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Abstract—Classification of time series is an essential require-
ment of various applications that demand continuous monitoring
of dynamical systems such as industrial process and health care
monitoring. Feature extraction plays a vital role in deciding
performance of the time series models. In recent years deep
learning techniques have shown an excellent performance to
extract highly discriminating features for the classification of the
time series. A Convolutional Neural Network (CNN) is a unified
framework that performs the feature learning and classification
tasks simultaneously. Using the CNN to perform the classification
of the multivariate time series is still a challenging task. In this
paper, we propose an attention-based multivariate convolutional
neural network (AT-MVCNN) that consists of the attention
feature-based input tensor scheme to encode informations across
the multiple time stamps. The method is capable of learning
the temporal characteristics of the multivariate time series. The
efficacy of the proposed method is tested on Human Activity
Recognition (HAR) and Occupancy Detection datasets. The
experiments and results show the proposed method outperforms
the other deep learning and traditional machine learning models.

I. INTRODUCTION AND PRIOR WORK

Time series (TS) is a collection of data samples arranged
according to a time index. The TS with single-dimension is
known as univariate time series (UTS) however, whereas TS
contains more than one time series is named as multivariate
time series (MTS). Classification of the TS is well studied
problem in domains like climate behavior [1], robotics [2],
health care system [3] and anomaly detection [4], [5]. The
classification of the MTS is more challenging as compared
to the UTS. In this paper we focus on the task of MTS
classification. Numerous statistical-based methods have been
proposed in recent years to perform the TS classification. Fea-
ture extraction plays a vital role in boosting the performance
of the model to classify the MTS. In general, the time series
is segmented in multiple segments of equal window size, and
handcrafted features are extracted from these segments. The
extracted features are further used to classify the time series.
The extracted features from the segments are statistical prop-
erties [6] or transformation like Fourier [7], [8] and Wavelet
transformations [9]. In [10], Bilal et al. proposed trend-value
pair features to classify MTS. Bag of feature [11] is another
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popular feature extraction technique that is extensively used
to classify time series. The handcrafted feature suffers from
two major drawbacks. The first drawback is sometimes the
handcrafted features fail to encode a relationship between the
multiple time series, and the second is a preprocessing step
i.e. the feature engineering imposes an additional computa-
tional cost to classify the MTS. The models that involve the
preprocessing step are less desired for the application like the
industrial monitoring that requires quick responses to make
important decisions.

From the past decade, deep learning-based models have
gained considerable attention from data scientists. The deep
learning models are capable of extracting hidden features
from the time series through hidden layers and substitutes
the requirement of the additional feature preprocessing step
mentioned above. The deep models are efficient in encoding
nonlinear relations and temporal characteristics of the time
series. Che et al. [12] proposed a recurrent neural network-
based (RNN) framework to classify the multivariate time series
. The RNN [13], Long Short Term Memory (LSTM) [14] and
Convolutional Neural Network (CNN) [15] are the popular
deep learning techniques that are well studied to classify the
time series.

Among the above mentioned deep learning methods, the
CNN is widely used to perform classification of the MTS.
The CNN is well applied to perform the image classification
[16]. Despite a great application of CNN to resolve the various
challenges from the domains such as text mining, computer
vision, and signal processing, use of CNN to classify the MTS
is not well investigated. Characteristics of MTS is different
from the text and image data. Temporal characteristics and
uncertainty of the MTS impose various challenges while
creation of the models to classify the MTS. An attempt has
been made by Cui et al. to classify the MTS by designing of
Multiscale Convolutional Neural Network (MSCNN) [17]. The
MSCNN is an end to end neural network that applies multiple
transformations on the time series at different scales, sampling
rates, and frequencies. After the end of transformations, the
MSCNN extracts the discriminating features using the convo-
lution operation. At last, the extracted features are combined



to perform the classification. In [18], a unified framework
was proposed by Yi et al. to perform MTSC. This framework
combines multiple CNNs for the classification of MTS. The
method uses a two-step algorithm. Initially, spectral clustering
is applied to group the variables into different clusters. Latter
coefficients of the created clusters are incorporated in the ar-
chitecture, and a backpropagation technique is used to learn the
model parameters. Borovykh et al. [19] proposed a Wavenet
based model that makes the classification of the MTS by
arranging the multiple dilated convolutional neural networks
in a stacked layer. In [20], a fault diagnosis on semiconductor
manufacturing process was performed using CNN. Gao et al.
[21] explored the covariance structure between the multiple
time series to classify the MTS. In [22], a deep model was
proposed to identify a sleep disorder in MTS. A well structured
review of the various deep learning-based methods proposed
to perform the classification of univariate and multivariate time
series can be found in [23].

In [24], author proposed a novel Multivariate Convolutional
Neural Network (MVCNN) to perform the classification of the
MTS of PHM Challenge 2015 dataset. The model transforms
the input raw time series into a tensor. The convolutional
layer of the MVCNN performs univariate and multivariate
convolution over the input tensors to model the temporal
characteristics of the MTS. The experiments and results show
the method achieved better performance as compared to the
existing deep learning models to classify the MTS. But the
deep architecture of the MVCNN suffers from two major
drawbacks. The MVCNN takes the raw time series to create
the tensor to classify the MTS, thus failed to explain what
type of role each input tensor plays during the classifica-
tion of the MTS. The second is MVCNN fails to encode
information across the multiple time stamp. An attention
mechanism is well explored to learn relevant and useful part
of subsequence to perform classification [25]. The attention
mechanism assigns weights to features of the data to select the
features that are more relevant to perform the classification.
The attention mechanism is capable to encode the information
across the multiple time stamp thus can be used to overcome
the drawbacks of the MVCNN.

In this paper we incorporated an attention mechanism to
resolve the issues mentioned above. A pioneer work related
to the use of attention theory with CNN was performed by
Yin et al. [26] to solve a research problem of the text mining.
They presented three procedure to incorporate the attention
features with the CNN model. In [27], author performed
the human activity classification in videos by learning the
temporal structures using the temporal attention filters. The
attention mechanism have been well explored to solve the
research problems from the domains such as computer vision
[28] and text mining [26]. Tran et al. [28] proposed temporal
attention features to classify the financial time series. In the
[25] author performed an early classification of the MTS by
combining the deep learning and attention mechanism. Shih
et al. [29] performed the forecasting of MTS using temporal
pattern attention and recurrent neural network.

In the proposed work we used the deep architecture of the
MVCNN as the base architecture to develop Attention-Based
Multivariate Convolutional Neural Network (AT-MVCNN) for
the MTS classification. The proposed method incorporates the
attention mechanism during the input tensor transformation
step of the MVCNN and creates the attention feature tensors
that are further used to train the model. To the best of
our knowledge combination of the attention mechanism and
MVCNN has not been proposed to classify the MTS. Our
major aim in this paper is to study the effect of incorporation
of the attention mechanism in the deep architecture of the
MVCNN to classify the MTS.

The organization of the paper is as follows: section II
presents the brief introduction of the MVCNN and the working
of the AT-MVCNN. Section III describes experiments and
obtained results, and finally, conclusions and future work are
presented in section IV.

II. METHODOLOGY

This section presents the brief introduction of the TS, the
MTS, the MVCNN and AT-MVCNN.

A. Representation of Time Series

As mentioned earliear, the TS is a collection of data samples
arranged according to time index. It T's denotes the TS and if
length of the TS in NV, then the value of TS at any time stamp
is expressed as T's;, Where 1 < j < N.

1) Univariate Time Series (UTS): The TS with single
dimension is known as the univariate time series (UTS). If
M 1is the dimension of time series then univariate time series
can be expressed as Ts;i. Where d = 1. Fig.(1) shows the
UTS with 9 time stamps(IV).
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Fig. 1. Univariate Time Series

2) Multivariate Time Series (MTS): The time series with
more than one dimension is known as the multivariate time se-
ries (MTS). The MTS is expressed as Ts?. Where 1 < j < N.
and 1 < d < M. Here M is the dimension of the MTS. Fig.(2)
shows the MTS with four time series and 9 time stamps.

By considering the aforementioned notations, the MTS
dataset can be expressed using three triplets T'SD =
(t/,Ts;,Y7). Here Y is a class label and the 7T's; is the time
series and ¢; is the time stamp of the MTS instance.
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Fig. 2. Multivariate Time Series

B. Architecture of MVCNN

The MVCNN was first proposed by Liu et al.[24]. The
primary objective of the MVCNN was to classify the MTS.
The MVCNN contains unified framework that transforms the
input MTS into tensors and later the convolutional operations
are performed over the created tensors to learn the lagged
characteristics of the MTS. Major components of the MVCNN
are as follows:

1) Input Tensor Transformation: Initially the input TS is
transformed into the tensor of size (1 * 1 * Wy). Here W is
a size of considered sliding window. The created tensors are
combined to form the input tensor for the CNN. The size of
input tensor is given as (h * d x W). Where h is the height
of the tensor, d is the width of the tensor and the W is depth
of the tensor. Fig.(3) shows a mechanism to create the input
tensor from the MTS. The MTS contains four TS Ts,, Ts,,
Ts, and, Ts, respectively. The sliding window of the size 4
samples (W5 = 4) is used to select the values of the time series
from time stamp t3 to tg. Initially the size of each tensor is
(1%1%4). The tensors are combined to make the new tensor
of the size (2 * 2 % 4). The depth of the tensor is same as the
size of the sliding window.
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Fig. 3. Creation of Input Tensor from MTS in MVCNN

2) Convolution Operation: Fig.(4) shows the architecture
of the MVCNN. The MVCNN contains convolutional layers
to perform the convolution operation on the input tensor. The
convolution operation of the MVCNN is performed in two
stages. The first is univariate convolution step and the second

is the multivariate convolution step. The primary aim of the
univariate convolution step is to extract local feature from
the individual time series. The multivariate convolution is
performed to extract the features that are useful to explain
the details regarding the interaction between the multiple time
series. More details of the convolution step of the MVCNN
can be found in [24].

3) Fully Connected Layer: At last the fully connected
layer was applied at the output of the above explained con-
volution step. The dropout technique is used to prevent the
overfitting problem in the model. Finally the softmax function
is employed to transform the output into probability scores.
An entropy-based loss function is used during the training of
the MVCNN.

To resolve the drawbacks of the MVCNN (as mentioned in
the introduction section) we proposed the attention mechanism
during the creation of input tensors where we computed
the attention matrix to form the attention feature tensors.
Motivation to create the attention feature tensor has come
from the work of Yin et al. [26]. At last the input tensor and
computed attention feature tensor are given as the input to the
convolutional layers.

C. Architecture of AT-MVCNN

1) Attention Feature Tensor Transformation: To create
the attention feature map of the input tensor we computed
the distance between the data values of the two consecutive
sliding windows. The distance between the data samples of the
two sliding windows is presented in a form of the attention
matrix. For an example Fig.(5) shows the procedure of the
computation of the attention matrix. Initially the two input
tensors (of the size (1*1%4)) that represent the values of the
time series for the two time stamp durations ¢; to ¢4 and
t5 to tg are selected to compute the entries of the attention
matrix. Each entry in the attention matrix of size 4*4 is
expressed as follows

1
1+ dist(V;, V;)
Where dist is an Euclidean distance. If 1 denotes the input

tensor and A denotes the computed attention matrix, then the
attention feature tensor F is calculated as

Ay = ()

F=IxA )

Fig.(6) shows the difference between the input tensor
transformation in the MVCNNN and AT-MVCNN. The AT-
MVCNN takes both the attention feature tensor and the inut
tensor as the input for the convolutional layer. The first part
of Fig.(6) shows creation of the four input tensors of size
1#1*4 that are created from the four input time series of the
MVCNN. The same procedure is used in the At-MVCNN
with an additional formation of the attention feature tensors.
The attention matrix is computed for the each tensor and
the four attention feature tensor are created. Now the eight
input tensors are further used as input to the AT-MVCNN.
Second part of the Fig.(6) shows eight input tensors created
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in the input layer of the AT-MVCNN. Fig.(7) shows the
procedure of convolution operation performed over the input
tensors of the AT-MVCNN. The input and attention feature
tensors are processed together with the convolutional filter of
size 1*1 and the weights are shared between the input and
attention feature tensors to reduce the number of parameters.
The architecture of the AT-MVCNN is same as the MVCNN.
The only part that differs AT-MVCNN from MVCNN is the
input tensor transformation step. An additional computation of
the attention feature map is performed in the AT-MVCNN. The
AT-MVCNN contains three major layers the attention feature
input tensor transformation stage, the convolution layers and
the fully connected layers. Fig.(8) shows the architecture of
the AT-MVCNN. We used the same base architecture of the
MVCNN to implement the AT-MVCNN.

III. EXPERIMENTS AND RESULTS

This section presents the experiments and obtained results.

A. HAR Dataset

To evaluate performance of the AT-MVCNN, we picked
Human Activity Recognition (HAR) dataset established by
Davide et al. [30]. Numerous human activities are recorded
through Samsung Galaxy SII. A total of 30 humans of age
in between 19 to 48 years are monitored through sensors to
capture the different human activities. The sensor data corre-
sponding to the six human activities Walking (W), Walking
Down (WD), Walking Up (WU), Sitting (ST), Standing (SD),
and Lie Down (LD) are measured and recorded. The recording
frequency of the data was selected as 50Hz.

1) Training Data: The training data consist of a total of
7352 data instances recorded for the 21 subjects (Humans).
The training data accommodates 1374 data samples for the W
activity, 1407 data instances of the WD activity, 1286 data
instances of the WU activity, 986 data samples belong to
the SD activity, 1073 data instances of the LD activity and
remaining 1226 data samples belonging to the ST activity.

2) Test Data: The test data contains data gathered to
examine the six human activities of the 9 subjects (Humans).
The test data accommodates a total of 2947 data instances.
Out of these 2947 data instances 532, 491, 537, 496, 420,
and 471, data samples belong to the W, WU, WD, ST, SD,
and LD activities respectively. The number of data samples
for different activities in the training and test data is shown in
Table I.

TABLE I
Number of Training and Test Data Samples for Each Activity in HAR
Dataset
- Training | Test
S.No | Activity Data) Data
1 \ 1374 532
2 WU 1286 491
3 WD 1407 537
4 ST 1226 496
5 SD 986 420
6 LD 1073 471
Total 7352 2947

3) Model Description: Total four models are developed to
compare the performance of the proposed method to classify
the HAR dataset. We only compared the results of three
deep learning models and multi-class support vector machine
classifier. Table II shows the four models developed for the
analysis of results.

TABLE II
Models Prepared to Compare Results of HAR Classification

S.No. Model
1 Multi Class Support Vector Machine (MCSVM)
2 Long Short Term Memory (LSTM)
3 Multivariate Convolutional Neural Network (MVCNN)
4 Attention Based Multivariate Convolutional Neural Network (AT-MVCNN)

(i) Multi Class Support Vector Machine (MCSVM): The
first model is a multiclass support vector machine. The model



is trained using a Gaussian kernel over the training data to
identify the numerous humans activities. The window size is
selected as 15 data samples to extract the <trend value> pair
feature same as used in [4] from the time series of the HAR
dataset.

(ii) Long Short Term Memory (LSTM): The next model
is a Long Short Term Memory (LSTM). The LSTM models is
trained for various mini-batch size and hidden units, and best
training accuracy is obtained for the LSTM with 200 hidden
units, 100 epochs, mini-batch size of 150, dropout rate of 0.5,
learning rate of 0.0001, and RELU activation function.

(iii) MVCNN: The MVCNN is trained to minimize the
cross-entropy loss function by applying an adaptive moment
estimation (Adam) algorithm [31], and a learning rate is
selected as 10~4 to train the model. The windows size (W)
is selected as 20 data samples to form the input tensor.

(iv) AT-MVCNN: The AT-MVCNN is trained using the
same parameters explained previously to train the MVCNN.

B. System Conflagration

All the developed models are run on NVIDIA GM107M
GPU. The proposed method is developed using an open source
Pytorch 1.4 library running on Ubuntu 16.04 LTS operating
system.

C. Evaluation Metrics

We presented our analysis of the HAR dataset based on
four evaluation metrics i.e. accuracy, precision ,and recall. The
presented results are the best results obtained after multiple
runs of the models to classify the given test dataset.

1) Results of the HAR Dataset: The MCSVM model
shows precision rate of 78.95%, 74.34%, 93.11%, 81.25%,
80.95%, and 86.20% to classify the W, WU, WD, ST, SD and
LD activities respectively. The MCSVM classifier also shows
the lowest accuracy of 82.59% to classify the different human
activities in the HAR dataset. The LSTM model performs
better than MCSVM and yields the accuracy of 88.06%
to classify the human activities. The MVCNN achieves the
accuracy of 91.34% to classify the numerous human activities.
The AT-MVCNN yields the precision rate of 85.92%, 96.33%,
99.52%, 99.79%, 98.80%, and 98.93% to classify the W, WU,
WD, ST, SD and LD activities. The AT-MVCNN also yields
the highest classification accuracy of 96.27% among all the
four models.

TABLE III
Confusion Matrix for MCSVM

Activity A WU WD ST SD LD Precision (%)

\ 420 102 0 0 8 2 78.95
WU 103 365 0 0 12 11 74.34
WD 0 0 500 10 12 15 93.11

ST 17 37 0 403 12 27 81.25

SD 30 20 5 4 340 21 80.95

LD 15 2 12 11 25 406 86.20
Recall (%) | 71.79 | 69.39 | 96.71 | 94.16 | 83.13 | 84.23 82.59

TABLE IV
Confusion Matrix for LSTM

Activity W WU WD ST SD LD Precision (%)

w 433 89 0 0 5 5 81.39
wu 73 395 0 0 0 23 80.45
WD 0 0 512 0 0 25 95.34
ST 2 22 0 433 17 22 87.30

SD 12 7 0 0 380 21 90.48
LD 0 2 0 8 19 442 93.84
Recall(%) | 83.27 | 76.70 | 100 | 98.19 | 90.26 | 82.16 88.06

TABLE V

Confusion Matrix for MVCNN

Activity w WU WD ST SD LD Precision (%)
w 445 80 0 0 3 4 83.64
wuU 62 415 0 0 0 14 84.52
WD 0 0 523 0 0 14 97.39
ST 0 12 0 458 7 19 92.23
SD 5 5 2 1 399 8 95.00
LD 6 1 4 5 3 452 95.96
Recall (%) | 8590 | 80.89 | 98.86 | 98.70 | 96.84 | 88.45 91.34

TABLE VI
Confusion Matrix for AT-MVCNN

Activity W WU | WD | ST SD LD | Precision (%)
w 455 72 0 0 2 3 85.92
wWu 10 473 0 0 0 8 96.33
WD 0 0 533 0 0 4 99.52
ST 0 1 495 0 0 99.79
SD 1 1 0 415 3 98.80
LD 1 1 0 1 2 466 98.93
Recall (%) | 97.43 | 86.31 100 | 99.79 | 99.04 | 96.28 96.27

Table III, Table IV, Table V and Table VI shows the
confusion matrix obtained by the MCSVM, LSTM, MVCNN
and AT-MVCNN classifiers respectively. Table VII shows the
results of the various state of the art methods to classify
the HAR dataset. It is clear from the Table VII that the
AT-MVCNN outperformed the state of the art methods to
classify the HAR dataset. The best results are obtained for
the Ws = 20 data samples for the models LSTM, MVCNN
and AT-MVCNN.

D. Occupancy Dataset and Results

We tested the performance of the AT-MVCNN on the MTS
of the occupancy dataset. The occupancy dataset contains
recording of the temperature, light, CO2 and humidity sensors
to detect the occupancy of the humans. All the sensor reading
are recorded with a sampling rate of 1 minute. Identification
of the occupancy is a binary classification task. The training
data contains total 8144 data instances belong to different
events. Two test data set are prepared with 2666 and 9753 data
instances respectively. We used the same procedure as used in
the [24] to classify the MTS of the occupancy dataset. Table
VIII shows performance of the three models. The proposed
method outperforms the RF classifier and MVCNN. The AT-



TABLE VII
State of the art methods to classify HAR dataset

Paper Dataset Method Accuracy(%)

321 | vcLaar | [Handerafted 77.81
Features+ RF

[33] UCI_HAR HMM 83.51

[34] UCI_HAR CNN+FFT 95.75

(35] | ucLHAR | Hierarchical 93.18

HMM

[36] UCI_HAR CNN 90.89

371 | ucLHAR | SYM + Stacked 92.16
Auto encoder

- UCI_HAR MCSVM 82.59

. UCI_HAR LSTM 88.06

[24] UCI_HAR MVCNN 91.34

- UCI_HAR AT-MVCNN 96.27

MVCNN yields the highest accuracy of 98.34% and 98.69%
to classify the first and second test dataset respectively.

The attention mechanism introduced during the input tensor
formation step of the AT-MVCNN inspects the information
at previous time stamp and selects the relevant information
to enhance the classification of the MTS. It is clear from the
results that the incorporation of the attention-based mechanism
in the MVCNN enhances the accuracy of the deep model and
capable to encode temporal information across the multiple
time stamps.

TABLE VIII
The Performance of Different Models on OCCUPANCY Dataset

S.No Model First Test Set | Second Test Set
1 Random Forest [24] 95.05 97.16
2 MVCNN [24] 97.40 97.72
3 AT-MVCNN 98.34 98.69

IV. CONCLUSION AND FUTURE WORK

The classification of the TS is an essential task required
by various real-world applications. The proposed method is
aiming to classify the MTS by incorporating the attention
mechanism in the deep architecture of the MVCNN. The
new attention feature-based tensors are efficient in encoding
the information across the multi time stamp and relationship
between the multiple time series. The results and experiments
show the proposed method outperforms the MVCNN, the
LSTM and MCSVM to classify the MTS.

An investigation of the effect of the attention mechanism
during the multivariate convolution operation of the AT-
MVCNN would be significant future work. In future, we
would like to explore application of the AT-MVCNN to
identify the anomalies in the MTS.
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