχ,i
may be unbounded without the fault accommodation after the
detection of any fault, and its effect can be decreased by using
the fault accommodation scheme.

The following theorem provides a summary for the event-
triggered fault accommodation controller.

Theorem 2. Let Assumptions 2-4 hold. The event-triggered
nominal controllers in (25) with (11) under the triggering
scheme (2)-(5) guarantees that the state of the nonlinear
interconnected system (1) is uniformly ultimately bounded,
after the detection of a fault in any subsystems.

V. CONCLUSIONS

The event-triggered fault accommodation for interconnected
nonlinear systems has been studied. The inter-subsystem and
controller to actuator communications are determined by the
predefined events. The target control schemes for fault-free,
fault detection delay, and post-fault detection time periods
have been proposed, and uniformly ultimately bounded control
performance for the overall interconnected system can be
guaranteed.
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