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Abstract—Neural architecture search (NAS) is a promising
method to automatically identify neural network architectures.
Differentiable architecture search (DARTS) is method that sig-
nificantly reduces search time and finds architectures that can
achieve state-of-the-art performance. For computer vision tasks,
DARTS searches convolutional neural networks (CNNs) via
stacking convolution layers and pooling operations. Recent stud-
ies on neural architectures indicate that attention modules can
improve the performances of CNNs by discarding information of
no interest, while existing NAS methods have put little focus
on it. In this study, we propose Att-DARTS, which searches
attention modules as well as convolution and pooling operations
simultaneously. In our experiments on CIFAR-10 and CIFAR-100
datasets, we demonstrate that Att-DARTS can find architectures
that achieve lower classification error rates and require fewer
parameters compared to those found by DARTS.

Index Terms—neural architecture search, object recognition,
attention mechanism

I. INTRODUCTION

Deep learning has enabled us to solve various tasks with
high performance thanks to its flexibility and rich expressive
ability. The flexibility and expressive ability come from its
architecture designed for targeted tasks. For instance, con-
volutional neural networks (CNNs) and their extensions are
commonly used for computer vision tasks [1]. For building a
neural architecture, one has to design it manually by following
a trial-and-error approach. Manually designing architectures
requires a considerable amount of expertise and time to ensure
that they achieve state-of-the-art performances.

The goal of neural architecture search (NAS) is to auto-
mate this time-consuming and error-prone process [2]. The
recent development of NAS has enabled us to automatically
design an architecture that achieves good performance in
tasks such as semantic image segmentation [3] and person
re-IDentification [4]. A notable difficult of NAS is ensuring
the discreteness of the search space over operations such
as convolution and pooling. A selection of one operation
among several candidate operations needs to be a discrete
and indifferentiable action. Therefore, many of the earliest
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Fig. 1: An overview of Att-DARTS. We propose applying not
only an operation (convolution or pooling) but also an attention
module after the operation is applied. Att-DARTS chooses
both operations and attention modules from each candidate
space.

NAS works used reinforcement learning and evolutionary
algorithms [5]–[8].

These methods trained a new candidate architecture from
scratch and compared its performance with existing ones;
however, these processes are computationally expensive and
time consuming, often requiring thousands of GPU days.
ENAS reduced search time to within a GPU day by sharing pa-
rameters among all candidate architectures [9]. A breakthrough
was led by gradient-based approaches such as DARTS, which
builds a neural network as a weighted sum of all candidate
operations and trains the relative weights among the candidates
and their internal parameters [10]. Compared with ENAS,
DARTS achieved better results with slightly longer search
times.

Of the three dimensions for NAS: search space, search
strategy, and performance estimation strategy [2], most earlier
NAS works focus on the search strategy. In this study, our
focus is on the search space. For computer vision tasks, we
use CNNs, whose main operation is convolution. A neural
network can capture the spatial and channel-wise features of
an image applying a convolution. However, the neural network
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considers all spatial and channel-wise features including the
ones that are not useful, when using only convolutions. To
discard such useless features and focus on important features,
attention modules have been proposed [11]–[17]. Studies that
employed CNNs with attention modules reported better perfor-
mances with a comparable number of parameters. We consider
that attention modules are promising candidates for neural
architectures and can be employed in the search space.

In this work, we propose a novel search method called
Att-DARTS that can find architectures using attention mod-
ules. Att-DARTS assumes a CNN composed of repeatedly
stacked cells similar to most existing NAS works; however,
it inserts an attention module after each operation. During the
search process, Att-DARTS optimizes the relative weights of
both operations and attention modules in addition to internal
parameters using gradient descent like DARTS [10]. After
the search process, Att-DARTS chooses the operations and
attention modules with the strongest relative weights and
builds a final cell architecture.

We searched the architecture with attention modules on an
image dataset, CIFAR-10, and evaluated the identified cells on
CIFAR-10 and CIFAR-100 [18]. In our experiments, we found
that Att-DARTS found a cell that achieves a 2.54% test error
on CIFAR-10 (around 10% lower than that of DARTS) and
a 16.54% test error rate on CIFAR-100. Simultaneously, Att-
DARTS reduces the number of parameters by 0.1M compared
to DARTS.

The remainder of this paper is organized as follows. Sec-
tion II is devoted to introducing related works on the neural
architecture search and attention modules. Section III shows
the details of our proposed method, Att-DARTS. Section IV
provides details on the experimental results on CIFAR-10
and CIFAR-100. In Section V, our experiments demonstrates
that Att-DARTS outperforms DARTS and many comparative
methods. Finally, Section VI provides the conclusion of the
paper.

II. RELATED WORK

A. Neural Architecture Search

A NAS aims to automate the design of neural network
architectures and to reduce experts’ efforts. Early NAS works
are based on reinforcement learning or evolutionary algo-
rithms [5]–[8]. Zoph et al. [5] generated optimal hyperparam-
eters of each convolutional layer (e.g., filter size, and stride)
and the number of layers using a controller recurrent neural
network (RNN). The RNN is trained with reinforcement learn-
ing to maximize the accuracy of a child network. Other studies
employed evolutionary algorithms such as AmoebaNet [7].

These methods train a new candidate architecture from
scratch and compare it with the existing ones; these pro-
cesses are computationally expensive and time consuming.
Some works reduced the search time by using a one-shot
model, which is a single model composed of all candidate
operations [9], [19], [20]. The model facilitated sharing weight
parameters among all candidate architectures. At the search
stage, we only need to train this single model instead of

all candidate models from scratch. Instead of designing an
entire neural network architecture, NASNet [6] designed an
architecture composed of repeated small networks, each of
which is called a cell, and this helped to drastically reduce
the search space.

Many of these methods used reinforcement learning or evo-
lutionary algorithms to design a neural network architecture
topology, whereas we train a neural network using the gradient
descent method. Hence, architecture search and parameter
optimization can be performed in alternatively, which increases
computational time. To bridge this gap, gradient-based meth-
ods such as DARTS [10] have been proposed.

Gradient-based methods make the operation search space
continuous by implementing an operation as a weighted sum
of all candidate operations. DARTS jointly trains the relative
weights of the operations and their internal parameters using
the gradient descent method, and it chooses the cells with the
strongest relative weights. The best cells found by DARTS
achieved results comparable with those found by methods
based on reinforcement learning or evolutionary algorithms.

Various methods inspired by DARTS have been proposed.
To reduce memory consumption during the search space,
DARTS employed a shallower network architecture at the
search stage than at the evaluation stage. P-DARTS [21]
bridged this depth gap by reducing the pattern of candidate
operations step-by-step. PC-DARTS [22] proposed a partial
channel connection and improved memory efficiency. Some
works focus on the issue that DARTS tends to choose many
skip connections [21], [23], [24]. However, these studies
focused on the search strategy. In contrast, our study focuses
on the search space.

B. Differentiable Architecture Search (DARTS)

In this section, we provide detailed information on
DARTS [10] for comparing it with our proposal. DARTS
searches for a computation cell, and the entire architecture
obtained using DARTS is a chain-structured network, where
L cells are stacked. Each cell ck is defined as a directed acyclic
graph with N nodes, where node xi is connected to nodes xj
that have larger indices i < j. Each node xi is a feature map.
Two of their nodes are inputs, a node is an output, and the
remaining N−3 nodes are intermediate nodes. The input nodes
are obtained from the output nodes of the previous two cells
ck−1 and ck−2. The output node is defined as the depth-wise
concatenation of all intermediate nodes.

During the architecture search, DARTS finds an operation
in the operation space O for each edge. When the focus is on
the edge between nodes xi and xj , each candidate operation
o(·) ∈ O has a relative weight s(i,j)o , which is defined by the
softmax operation over the operation parameters α(i,j)

o of all
candidate operations:

s(i,j)o =
exp(α

(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

. (1)
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Fig. 2: Illustration of Att-DARTS.

The information flow from node xi to node xj is computed
as the weighted sum of all candidate operations:

ō(i,j)(xi) =
∑
o∈O

s(i,j)o o(xi) (2)

Node xj is computed as the sum of all flows from the source
nodes in the cell:

xj =
∑
i<j

ō(i,j)(xi). (3)

Then, DARTS jointly learns operation parameters α and
weight parameters w (e.g., convolution kernels) using the
gradient descent method by solving a bilevel optimization
problem, where operation parameters α are upper-level vari-
ables and weight parameters w are lower-level variables:

min
α
Lval(w∗(α), α) (4)

s.t. w∗(α) = argmin
w

Ltrain(w,α). (5)

Ltrain and Lval denote the training and validation losses.
After the architecture search, DARTS chooses an operation

o(·) according to the relative weight s(i,j)o . For each intermedi-
ate node xj , DARTS chooses the operation o with the strongest
weight s(i,j)o for each edge, and it then chooses two edges with
the strongest weights s(i,j)o from all edges connected to node
xj . Hence, DARTS keeps 2 × (N − 3) operations in a cell,
and the information flow to node xi is defined as

xj =
∑

(o,xi)∈Cj

o(i,j)(xi). (6)

where Cj is a set of chosen edges and their operations
connected to node xj .

C. Attention Modules

Convolutional neural networks have achieved significant
results in image classification tasks. The expressive power of
CNNs increases with the network size, and many studies have
been conducted to investigate a trainable deeper and wider
architecture [1]. The main operation of CNNs is convolution,
and by repeating convolutions, CNNs can extract a larger
amount of spatial and channel-wise features, some of which
are often useless or conflict with important features.

Attention modules have been proposed to discard such fea-
tures and focus on important ones; further, attention modules
help CNNs achieve a better performance and make them robust
against disturbances [11]–[17].

Wang et al. [11] proposed a residual attention network,
which is composed of trunk and mask branches. The trunk
branch extracts features similar to ordinary convolutions. The
mask branch builds an attention mask and multiplies the
output of the trunk branch. Many following studies proposed
attention modules that focus on the mask and are used after a
convolution operation. Squeeze-and-excitation (SE) [12] pro-
posed a lighter attention module, which has channel attention
that enables the network to focus on important channels.
Gather-excite (GE) [13] added a depth-wise convolution to
SE and increased its flexibility. BAM [14] and CBAM [15]
have spatial attention and channel attention. BAM builds a
mask as a sum of its channel and spatial attentions, whereas
CBAM sequentially applies channel and spatial attentions. A2-
Net [16] has a bilinear pooling operation to reflect the different
needs in different locations.

III. METHOD

A. Architecture Search with Attention Modules

In this section, we propose a method—Att-DARTS—that
searches for a neural architecture using attention modules, as
illustrated in Fig. 2. As with many NAS works, the entire
network consists of repeated cells, and Att-DARTS searches
the good cells. Each cell ck is expressed as a directed acyclic
graph with N nodes, two of which are inputs and one is the
output. The remaining N − 3 nodes are intermediate nodes.
Each node xi is a feature map. The input nodes are obtained
from the output nodes of the previous two cells ck−1 and ck−2.
The output node is defined as the depth-wise concatenation of
all intermediate nodes in the cell.

Att-DARTS searches the cell including attention modules
as well as operations. Original studies on attentions proposed
several locations to insert attention modules; however, the most
popular location is immediately after a convolution operation
(e.g., see [12], [15]). Following this approach, Att-DARTS
assumes an edge composed of an operation preceding an
attention module.



At the search stage, Att-DARTS identifies an operation in
the operation space O, and an attention module in the attention
module space A. When the focus is on the edge from node xi
to node xj , each candidate operation o(·) ∈ O has a relative
weight s(i,j)o , which is defined by the softmax operation over
the operation parameters α(i,j)

o of all candidate operations:

s(i,j)o =
exp(α

(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

. (7)

Each candidate attention module a(·) ∈ A has a relative
weight t(i,j)a , which is also defined by the softmax operation
over the attention module parameters β(i,j)

a of all candidate
attention modules:

t(i,j)a =
exp(β

(i,j)
a )∑

a′∈A exp(β
(i,j)
a′ )

. (8)

We introduce a new node hi,j on the edge from node xi to
node xj . Similar to that in DARTS, the information flow from
node xi to node hi,j is computed as the weighted sum of all
candidate operations:

hi,j(xi) =
∑
o∈O

s(i,j)o o(xi). (9)

The information flow from hi,j to xj is computed as the
weighted sum of all candidate attention modules:

ā(i,j)(hi,j) =
∑
a∈A

t(i,j)a a(hi,j) (10)

Node xj is computed as the sum of all flows from source
nodes hi,j in the cell:

xj =
∑
i<j

ā(i,j)(hi,j) (11)

Then, we learn the operation parameters α, attention param-
eters β, and weight parameters w (e.g., convolution kernels)
simultaneously, using the gradient descent by solving the
bilevel optimization problem, where the operation parameters
α and the attention parameters β are the upper-level variables
and the weight parameters w are the lower-level variables.

min
α,β
Lval(w∗(α, β), α, β) (12)

s.t. w∗(α, β) = argmin
w

Ltrain(w,α, β) (13)

Ltrain and Lval denote the training and validation losses,
respectively.

After the search stage, Att-DARTS chooses operation o(·)
for each edge from node xi to xj with the strongest relative
weight s(i,j)o . Further, Att-DARTS chooses attention module
a(·) for each edge with the strongest relative weight t(i,j)a .
Then, Att-DARTS chooses two edges with the strongest op-
eration weights s(i,j)o from all edges connected to node xj .
Att-DARTS maintains 2 × (N − 3) operations and attention
modules in a cell. The information flow to node xj is defined
as

xj =
∑

(o,a,xi)∈Cj

a(i,j)(o(i,j)(xi)), (14)

where Cj is a set of the chosen edges connected to node xj
including their operations and attention modules.

IV. EXPERIMENTS

A. Experimental Details

We searched a neural architecture on CIFAR-10 and evalu-
ated it on CIFAR-10 and CIFAR-100 [18]. CIFAR-10 consists
of 10 class RGB images, and CIFAR-100 consists of 100 class
RGB images. Both have 50,000 training images and 10,000
test images; the images have a resolution of 32×32 pixels.

At the search stage, we searched for cells. We followed
the same experimental setting as that of the original study
on DARTS unless otherwise stated [10]. We independently
executed Att-DARTS 4 times with different random seeds
for 50 epochs with batch size 64. We randomly split 50,000
training images into training and validation sets of equal sizes.
We set the number of cells L = 8; two reduction cells and six
normal cells. The reduction cells were inserted into the 1/3
and 2/3 locations of the entire network. Operations were with
stride 1 in the normal cells and with stride 2 in the reduction
cells; hence, the image size was halved at the reduction cells.
Each cell consisted of N = 7 nodes. The initial number of
channels was set to 16, and it was doubled at the reduction
cells.

We used zero initialization for both operation and attention
parameters. We used momentum SGD to optimize weight
parameters w with an initial learning rate 0.025, momentum
0.9, and weight decay 3.0× 10−4. The learning rate was an-
nealed down to zero following a cosine schedule [25]. We used
the Adam optimizer [26] for the operation parameters α and
attention parameters β with an initial learning rate 3.0×10−4,
momentum (0.5, 0.999), and weight decay 1.0× 10−3.

After the search stage, we obtained candidate cells for each
iteration by choosing operations and attention modules accord-
ing to the operation parameters α and attention parameters β.
We built a neural network composed of candidate cells from
scratch and trained it with the same experimental setting as
the evaluation stage. Then, we chose the best cells among all
four runs based on the best validation accuracy within the
600 epochs, while DARTS chose the best cells based on the
validation accuracy at the 100th epoch.

The evaluation is performed as follows. We used all 50,000
training images and set the number of cells L = 20; 2
reduction cells and 18 normal cells. The initial number of
channels was set to 36, and they doubled at the reduction cells.
We then applied cutout [27], path dropout [28] of probability
0.2, and auxiliary towers [29] of weight 0.4. We independently
trained the best cells 5 times for 600 epochs with batch size 96,
and then reported the mean accuracy and standard deviation.

B. Architecture Search Space

The operation space O was the same as that of DARTS:
Identity, 3×3 and 5×5 separable convolutions, 3×3 and 5×5
dilated separable convolutions, 3×3 max pooling, 3×3 average
pooling, and zero. Zero indicates the absence of a connection
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Fig. 3: Overview of each attention module. ⊗ and ⊕ mean the element-wise multiplication and the element-wise summation,
respectively.

and it is excluded from the chosen operations. A depth-
wise separable convolution [30], [31] is the computational-
and memory-efficient version of a convolution. It splits the
convolution into two layers: depth-wise convolution and point-
wise convolution. The depth-wise convolution is applied to
each channel independently; the pointwise convolution is a
convolution with a kernel size of 1. A dilated convolution [32]
is a convolution whose kernel is applied to every l space points
(l is a dilation factor).

The attention space A includes Identity, SE [12], GE-
θ+ [13], BAM [14], CBAM [15], and double-attention block
(A2-block) [16]. We show overviews of each attention module
in Fig. 3.

As shown in Fig. 3 (a), SE has a channel attention that
enables the network to focus on important channels. The SE
gathers spatial features of the input feature map by using a
global averaging pooling, applies two fully connected layers,
and employs the sigmoid function, thereby obtaining an atten-
tion mask with a spatial size of 1. The fully connected layers

reduce the number of channels from C to C/r, where r is a
reduction ratio. GE-θ+ applies a global depth-wise convolution
instead of the global averaging pooling as shown in Fig. 3 (b).

BAM is a combination of channel and spatial attentions
(see Fig. 3 (c)). The spatial attention mask has the same
size as that of the input, while its number of channels is 1;
the spatial attention enables a network to focus on important
spatial positions. In particular, spatial attention is composed
of four layers. The first point-wise convolution reduces the
number of channels from C to C/r, two dilated convolutions
with a dilation value d are applied, and then, the second one
reduces it from C/r to 1. The channel attention of BAM is
the same as that of SE. The attention mask of BAM is the
sum of the outputs of the spatial and channel attentions. BAM
multiplies the input tensor using the attention mask element,
and it adds the output to the input tensor.

CBAM is also a combination of channel and spatial atten-
tions as shown in Fig. 3 (d). CBAM gathers spatial features
of the input feature map by max pooling in addition to global
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Fig. 4: Illustrations of cells found by DARTS and Att-DARTS. Att-DARTS can find cells wherein the attention module is
inserted after each operation. sep conv 3x3 and sep conv 5x5 denote 3×3 and 5×5 separable convolutions respectively.
dil conv 3x3 and dil conv 5x5 denote 3×3 and 5×5 dilated separable convolutions respectively. max pool 3x3 denotes 3×3
max pooling. avg pool 3x3 denotes 3×3 average pooling.

average pooling, and applies a shared MLP. The shared MLP
has the same size as the one used in the channel attention
in SE. CBAM applies the sigmoid function to the sum of the
outputs of the shared MLP, and it obtains the channel attention
mask. After channel attention, CBAM applies spatial attention,
which applies the max and average poolings along with the
channel axis, concatenates the outputs, applies a convolution
and the sigmoid function, and obtains the spatial attention
mask.

Fig. 3 (e) shows a double-attention block (A2-block). The
double-attention block uses two groups of attentions: attention
maps and attention vectors. Each attention is obtained by
the softmax function following a pointwise convolution that
reduces the number of channels from C to N . The softmax
function is applied over the spatial direction for the attention
maps, and over the channel direction for the attention vectors.
Further, double-attention block applies a pointwise convolution
to the input to reduce the number of channels from C to M ,
and it applies bilinear pooling using the attention maps. Then,
double-attention block applies the output matrix multiplication
using the attention vectors. Finally, pointwise convolution

restores the number of channels from M to C. Note that the
double-attention block adds the output to the input, whereas
the other attention modules multiply the input by the output.
We use the same hyperparameter set of each attention as the
one in the original papers. For example, the reduction ratio r
of SE was set to 16. Dilation value d of a convolution in the
spatial attention of BAM was 4. Reduced channel numbers M
and N in the double-attention block were set to C/4.

V. RESULTS AND DISCUSSION

A. Chosen Architecture

We illustrate the found cells in Fig. 4. The skip connection
is chosen as an operation more frequently by Att-DARTS
than by DARTS, which means that attention modules are
repeatedly applied without convolution operations (e.g., from
node ck−1 to node 1 via node 0). These attention modules
have different parameters, and the network can focus on more
specific features. In contrast, Identity is never chosen as an
attention module despite it corresponding to a skip connection
as an operation. Hence, one can say that Att-DARTS focuses
on the attention modules.



TABLE I: Comparison with DARTS on CIFAR-10 and CIFAR-100

Architecture Test Error on CIFAR-10 (%) Test Error on CIFAR-100 (%) Params (M) Search Method

DARTS + cutout [10] 2.76± 0.09 16.69± 0.28† 3.3 gradient

Att-DARTS + cutout 2.54± 0.10 16.54± 0.40 3.2 gradient
†Results by the best cells for CIFAR-10 reported in the original paper [10] as is the case with our Att-DARTS.

TABLE II: Comparison with state-of-the-art architectures on CIFAR-10

Architecture Test Error (%) Params (M) Search Method

DenseNet-BC [33] 3.46 25.6 manual

NASNet-A + cutout [6] 2.65 3.3 RL†

AmoebaNet-B + cutout [7] 2.55± 0.05 2.8 evolution
Hierarchical Evolution [8] 3.75± 0.12 15.7 evolution
PNAS [34] 3.41± 0.09 3.2 SMBO†

ENAS + cutout [9] 2.89 4.6 RL†

DARTS + cutout [10] 2.76± 0.09 3.3 gradient
SNAS(moderate) + cutout [35] 2.85± 0.02 2.8 gradient
BayesNAS + cutout [36] 2.81± 0.04 3.4 gradient
PC-DARTS + cutout [22] 2.57± 0.07 3.6 gradient

Att-DARTS + cutout 2.54± 0.10 3.2 gradient
†RL means reinforcement learning, and SMBO means sequential model-based optimization.

CBAM and BAM are the most and second-most frequently
selected attention modules, while SE and GE-θ+ are never
selected. SE and GE-θ+ have only channel attentions, and
their contributions are limited compared to CBAM and BAM,
which have both channel and spatial attentions. This result
emphasizes the importance of spatial attention. Despite CBAM
and BAM having many convolution layers, Att-DARTS re-
duces the number of weight parameters; the entire network
requires 3.2M weight parameters with Att-DARTS and 3.3M
with DARTS. This is because the number of channels and
spatial resolution are reduced in the attention modules.

DARTS and Att-DARTS chose separable convolutions as
operations most frequently. A separable convolution can be
considered as a convolution whose kernel is factorized and
requires less parameters. DARTS chose only max pooling
among pooling operations in the reduction cells, whereas Att-
DARTS chose average pooling. Max pooling selects the most
significant pixel in its kernel, as it is similar to an attention
module. Att-DARTS learns to select features by the attention
modules and does not need max pooling.

B. Architecture Evaluation

We summarize the evaluation results on CIFAR-10 in Ta-
ble I. We report the average and standard deviations of five
independent runs for CIFAR-10. Att-DARTS achieved a 2.54%
test error with 3.2M parameters; Att-DARTS improved the
error rate by 0.22% and reduced the number of parameters
by 0.1M from DARTS. We also evaluated the best cells on
CIFAR-100 as summarized in Table I. We report the average
and standard deviations of five independent runs for CIFAR-
100. Att-DARTS also improved the error rate by 0.15%.

We summarize the comparison with state-of-the-art archi-
tectures on CIFAR-10 in Table II. Att-DARTS achieved the
state-of-the-art results among NAS methods. AmoebaNet-B

and PC-DARTS achieved comparable results, while the former
requires thousands of GPU days and the latter requires 13%
more parameters. Moreover, Att-DARTS’s approach to search
attention modules can be combined with any gradient-based
NAS methods such as PC-DARTS and potentially improves
their performances.

Note that the architecture search space O × A of Att-
DARTS is the product of the operation space O and the
attention module space A. Hence, architecture search based on
reinforcement learning and evolutionary algorithm encounters
difficulty in finding a good architecture compared with the
case only in the operation space O.

C. Comparison with An Alternative

We conducted additional experiments using another search
method. The main purpose of the attention modules is to
emphasize the information of interest in feature maps while
discarding useless information. For this purpose, most atten-
tion modules multiply the given feature maps by their attention
masks as follows.

ā(i,j)(hi,j) = am(hi,j)⊗ hi,j (15)

where am(·), hi,j and ⊗ denote an attention mask, an in-
put feature map, and the element-wise product respectively.
During the search stage, each candidate attention module is
applied independently to the output of the preceding operation,
and the output is calculated as the weighted sum of all
candidate attention modules, as expressed in Eq. (10). In other
words, the attention mask is the weighted sum of all candidate
masks as follows.

ā(i,j)(hi,j) =

(∑
a∈A

t(i,j)a am(hi,j)

)
⊗ hi,j (16)



TABLE III: Comparison of Att-DARTS architectures on
CIFAR-10

Architecture Test Error (%) Params (M)

Att-DARTS-S + cutout 2.54± 0.10 3.2
Att-DARTS-P + cutout 2.92± 0.10 2.7

where t(i,j)a denotes a relative weight for a candidate attention
module a(·), as shown in Eq. (8). If two candidate attention
modules learn to discard different channels, both channels are
discarded and retained halfway. To emphasize the contribution
of masks, we also propose an alternative weighted sum in the
log-scale as follows.

ā(i,j)(hi,j) = exp

(∑
a∈A

t(i,j)a log(am(hi,j))

)
⊗ hi,j . (17)

If one attention module learns to discard a channel, the channel
is always discarded. We name this as Att-DARTS-P and name
the previous one in Eq. (10) Att-DARTS-S. We excluded the
double-attention block because it adds its mask unlike others.

We report the result in Table III. Unfortunately, Att-DARTS-
P is inferior to Att-DARTS-S. When an attention module
learns to discard a channel, the channel is always discarded
from the output and is never restored during the architecture
search, potentially converging to a steep local minima. The
fact that the number of parameters was drastically reduced
supports this hypothesis.

VI. CONCLUSION

In this work, we proposed Att-DARTS, a differentiable
architecture search that finds cells with attention modules.
Att-DARTS assumes a CNN composed of repeatedly stacked
cells similar to most existing NAS works; however, it inserts
an attention module after each operation, unlike the previous
works. The experimental results on CIFAR-10 and CIFAR-
100 demonstrated that Att-DARTS found an architecture that
achieves a better classification error rates and requires less
parameters than that found by its non-attention counterpart,
DARTS. Future works include evaluations on a larger CNN
and a larger dataset, and a more flexible cell topology.
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