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Abstract—Medical image bio-markers of cancer are expected
to improve patient care through advances in precision medicine.
Compared to genomic bio-markers, bio-markers obtained di-
rectly from medical images provide the advantages of being
a non-invasive procedure, and characterizing a heterogeneous
tumor in its entirety, as opposed to limited tissue available for
biopsy. In this paper, with the aim to demonstrate that non-
invasive features can obtain better performances if compared
to invasive ones in lung cancer detection and characterisation,
we propose a method to discriminate between different lung
cancers (i.e., Adenocarcinoma and Squamous Cell Carcinoma) by
adopting both invasive (genomic) and non-invasive (radiomic)
bio-markers, by building supervised machine learning models
exploiting both invasive and non-invasive features. Experiments
on a data-set of 130 patients show that radiomic bio-markers
obtain better performances (with an f-measure equal to 0.993)
if compared to the ones obtained by considering genomic ones
(reaching an f-measure equal to 0.929) in lung cancer detection
and characterisation.

Index Terms—radiomics, genomics, lung cancer, MRI, machine
learning, neural network, supervised learning, classification

I. INTRODUCTION AND RELATED WORK

Lung cancer represents the deadliest and the most-costly
cancer in the world [1]. Its mortality rate is three times higher
than deaths of prostate cancer and nearly twice higher than
deaths of breast cancer in women. Lung cancer currently
accounts for 32% of cancer deaths in men and 20% of cancer
deaths in women'.

According to the American Cancer Society expert in the
United States every three and a half minutes someone will
die from lung cancer, accounting for about one in four cancer
deaths: in 2019, more than 228,000 people will be diagnosed
with lung cancer only in United States?.

About 80% to 85% of lung cancers are Non-small cell lung
cancer (NSCLC). The main subtypes of NSCLC are Adenocar-
cinoma and Squamous Cell carcinoma®. These cancers, which
start from different types of lung cells are grouped together
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as NSCLC because their treatment and prognoses are often
similar. In detail Adenocarcinomas start in the cells that would
normally secrete substances such as mucus. This lung cancer
occurs mainly in current or former smokers, but it is also the
most common type of lung cancer seen in non-smokers. It is
more common in women than in men, and it is more likely
to occur in younger people than other types of lung cancer.
Adenocarcinoma is usually found in the outer parts of the
lung and is more likely to be found before it has spread. The
Squamous cell carcinomas start in squamous cells, which are
flat cells that line the inside of the airways in the lungs. They
are often linked to a history of smoking and tend to be found
in the central part of the lungs, near a main airway (bronchus).

After the patient is diagnosed with NSCLC, doctors will
try to figure out if it has spread, and if so, how far. This
process is called staging. The stage of a cancer describes
how much cancer is in the body. It helps to determine how
serious the cancer is and the best way to treat it. Doctors also
use a cancer’s stage when talking about survival statistics. In
particular an important indicator is represented by the spread to
nearby lymph nodes (i.e., the N parameter), indicating whether
the cancer spread to nearby lymph nodes. If the cancer is not
thought to have spread to nearby lymph nodes the lung cancer
is marked with the NO label, if the lymph nodes are on the
same side as the cancer the lung cancer is marked with the
N1 label, if the lymph nodes are on the same side as the main
lung tumor the lung cancer is marked with the N2 label. In
the worst case the lung cancer is marked with the N3 label,
symptomatic that the cancer has spread to lymph nodes near
the collarbone on either side of the body, and/or has spread
to hilar or mediastinal lymph nodes on the other side of the
body from the main tumor.

The current way to diagnose a lung cancer is represented by
the biopsy. A biopsy is a procedure performed to remove tissue
or cells from the body for examination under a microscope [2].
A lung biopsy is a procedure in which samples of lung tissue
are removed (with a special biopsy needle or during surgery)
to determine if lung disease or cancer is present.

Like all medical procedures, a lung biopsy does carry a



small risk of complications, such as a pneumothorax. This is
when air leaks out of the lung and into the space between
your lungs and the chest wall [3]. This can put pressure on
the lung, causing it to collapse.

Clearly, the clinician doing the biopsy will be aware of the
potential risks involved. In fact, during the procedure, they will
monitor the patient to check for symptoms of a pneumothorax,
such as sudden shortness of breath [4]. If a pneumothorax does
happen, it can be treated using a needle or tube to remove the
excess air, allowing the lung to expand normally again [5].

Starting from these considerations, in this paper we propose
a method aimed to distinguish between the Adenocarcinoma
and Squamous Cell carcinoma lung cancers and to characterise
it by automatically assigning the N spread to nearby lymph
nodes. Both of these information are currently obtained by
analysing the lung tissue with the biopsy. For this reason, we
consider different models to detect the lung cancer type and the
detail about the spread to nearby lymph nodes by exploiting a
set of invasive (i.e., genomic) and non invasive (i.e., radiomic)
bio-markers.

In last years researchers designed methods for the lung
cancer detection considering machine learning techniques. For
instance, Golan et al. [6] design a framework that train the
weights of the CNN by a back propagation aimed to detect
lung nodules in the CT image sub-volumes. This system
achieved sensitivity of 78.9%.

Sun et al. [7] adopt convolutional neural networks, stat
denoising autoencoder and deep belief networks to detect
lung cancer exploiting 35 texture and morphological features.
The performances obtained from the proposed classifiers are
respectively the following: 79%, 81%, and 79%.

Researchers in [8] consider CT image features as 3D vol-
ume, tracheal distance, and distance to outer body to determine
if an invasive biopsy or a surgical biopsy procedure should
considered to diagnose lung cancer in a patient presenting with
lung nodules. These features were used to train both logistic
regression and random forest models. They best accuracy
obtained is 84% with random forests algorithm.

Authors in [9] explore the usage of 2D convolutional neural
network, integrating a deconvolution layer aimed to enlarge the
feature map and two region proposal networks to concatenate
the useful information from the lower layer. The obtained
accuracy is equal to 86.42%.

Differently from the cited works, in this paper the main
aim is to show the effectiveness of radiomic features, as non
invasive bio-markers for lung cancer detection and charac-
terisation (currently inferred by tissue biopsy). To this aim,
we experiment several machine learning algorithms on a set
of genomic and radiomic bio-markers, showing that the best
accuracy results are obtained by exploiting the non invasive
bio-markers.

The paper proceeds as follows: Section II describes the
proposed method, experimental analysis to demonstrate the
effectiveness of the proposed method is discussed in Section
IIT and, finally, in the last section section conclusion and future
research directions are drawn.

II. METHOD

As stated into the introduction, the aim of the following
paper is to understand whether it is possible by exploiting
a set of non-invasive (radiomic) features to obtain the same
information inferred with invasive (genomic) bio-markers, by
avoiding to patients an invasive procedure.

Figure 1 shows the proposed methodology.

Two different data repositories are considered: in the first
one, the Genomic Biomarkers in Figure 1, the data are obtained
from genes, a sequence of nucleotides in DNA or RNA that
encodes the synthesis of a gene product, either RNA or protein.
(i.e., by analysing the lung tissue obtained through a biopsy).
The second data, the Radiomic Biomarkers in Figure 1, are
obtained from magnetic resonance images (i.e., through a non
invasive procedure). In detail we consider 14 Shape radiomic
features:

e Elongation: relationship between two largest principal
components;

e Flatness: relationship between largest and smallest prin-
cipal components;

o LeastAxisLength: yield smallest axis length of the ROI-
enclosing ellipsoid;

o MajorAxisLength: yield largest axis length of ROI-
enclosing ellipsoid;

o Maximum2DDiameterColumn: mesh vertices in row-slice
plane;

o Maximum2DDiameterRow: mesh vertices in the column-
slice plane;

e Maximum2DDiameterSlice: mesh vertices in row-column
plane;

o Maximum3DDiameter: mesh vertices;

e MeshVolume: volume is obtained using the surface mesh;

e MinorAxisLength: second-largest axis length of the ROI-
enclosing ellipsoid;

o Sphericity: roundness of shape of the tumor region rela-
tive to a sphere;

o SurfaceArea: the sum of all sub-areas;

o SurfaceVolumeRatio: Surface Area to Volume ratio;

o VoxelVolume: approximate volume.

In the next, (Descriptive Statistics step in Figure 1) we con-
sider descriptive statistics to understand whether the consid-
ered radiomic and genomic biomarker populations are able to
discriminate between the two considered classes (i.e., between
the Adenocarcinoma and Squamous Cell Carcinoma lung can-
cers). We depict box-plots, usually considered for graphically
depicting groups of numerical data through their quartile. In
box-plots outliers may be plotted as individual points. Box
plots are non-parametric: they display variation in samples of
a statistical population without making any assumptions of the
underlying statistical distribution. The more distributions are
distinguishable from one another (and therefore not overlap-
ping), the more it will be possible for a classifier to be able
to correctly discern between unknown Adenocarcinoma and
Squamous Cell Carcinoma lung cancer genomic and radiomic
instances. The rationale behind this analysis is to understand
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Fig. 1. The proposed method.

whether the genomic and the radiomic features can be helpful
to discriminate between Adenocarcinoma and Squamous Cell
Carcinoma lung cancer.

The next step is the Decision Boundaries: in a statistical-
classification problem with two classes, they represent a hy-
persurface that partitions the underlying vector space into two
sets, one for each class. The classifier will classify all the
points on one side of the decision boundary as belonging
to one class and all those on the other side as belonging
to the other class. A decision boundary is the region of a
problem space in which the output label of a classifier is
ambiguous. If the decision surface is a hyperplane, then the
classification problem is linear, and the classes are linearly
separable. Decision boundaries are not always clear cut. That
is, the transition from one class in the feature space to another
is not discontinuous, but gradual. This effect is common in
fuzzy logic based classification algorithms, where membership
in one class or another is ambiguous. The rationale behind
this analysis is to understand the best classification algorithm
able to build efficient model to distinguish between Adenocar-
cinoma and Squamous Cell Carcinoma lung cancer. To this
aim different classification algorithms are considered, chosen
from the most widespread machine learning algorithms usually
considered for classification task [10], [11].

In detail we consider the following algorithms:

e Linear SVM [12]: the Support Vector Machine linear
classifier predicts, for each given input, which of the
trained possible classes the input is a member of. An
SVM model is a representation of the examples as points
in space, mapped so that the examples of the separate
categories are divided by a clear gap that is as wide as
possible. New examples are then mapped into that same
space and predicted to belong to a category based on
which side of the gap they fall on;

e RBF SVM [13]: this algorithm represents the non-linear

SVM classifier with Radial Basis Function (RBF) kernel.
The kernel is basically a measure of similarity that
in this context is reflecting into the similarity between
instances under analysis. RBFs are means to approximate
multivariable functions by linear combinations of terms
based on a single univariate function (i.e., the RBF);
Gaussian Process [14]: this classification algorithm is
based on the Laplace approximation: the Laplace approx-
imation is a way of approximating Bayesian parameter
estimation and Bayesian model comparison. The data
points have associated latent variables which are drawn
from a Gaussian Process prior, and the labels are modeled
as stochastic functions of the latent variables;

RF [15]: the Random Forest algorithm considers several
decision trees for the training phase. The built “forest” is
an ensemble of Decision Trees, this is the reason why it
builds multiple decision trees and merges them together
to get a more accurate and stable prediction;

Neural Network [16]: it consists of a number of nodes
in the input layer (equal to the number of features in
the input data-set). Each input node is multiplied with
a weight (typically initialized with some random value)
and the results are added together. The sum is then passed
through an activation function. In particular we consider
the MultiLayer Perceptron, consisting in three layers of
nodes: an input layer, a hidden layer and an output layer.
Except for the input nodes, each node is a neuron that
uses a nonlinear activation function;

ODA [17]: the Quadratic classifier separates instance in
classes of objects through a quadratic surface. In the
Quadratic Discriminant Analysis (QDA) it is assumed
that the measurements from each class are normally
distributed;

Logistic [18]: this classification algorithm considers the
Logistic function, also called sigmoid function: a curve




that can take any real-valued number and map it into a
value between 0 and 1.

The last step of the proposed method is the classification
one (Classification in Figure 1). A supervised approach is
considered: in the training step the model is built, while in
the testing step the effectiveness of the model is evaluated.

The model is built starting from a labelled data-set i.e.,
genomic and radiomic bio-markers. Relating to the radiomic
bio-markers a set of medical images are considered, and from
these images we extract the set of 14 radiomic features.
Subsequently, the radiomic features with the corresponding
label obtained from the medical report are parsed in a feature
vector. Each feature vector is representing an instance. Once
all the instances are obtained, it is possible to input the
classification algorithm that will output the Model.

Once trained the models, we have to verify whether the built
models are able to discriminate between Adenocarcinoma and
Squamous Cell Carcinoma lung cancer and lung cancers with
different lymph node spread.

For this reason we consider a set of genomic and radiomic
bio-markers and after gathered the radiomic features and
generated the feature vector, we input the Model that will
output the label.

We adopt the cross validation approach: the full data-set
is splitted in two parts: the first one, the training data-set
is considered to generate the model, while the second one
(i.e., the testing data-set) is considered to evaluate the model
effectiveness. We adopt a fair partitioning between training
and testing data-set (i.e., 50% training and 50% testing).
With the aim to consider all the instances belonging to the
genomic and radiomic data-set in both the training and testing
phase, we consider two different classifications: in the first
classification the first 50% of the (genomic and radiomic)
instances are considered to generate the model, while the
second 50% is used to evaluate the model; while in the second
classification the second 50% is used to train the model,
while the first 50% this time is considered to evaluated the
model (2-fold cross validation). The final performance values
are averaged between the performances obtained in these two
classifications.

We recall that we generate two different models with each
involved classification algorithm and with each bio-marker
category (i.e., genomic and radiomic): the first one aimed
to discriminate between Adenocarcinoma and Squamous Cell
Carcinoma lung cancer, while the second one to predict
whether the lung cancer does not exhibit lymph nodes dif-
fusion (i.e., NO) or exhibit lymph nodes diffusion (i.e., NI,
N2 or N3): we recall that both these analysis are currently
performed by doctors with an invasive tissue biopsy.

III. THE EXPERIMENTAL ANALYSIS

In this section we discuss the results of the experimental
analysis of the genomic and radiomic bio-markers in the
detection and characterisation of lung cancer. We first describe
the data-set involved in the study. In the next, reflecting the
study design presented in previous section, we discuss the

descriptive statistics, the decision boundary analysis and the
classification results.

A. Data-set

A real-world data-set was obtained from the Cancer Imag-
ing Archive*. In detail, the NSCLC Radiogenomics data-set’
contains NSCLC cohort related to 130 subjects, 98 afflicted by
Adenocarcinoma and 32 by Squamous Cell Carcinoma. With
regard to lymph nodes diffusion, 104 patients do not exhibit
lymph nodes diffusion (i.e. NO stage), while the remaining 26
exhibit lymph nodes diffusion (i.e. NI, N2 or N3 stage). The
data-set comprises Computed Tomography (CT) with corre-
spondent slice segmentation. Moreover imaging data are also
paired with gene mutation, RNA sequencing data (i.e., 22127
genes considered as genomic bio-markers) from samples of
surgically excised tumor tissue, and clinical data.

B. Descriptive Statistics

Below we show several box-plots we obtained from the
Adenocarcinoma and Squamous Cell Carcinoma genomic and
radiomic populations. For space reasons we represent box-
plots related to two genomic and two radiomic features, but
similar considerations can be made also for the remaining
(genomic and radiomic) bio-markers.

Figure 2 shows the box-plots for the AIBG gene®.

As emerges from the box-plots in Figure 2 there is a sub-
stantial overlapping between the Adenocarcinoma and Squa-
mous Cell Carcinoma populations. In fact, the median for
the Adenocarcinoma population is equal to 2.94144 while the
median for Squamous Cell Carcinoma is equal to 2.34653.
This can be reflected in a not a good discriminant bio-marker
between the two populations.

Figure 3 shows the box-plots for the A4GALT gene’.

If compared with the previous box-plots (related to the
AIBG gene), the A4GALT gene exhibits a more discriminate
ability: in fact the median of the Adenocarcinoma population
is in this case 2.43833 while the Squamous Cell Carcinoma
population exhibits a value equal to 11.9247.

With regard to the radiomic bio-markers, Figure 4 shows the
box-plots related to the MajorAxisLength radiomic feature.

The median for the Adenocarcinoma population is equal to
465.095 while the Squamous Cell Carcinoma instances exhibit
a median equal to 401.554. From the box-plots is emerges a
tiny overlap between the two distributions.

The second radiomic bio-marker box-plots we show is
represented in Figure 5.

The box-plots in Figure 5 are related to the Adenocarcinoma
and Squamous Cell Carcinoma populations for the Maxi-
mum2DDiameterSlice bio-markers. In this case the medians
are respectively equal to 478.531 for the Adenocarcinoma and
388.471 for the Squamous Cell Carcinoma population. As

“https://www.cancerimagingarchive.net/
Shttps://wiki.cancerimagingarchive.net/display/Public/NSCLC+
Radiogenomics
Ohttps://www.genecards.org/cgi-bin/carddisp.pl?gene=A1BG
Thttps://www.genecards.org/cgi-bin/carddisp.pl?gene=A4GALT
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Fig. 4. Box-plots for the MajorAxisLength radiomic feature.

shows from the box-plots, there is no overlapping between
two distribution. Moreover, there is a significant numeric
distance between the third quartile of the Squamous Cell
Carcinoma distribution (i.e., 420.54) and the first quartile of
the Adenocarcinoma one (i.e., 477.581), symptomatic that the
value of this bio-marker can be really effective in the lung
cancer discrimination.

C. Decision Boundaries

Figure 6 shows the decision boundaries for the seven
classification algorithms involved in the study, where the top

boxes of Figure 6 is related to decision boundaries for the
genomic bio-markers, while the down ones for the radiomic
ones.

In decision boundaries, the areas where the classifier is able
to predict a certain class are identified with different colors (in
particular the blue area is related to Squamous Cell Carcinoma
while the red one are related to Adenocarcinoma class). Also
the instances are colored according to their class. In particular,
the most colored areas correspond to areas in the plane where
the prediction is carried out with high accuracy, while the
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less colored areas correspond to spaces in the plane where
the classifier is able to make the prediction, but with a less
accuracy. The remaining areas i.e., the blank areas, represent
the areas in which the classifier is not able to make a prediction
for the instances falling in these areas.

From the decision boundaries analysis in Figure 6 emerges
that several algorithms exhibits white areas where they are
not able to make the prediction for instance, by analysing
the genomic bio-markers it emerges that the Linear SVM, the
Gaussian Process, RF and Logistic algorithms exhibit several
white areas. With regard to the radiomic bio-markers decision
boundaries in addition to these algorithms also the RBF SVM
and the QDA one exhibits white areas. Only the Neural Net
algorithm does not exhibit white areas, for this reason the
models built whit this algorithms (using the genomic and
the radiomic bio-makers) should be able to obtain better
performances if compared with the ones obtained from other
algorithms.

D. Classification Results

With the aim to understand whether we can confirm the
outcomes of descriptive statistics and decision boundaries
analysis, below we present the classification results related to
the seven algorithms considered in this study built using both
the genomic and the radiomic bio-markers.

We consider following metrics in order to evaluate the per-
formance results: False Positive, Precision, Recall, F-Measure
and Roc Area.

Table I shows the classification results for the models built
by exploiting the genomic and the radiomic bio-markers:
with the H letter we refer to the lung cancer detection (i.e.,
Adenocarcinoma and Squamous Cell carcinoma), while with
the N to the lung cancer characterisation.

From the results shown in Table I emerges that the models to
discriminate between Squamous Cell Carcinoma and Adeno-
carcinoma built by exploiting the genomic bio-markers obtain
an f-measure ranging from 0.667 obtained with the Gaussian
Process algorithm to 0.929 reached with the Neural Net one.



TABLE I
GENOMIC AND RADIOMIC BIO-MARKERS CLASSIFICATION RESULTS.

Bio-markers Algorithm Prediction | FP Rate | Precision | Recall | F-Measure | RocArea
LinearSVM H 0.123 0.908 0.908 0.907 0.892
LinearSVM N 0.333 0.857 0.453 0.593 0.560
RBF SVM H 0.125 0.903 0.904 0.903 0.888
RBF SVM N 0.650 0.711 0.692 0.701 0.521
Gaussian Process H 0414 0.666 0.677 0.667 0.632
Gaussian Process N 0.373 0.739 0.492 0.543 0.560
RF H 0.126 0.897 0.899 0.898 0.884
Genomic RF N 0.774 0.737 0.722 0.708 0.701
Neural Net H 0.167 0.907 0.951 0.929 0.892
Neural Net N 0.750 0.824 0.792 0.808 0.721
QDA H 0.542 0.717 0.805 0.759 0.632
QDA N 0.598 0.610 0.354 0412 0.368
Logistic H 0.333 0.833 0.976 0.899 0.942
Logistic N 1.000 0.815 1.000 0.898 0.500
LinearSVM H 0.000 1.000 0.887 0.940 0.943
LinearSVM N 0.988 0.988 0.988 0.982 0.988
RBF SVM H 0.001 0.999 0.888 0.940 0.942
RBF SVM N 0.986 0.986 0.986 0.980 0.984
Gaussian Process H 0.865 0.719 0.977 0.829 0,571
Gaussian Process N 0.717 0.827 1.000 0.905 0.641
RF H 0.005 0.991 0.989 0.991 0.997
Radiomic RF N 0.169 0.946 0.945 0.943 0.994
Neural Net H 0.003 0.993 0.993 0.993 1.000
Neural Net N 0.006 0.985 0.984 0.985 1.000
QDA H 0.607 0.722 0.720 0.645 0.658
QDA N 0.707 0.665 0.642 0.621 0.601
Logistic H 0.005 0.992 0.988 0.990 0.996
Logistic N 0.007 0.983 0.981 0.981 0.998

With respect to the spread lymph node detection the f-measure
is ranging from 0.412 with the QDA algorithm to a value equal
to 0.808 obtained with the Neural Net model.

With regard to the models built exploiting radiomic
biomarkers in the discrimination between Squamous Cell Car-
cinoma and Adenocarcinoma the f-measure is ranging between
0.645 with the Gaussian Process classifier to 0.993 obtained
with the Neural Net. For lymph node spread detection, the
f-measure is ranging from 0.621 with the Gaussian Process
classifier to 0.985 reached with the Neural Net model.

The classification performances results highlight that the
non invasive radiomic bio-markers are more effective that
invasive one (i.e., genomic) in lung cancer detection and
characterisation.

The best classification algorithm for both the lung cancer
detection and characterisation tasks is the Neural Net with
both the genomic and radiomic bio-markers. This is con-
firming the outcomes of the descriptive statistics and of the
decision boundaries analysis. We highlight the effectiveness
of the radiomic bio-markers, as evidenced by the obtained
performances: f-measure 0.993 for lung cancer detection (with
the genomic features an f-measure equal to 0.929 is obtained).
The same consideration can be inferred for the lymph node
spread detection, where the Neural Net model built with the
genomic bio-markers reaches an f-measure of 0.985 while the
one built with the radiomic bio-markers obtaines an f-measure
equal to 0.993.

Considering that the algorithm obtaining the best perfor-

mances in terms of f-measure is the neural network, in the
follow we evaluate the loss function trends of the model for
lung cancer detection. The loss function evaluation is aimed
to find the best loss function for the model training. We
experiment with seven different loss configurations: three with
constant learning rate (i.e., constant learning rate, constant
with momentum and constant Nesterov’s momentum), three
with learning rate not constant (i.e., i.e., inv-scaling learning-
rate, inv-scaling with momentum and inv-scaling Nesterov’s
momentum) and Adam (i.e. the adaptative moment estimation).
The best loss function is the one that permits firstly to reach
the lowest value (symptomatic that the prediction provided by
the neural network is really closed to the real one) and as a
second point to reach the lowest value in the shortest time.

As emerging from the plots in Figure 7 for the genomic
model adam is able to reach the lowest value, while with
regard to the radiomic model both the adam and the constant
with momentum are able to reach the lowest value.

IV. CONCLUSION AND FUTURE WORK

With the aim to propose a non invasive method for lung
cancer detection, in this paper we investigated the effectiveness
of supervised machine learning techniques for lung cancer
characterisation. In detail we consider a set of invasive ge-
nomic bio-markers (extracted by tissue biopsy) and a set of
non-invasive radiomic bio-markers and we compare the per-
formances reached by these models in lung cancer detection.
The experimental analysis, performed considering genomic
and radiomic bio-markers related to 130 patients, demonstrated
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that the models built exploiting radiomic bio-markers are
able to reach better performances if compared with the ones
trained by using genomic features. As future work we plan to
introduce formal verification techniques [19]-[21], [21], [22]
with the aim to improve the obtained performances.
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