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Abstract—Reinforcement learning focuses on goal-directed
learning from interaction and the success of its applications
strongly depends on how well the reward signal frames the
problem and how well it assesses progress in solving it. But in
many real-world scenarios, the agent is supplied with extremely
sparse or even no rewards which makes learning fail and fall
into ineffective exploration. In psychology, shaping is a method
of animal training by reinforcing successive approximations of
rewards to finally achieve the desired complex behavior. Inspired
by this phenomenon of animal learning and reward as a signal in
neuroscience, in this paper we solve the sparse reward problem
by constructing a reward generator to generate inner-rewards
and guide the agent learning control policies with deep neural
networks. The proposed learning-based reward shaping does not
require specific domain knowledge, but rather enable the agent
to learn how to generate inner rewards to guide itself in any
scenarios online jointly with the actual reinforcement learning
process. To validate the performance in complex sparse reward
problems, the proposed approach is evaluated in a challenging
scenario, Football Academy in Google Research Football Envi-
ronment, a newly released reinforcement learning environment
with physics-based 3D simulator, instead of maze environments
or grid world that are commonly used in research which are
not sufficiently challenging. We compare the performance of our
inner-rewards approach with two reinforcement algorithms (PPO
and ICM + PPO). Experimental results show that our method
improves the learning performance in terms of speed and quality,
and also enables the agent to learn generalized skills applied to
novel scenarios.

Index Terms—Reinforcement learning; Football game; Reward
shaping; Inner-rewards

I. INTRODUCTION

Reinforcement learning (RL) is learning what to do, how
to map situations to actions, so as to maximize a numerical
reward signal [28]. RL has a wide range of applications in
the real world, including autonomous driving [2, 3], robotics
[8, 11], intelligent transportation systems [6, 29], etc. Espe-
cially, games provide challenging environments where new
algorithms and ideas can be quickly tested in a safe and repro-
ducible manner [12], which are often used as benchmarks and
promote great progress in reinforcement learning. Commonly
used gaming platforms include the iconic Atari console games
[15, 16], computer go [25], and video games like Football [12]
or Dota 2 (OpenAI-Five). In some scenarios, rewards extrinsic
to the agent are continuous, such as a running “score” in an
Atari game [16]. In these problems, we can usually define

the reward function by "whether the problem is solved" or
“whether the game score is improved”. But in more complex
game scenarios as well as in real-world scenarios, goals can
not be easily translated into reward functions and the rewards
are extremely sparse or absent, e.g. Super Mario Bros [19],
which means that it is difficult for agents to learn useful
knowledge in such an environment.

For example, in a football game, only the reward for the
goal is determined and it is difficult to evaluate a fixed reward
for an intermediate process. Therefore designing an adaptive
reward function is difficult because it strongly depends on
how the reward signal frames the problem and how it assesses
progress in solving it. In most scenarios, the reward signal is
usually the only learning signal therefore is the primary basis
for altering the policy. Therefore, delayed and sparse rewards
make the agent get caught in “mesa phenomena1” and can
significantly slow down learning through long and uninformed
exploration trajectories. Another challenge that arise in sparse
rewards environment, is the trade-off between exploration and
exploitation which has been intensively studied by mathemati-
cians for many decades, yet remains unresolved [28]. To obtain
the sparse reward, the agent must prefer actions that it has tried
in the past and found to be effective in producing reward. But
to discover such actions, it has to try actions that it has not
selected before.

As human agents, we can learn and accomplish tasks very
well with sparse rewards or no rewards. For example, while
doing research, researchers are ready to work for decades
or even a whole lifetime without explicit rewards provided
by the environment. But they still gradually push this work
forward through the guidance of their inner-rewards generated
by reward shaping [18], e.g. motivation [21] and curiosity
[26] have been used to explain the need to explore the
environment and discover novel states. In fact, the inner-
reward guides agents on how to explore the environment and
learning policy. Sutton & Barto [28] think of the reward as
a signal in neuroscience rather than an object or event in the
agents environment, which is a signal internal to the brain,
like the activity of neurons that influences decision making

1Mesa Phenomenon is a concept in which a small change in a parameter
usually leads to either no change in performance or to a large change in
performance [13].
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(a) Run to score with keeper (b) Pass and shoot with keeper (c) Run,pass and shoot with keeper

Fig. 1. A snapshot of the football scenarios investigated in the paper. Our inner-reward shaping function can be learned online in parallel with the process of
the agent learning to play football. These results suggest that the proposed method accelerate learning by bootstrapping an agent with additional information.
Moreover, results suggest that the proposed method enables the agent to learn generalized skills, and perform better in scenarios that have never been
experienced.

and learning. The parts of brain that produce these signals
have evolved for millions of years, indicating that designing a
reward signal is a difficult task, and it is challenging to learn
a shaped inner-reward function.

In this paper, we propose to reinforce successive approx-
imations of rewards to finally achieve the desired complex
behavior by using neural networks to simulate neuroscience of
reward signals generation. In order to simulate the process of
reward signals generated by neuroscience, the neural network
takes state and action as input, outputs the inner reward of
the current state, and uses the reward of the environmental
feedback to guide. In other words, we use our inner reward
as the primary basis for altering the control policy, and use
realistic feedback reward to constrain our inner reward. The
proposed approach is evaluated in a challenging scenario,
Football Academy in Google Research Football Environment
(shown in Figure 1). We choose two very challenging base-
lines: proximal policy optimization algorithms (PPO [24])
and PPO with intrinsic curiosity module (ICM). Experiment
results (Section V-A) confirmes that our proposed method
enables the agent explore in the early stage and exploit later,
significantly improves the learning performance of the agent
and outperforms the baseline methods in the environment with
sparse reward. Further experimental results prove that our
method enables the agent to learn generalized skills applied
to novel scenarios.

In our work, we seek to improve the current state of
designing a reward signal by introducing a learning-based
reward shaping that attains the better speed and quality per-
formance without altering the optimal policies, which we call
inner-reward shaping(IRS). The contributions of this work are
presented as follows:

1) We present a novel adaptive approach IRS which does
not require specific domain knowledge, instead it makes
the agent learn how to generate inner-rewards to guide
itself in any scenarios online jointly with the actual
reinforcement learning process.

2) We provide solution for exploration-exploitation
dilemma in the environment with sparse reward, which
enable agents try a variety of actions and progressively

favor those that appear to be best.
3) Furthermore, experiment results indicate that our ap-

proach improves the generalized ability of PPO to adapt
to novel scenario.

We believe that future applications can benefit from a better
understanding of how reward signals affect learning and from
improved methods for designing them.

II. RELATED WORK

Tempting to address the sparse reward problem, some more
sophisticated ways to find good intrinsic reward signals have
been proposed, but the subject has interesting and relatively
unexplored dimensions requiring further studies.

A very effective way of dealing with the problem of sparse
reward is curiosity [4, 19, 22], which can serve as an intrinsic
reward signal to enable the agent to explore its environment
and learn skills that might be useful later in its life. Curiosity
is related to what one already knows about the world. One gets
curious as soon as one believes that there is something that one
does not know. [22] introduces a framework for ‘curious neural
controllers’ which measures the Euclidian distance between
reality and prediction of the model network. The activation
of the curiosity unit is a function of this distance. Its desired
value is a positive number corresponding to the ideal mismatch
between belief and reality. However, there are currently no
known computationally feasible mechanisms for measuring
learning progress. [4] performs a large-scale study of curiosity-
driven exploration across a variety of environments and ex-
tensively investigates different feature spaces for learning the
dynamics-based curiosity. But if the transitions in the environ-
ment are random, then even with a perfect dynamics model, the
expected reward will be the entropy of the transition, and the
agent will seek out transitions with the highest entropy. That
is, when the environment has randomness that is not related
to the agent, the agent will be stuck in the corresponding
position because it cannot predict the next state. An excellent
method is used in the [19], only predicting those changes in
the environment that could possibly be due to the actions of
our agent or affect the agent, and ignore the rest. Predicting
the agents action (at) given its current(st) and next(st+1)



states by learning an inverse dynamics model. The forward
model is another neural network that takes action at and a
feature vector φ(st) as inputs and predicts the feature encoding
φ̂(st+1) which is the estimate of φ(st+1) of the next state.
The prediction error is computed as curiosity reward rit. The
results of [19] show that a curiosity-driven intrinsic reward
is crucial in accomplishing these tasks, such as VizDoom and
Super Mario Bros.

Another approach to finding a good reward signal is based
on shaping [27], in which reward contingencies are progres-
sively altered to train an animal to successively approximate a
desired behavior. Shaping is not only indispensable for animal
training, but also an effective tool for training reinforcement
learning agents. Reward shaping has proven to be a powerful
method for speeding up many RL tasks. Randløv and Alstrøm
[20] describe a system that learns to drive a bicycle using
reinforcement learning and shaping. However, these policies of
providing positive rewards whenever the agent made progress
towards the goal are clearly not optimal for the original task.
Intuitively, policy invariance is important in shaping. Ng et al.
[17] shows that potential-based reward shaping(PBRS) model
satisfying the requirement of the final policy is equivalent to
the original one. A number of interesting related works have
appeared after recognizing that policy invariance is important
in shaping. [1]demonstrates a concrete way of using shaping
functions with model-based learning algorithms and relates it
to model-free shaping and the Rmax algorithm. [7] argues that
how to compute potential in the absence of knowledge, and
the potential function can be learned online in parallel with the
actual reinforcement learning process. [5] focuses on reward
shaping with partial observability, and shows that landmarks
can be used to shape the rewards in reinforcement learning
with hidden states.

III. THE PROPOSED METHOD

In this work, we focus on how to guide the agent learn
inner rewards policy in parallel with making the control policy
performance faster and better. By changing the rewards, the
agent can know what is good in a short time and can affect
the value function, so that the agent knows what is good in
the long run.

Then we present a novel approach IRS to shape rewards
using neural networks by simulating neuroscience to generate
reward signals. Based on a transformed markov decision
process(MDP) satisfying Equation (2), IRS accelerates the
exploration and exploitation of agents without changing the
original optimal policy while learning online jointly with
the actual reinforcement learning process. Our method is
composed of two subsystems: a shaping-reward policy and a
control policy that outputs a sequence of actions to maximize
that reward signal. See Figure 2 for illustration of our method
in the transformed Markov decision progress. In general, our
method can seamlessly adapt to any reinforcement learning
algorithm through empirical learning values or action value
functions.

Fig. 2. Our method in the transformed Markov decision progress. The agent
in state st interacts with the environment by executing an action at sampled
from its current policy πµ and ends up in the state st+1. The policy πµ

is trained to optimize the sum of the extrinsic reward (ret ) provided by the
environment E and the curiosity based inner reward signal (rit) generated by
the policy πθ in our proposed IRS model.

In order to guarantee the policy invariance in reward
shaping, our method is based on a new transformed markov
decision process. A markov decision process is defined as a
tuple (S,A, T,R, γ), where S is a finite set of states, A is
a finite set of the actions, T = {Psa(·)|s ∈ S, a ∈ A} is the
transition probability, R is the reward function and γ ∈ (0, 1] is
the discount factor. Rather than running reinforcement learning
algorithm on

M = (S,A, T,R, γ), (1)

we running it on a new transformed MDP

M ′ = (S,A, T,R′, γ), (2)

where R′ = R+ F is the reward function in the transformed
MDP, and F : S × A × S → R is a bounded real-valued
function called the shaping reward function [17]. Next, we
will explain how to construct a function F in combination
with deep reinforcement learning algorithm leaving optimal
policy unchanged.

We strive to make our method seamlessly integrate with
any deep reinforcement learning algorithm through empirical
learning values or action value functions. Here we use the
policy gradient method which work by computing an estima-
tor of the policy gradient and plugging it into a stochastic
gradient ascent algorithm. Implementations that use automatic
differentiation software work by constructing an objective
function whose gradient is the policy gradient estimator. The
most commonly used gradient estimator by differentiating the
objective is

LPG(µ) = Êt[logπµ(at|st)Ât], (3)

where πµ is astochastic policy and Ât is an estimator of the
advantage function at timestep t. Our proposed method works
by acting on the advantage function

Ât = −V (st) + · · ·+ γT−t−1rT−1 + γT−tV (sT ). (4)

The surrogate objective we use is maximized as following:

LCLIP (µ) = Êt[min(ht(µ)Ât, clip(ht(µ), 1− ε, 1 + ε)Ât)],
(5)



where ht(µ) denote the probability ratio ht(µ) =
πµ(at|st)
πµold(at|st)

in PPO. The first term inside the min is LCPI = ht(µ)Ât
in Trust Regin Policy Optimization, which refers to its con-
servative policy iteration[9]. The second term, clip(ht(µ), 1−
ε, 1 + ε)Ât), modifies the surrogate objective by clipping the
probability ratio, which removes the incentive for moving rt
outside of the interval [1 − ε, 1 + ε]. Finally, we takes the
minimum of the clipped and unclipped objective, so the final
objective is a lower bound on the unclipped objective [24].

We propose to reinforce successive approximations of re-
wards to finally achieve the desired complex behavior by using
neural networks with parameters θ to simulate neuroscience
of reward signals generation. Combined with the rewards
generated by IRS, the control policy πµM ′ with parameters µ
is better optimized in MDP Equation (1). Using IRS method
is a sufficient condition for the original MDP and the MDP
with reward shaping to have consistent optimal policies. In
addition to inner-reward, the agent may also receive some
extrinsic reward from the environment. Let the extrinsic reward
be ret and the inner-reward generated by the agent at time
t be rit = F (st, at, st+1, θ) . In the original MDP M
Equation(1) we would have received reward R(s, a, s′) for
transition from s to s′ on action a, instead in the transformed
MDP M ′ Equation(2) we would receive reward R′(s, a, s′) =
R(s, a, s′) + F (s, a, s′). The control policy πM ′ is trained to
maximize the sum of these two rewards

rt = R′(s, a, s′)

= R(s, a, s′) + F (s, a, s′)

= rit + ret .

(6)

Our inner-reward shaping model can potentially be used with a
range of policy learning methods. Combining the above work,
we maximizes the following objective:

LCLIP+V F+S(µ, θ)

= Êt[LCLIP (µ, θ)− c1LV Ft (µ) + c2S[π
µ
M ′ ](st)],

(7)

where c1 and c2 are coefficients. And the second term (LV F1 )
inside the Êt is a squared-error loss (Vµ(st) − V targt )2 [14],
where V (s) is a learned state-value function V (s). Because
of parameters sharing between the policy and value function,
the third term is an entropy bonus used to improve exploration
by limiting the premature convergence to suboptimal policy.
In order to combine inner rewards and extrinsic rewards from
the environment, we use a truncated version of generalized
advantage estimation [23], which significantly reduce the
variance while maintaining a tolerable level of bias,

Â
GAE(γ,λ)
t = δt+(γλ)δt+1 + · · · · · ·+(γλ)T−t−1δT−1, (8)

where the generalized advantage estimator for 0 < λ < 1
makes a compromise between bias and variance, controlled by
parameter λ. And t specifies the time index in [0, T ] within
a given T-length trajectory segment. In each iteration, we
calculate equation(8) by δt and each agent collect T timesteps
of data,

δt = rt + γV (st+1)− V (st)

= rit + ret + γV (st+1)− V (st)

= F (st, at, st+1, θ) + ret + γV (st+1)− V (st).

(9)

Then we construct the surrogate loss with reference to pa-
rameter µ on these data, and optimize it with Adam[10]. The
neural network parameters θ are optimized by minimizing the
loss function L′ that measures the discrepancy between the
inner reward and extrinsic reward:

L′(rit, ηt)

where ηt = v1r
e
t + v2r

e
t+2, . . . , vV r

e
t+V .

(10)

In the control task, the actions taken by the agent often affect
not only the immediate rewards, but also the next scenario,
thus affecting the subsequent rewards. So in equation(10),
rewards is weighted by coefficient v and V specifies the time
index.

To illustrate how IRS can augment existing RL algorithms,
PPO with IRS is shown in algorithm 1. In algorithm 1, after
iterating U times, rt learned online in parallel with the actual
RL task gradually approaches ret which is extremely sparse
. Therefore, IRS running on a transformed MDP satisfying
Equation (2), accelerates the exploration without changing the
original optimal policy.

Algorithm 1: PPO algorithm with inner-reward

1 Initialise λ, γ ∈ [0, 1] ; U, T,N,K ∈ N
2 Initialise θ, µ
3 for iteration = 1, 2,. . . ,U do
4 for actor = 1, 2,. . . ,N do
5 for t = 1, 2,. . . ,T do
6 Choose at from A using policy πµoldM ′ from

st
7 Take action at. Get next state st+1 and

extrinsic reward ret
8 Run policy πθ from {st, at, st+1}. Get

inner-reward rit
9 Collecting {st, at, rit, r

e
t }

10 end
11 Compute ÂGAE(γ,λ)

1 , . . . , Â
GAE(γ,λ)
t

12 Compute η1, . . . , ηT
13 end
14 Optimize surrogate L wrt µ and L′ wrt θ, with K

epochs and minibatch size M ≤ NT
15 µold ← µ
16 end

IV. EXPERIMENTAL SETUP

To evaluate our IRS module on its ability to accelerate learn-
ing, improve the learning performance and learn generalized
skills applied to novel scenarios, we test in the scenarios in
Football Academy in Google Research Football Environment.
This section describes the details of the environments and the
experimental setup.



A. Environments

Our method was evaluated empirically on the football
tasks that are shown in Figure 1, and one of the tasks is
explained in Figure 3. The environment provides a physics-
based 3D football simulation where agents have to control
their players, learn how to pass in between them and how
to overcome their opponent’s defense in order to score goals.
This provides a challenging reinforcement learning problem as
football requires a natural balance between short-term control,
learned concepts such as passing, and high level strategy [12].

In addition to the scenario presented in Figure 3, the sce-
nario of Run to Score with Keeper(as show in subfigure 1(a))
consists of eight players, including the goalkeepers on both
sides. And another player of ours starts in the middle of the
field with the ball, and needs to score against a keeper while
five opponent players chase ours from behind. In scenarios of
Run, Pass and Shoot with Keeper(as show in subfigure 1(c)),
two of our players try to score from the edge of the box. The
unmarked one is on the side with the ball and the other is at
the center next to a defender facing the opponent keeper.

In these tasks, the agent has to interact with a fixed
environment and maximize its episodic reward by sequentially
choosing suitable actions based on observations of the envi-
ronment. The action space of the agent consists of 21 actions
[12], including standard move actions(up, down, left, right etc.)
and different ways to kick the ball(shot, pass etc.). The goal
of these tasks is to win the game against the opponent players.

Reward Our experiment evaluates on two types of envi-
ronments with different rewards: very sparse reward (only
scoring) and sparse reward (scoring and checkpoint reward).
The environments with very sparse rewardwhich corresponds
to the most intuitive reward in these tasks give feedback a +1
reward to our agent when our team scores a goal, and a -1
reward when conceding one to the opposing team. The agent
is only provided with a sparse terminal reward of +1 or -1 if a
player successfully scores and zero otherwise. The very sparse
reward can be hard to observe during the initial stages of
training, as it requires a long sequence of consecutive events:
overcoming the defense of a potentially strong opponent, and
scoring against a keeper. Due to the sparsity of scoring, we

Fig. 3. Map for scenarios in Football Academy. The scene on the field is
Pass and Shoot with Keeper(as show in subfigure 1(b)). Red dots denote our
players. Two of our players besides the keeper try to score from the edge
of the box. Blue dots denote the ball and black dots refer to two opponent
players.

also use the checkpoint reward from the environment. In
environments with sparse reward which corresponds to the
additional auxiliary reward, the agent obtains an additional
auxiliary reward of +0.1 the first time an agent moves the ball
close to the goal and crosses each of the checkpoint regions.

B. Comparison of baseline methods

In this paper, we compare the PPO with IRS, PPO and PPO
with ICM. We now provide more details about the algorithms.

PPO We use the convolutional neural network architecture
which has three convolution layers. The input state st is passed
through the first convolution layer with 32 filters each, kernel
size of 8×8, stride of 4 and padding of 1. An Rectified linear
unit(Relu) is used after each convolution layer. The output of
the last convolution layer is fed into a fully connected layers
with 512 units. Two separate fully-connected layers are used
to predict the value function and the action from the previous
fully connected layer feature representation. We rely on the
Adam optimizer for training.

ICM The forward model is constructed by two fully con-
nected layers. Pass φ(st) and at into a sequence of two fully
connected layers with 256 and 288 units respectively. The
inverse model first maps the input state into a feature vector
φ(st) using a series of four convolution layers, each with
32 filters, kernel size 3x3, stride of 2 and padding of 1. An
exponential linear unit(ELU) is used after each convolution
layer. φ(st) and φ(st+1) are concatenated into a single feature
vector and passed as inputs into a fully connected layer of 256
units. The output fully connected layer with 21 units to predict
one of the 21 possible actions.

IRS The input state st is passed through a sequence of three
convolution layers and three fully connected layers. The first
convolution layers with32 filters, kernel size of 8 × 8, stride
of 4. The second convolution layers with 64 filters, kernel
size of 4 × 4, stride of 2. The last convolution layers with
64 filters, kernel size of 3× 3, stride of 1. An Rectified linear
unit(Relu) is used after each convolution layer. And then three
fully connected layers are used to predict the inner-reward.
Also, we rely on the Adam optimizer for training.

Fig. 4. Reward settings in the environment. 1) In environment with very
sparse reward (only scoring), our team obtains a +1 reward when taking the
ball into the red shaded area or -1 reward for black shaded area. 2) Opponents
field is divided in n = 10 regions according to the Euclidean distance to the
opponent goal. In environment with sparse reward (scoring and checkpoint
reward), the agent obtains +0.1 reward when taking the ball across the blue
boundary line.
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(b) Pass and shoot with keeper
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(c) Run pass and shoot with keeper

Fig. 5. In the environment with very sparse reward, compare the performance of the PPO agent (blue), the curiosity-driven ICM agent (green) and the proposed
inner-reward shaping IRS agent (orange) as the complexity of the task increased from left to right. Running three independent runs of each algorithm, darker
line represents mean and the scattered dots represent different samples.

C. Training details

We use Super Mini Map (SMM) representation which
consists of four 96× 72 matrices encoding information about
the home team, the away team, the ball and the active player
respectively. The encoding is binary, representing whether
there is a player, ball, or active player in the corresponding
coordinate or not. In order to model temporal dependencies,
the state representation of the environment is constructed by
concatenating the current frame with the previous frames.
All agents in this work are trained using SMM inputs with
eight environments to run in parallel. IRS + PPO denotes our
full algorithm which combines inner-reward shaping model
with proximal policy optimization algorithms. Across different
scenarios, we compare our approach with two baselines. First
is the original PPO algorithm. Second is the ICM + PPO
algorithm consisting of the forward and the inverse model.

In order to speed up learning, and to reduce useless
exploration, the episodes are terminated either when some
events happen (including score, agent loses the ball, and
game stops) or the agent exceeds a maximum of 400 time
steps. Judging from previous experience, we consider testing
the generalization of the proposed method. For generalization
experiments, we pre-train a control policy using IRS + PPO
model in Pass and Shoot with Keeper scenario with very sparse
reward and then evaluate the result control policy on the Run
to Score with Keeper scenario. It takes approximately 60 steps
for an optimal policy to score in Run to Score with Keeper
scenario , 50 steps in Pass and Shoot with Keeper scenario,
40 steps in Run, Pass and Shoot with Keeper scenario. Details
of the experiment results elaborated in the next section.

V. EXPERIMENTAL RESULT

Although our experiment evaluates on two types of environ-
ments with different extrinsic rewards, we use scoring reward
to measure the performance of algorithm. First, we evaluated
the performance of IRS+PPO and two baseline methods under
different settings with different extrinsic rewards in different
scenarios (Section V-A). After that, generalization is evaluated
on the map with novel scenarios and the same goal.

A. Reward Setting and Result

We compare the experimental results by considering two
different setups with sparse and very sparse rewards. In
section IV-A, we detailed the extrinsic reward settings for
the experimental scenarios. Regardless of the scenarios, the
sparse extrinsic rewards are only provided to the agent when
it takes the goal to a specific location. And in the environment,
the distance between the agent from the goal and the state of
whether to face the opponent are different. The closer the agent
is to the goal, or the less defense the opponent set, the more
likely it is to score.

Very sparse reward A good intrinsic reward generation
policy is one that guides the agent to discover the target and
enables the agent to accomplish the task as much as possible.
In the case of playing a game, we expect the agent to win
the game even with only a goal and without any reward in
the process of the game. In order to test whether IRS can
learn a good inner reward generation policy, we trained it on
three football scenarios only with scoring reward from the
environment. The results are shown in Figure 5.

First of all, the influence of the difficulty of different
scenarios can be clearly seen from the figure 5. Harder tasks
take significantly more steps to make some progress. The
results shown in Figure 5 indicates that the IRS+PPO agent
is superior in all cases, although it also takes a long time to
learn to score with very sparse reward. In the first scenario,
the agent needs to run a long distance and get closer to the
goal to get a chance to score with keeper. Results shown in
Figure 5(a) indicate that the performance of IRS+PPO agent
is better than that of other baseline methods, especially PPO
agent. After 10 million training steps, PPO agent with very
sparse reward has not been able to score goals in the scenario
with the longest distance between the agent from the goal, Run
to Score with Keeper. In the second scenario, the agent needs
to pass the ball to another player who is not defended by the
opponent, and then scores with keeper. The final performance
of the three methods is extremely similar, but ICM+PPO and
IRS+PPO learn faster. In the third scenario, it is very difficult
for the agent to take the ball over from the opponent and then
scores with keeper, so the agent must learn to pass the ball
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(c) Run pass and shoot with keeper

Fig. 6. Evaluating the performance of three methods in the environment with sparse reward.

with the teammate or run away from the opponent to get a
chance to score. All the algorithms do enable the agent learn
to rely on teammates to complete the task, and end up well
after 10 millions training steps.

In the environment with very sparse reward, the distance
between the agent from the goal makes it difficult for the agent
to learn to score in the early stage. So in the first scenario with
the longest distance, the agent did not perform well in the
beginning. But once the agent explores the goal, the learning
speed will be extremely fast. In the hardest scenario Run, Pass
and Shoot with Keeper, It is difficult for an agent to learn to
cooperate with teammates to deal with complex tasks.

Sparse reward Due to the sparsity of scoring, we also use
the checkpoint reward from the environment. The idea behind
this reward is to encode our domain knowledge that scoring
requires the ball to be close to the opponent’s goal [12]. The
experimental results with sparse reward are shown in Figure
6.

In the first scenario, all methods can quickly learn useful
skills to improve performance. After 10 million training steps,
the IRS+PPO agent scored more than 0.7 on average when
the average score of the other two methods is around 0.6.
ICM+PPO agent is very unstable and reduces learning per-
formance over time. In the second scenario, the performance
of all methods is very similar, but the dots representing the
IRS+PPO method are more concentrated which means the
robustness of it is better. In the third scenario, compared to
PPO, IRS+PPO and ICM+PPO methods learn the way to
consistently score earlier, but the IRS+PPO method performs
best.

Overall, the IRS+PPO agent learns much faster than the
baseline agents in the sparse reward case. Compare to the
environment with very sparse reward, the checkpoint reward
reduces the final performance of the agent in some scenarios.
Although we know that scoring requires the ball to be close to
the opponents goal, the rewards provided by the environment
will also make the agent ignore the final goal to some extent.
Regrettably, our proposed method does not solve the bad
influence from checkpoint reward, but it is well coupled to
various extrinsic reward settings regardless of any scenarios.

VI. CONCLUSION

In this paper, we present a novel adaptive IRS approach
which does not require specific domain knowledge, but rather
enables the agent to learn how to generate inner rewards to
guide itself in any scenarios online jointly with the actual
reinforcement learning process. Experiments results confirmes
that our method accelerate the learning speed of the agent
and improve the learning performance which performs best
in all scenarios. Compare to the baseline methods, the results
demonstrate that our IRS method is significantly superior to
the baseline PPO in the task, better than the ICM method
in some scenarios with very sparse reward. Although ICM
is good enough to explore the environment, it is too weak
to enable the agent to learn complex skills with very sparse
reward. Because IRS enable agents try a variety of actions
and progressively favor those that appear to be best and
provides a good solution to the trade-off between exploration
and exploitation, our proposed method is better than the ICM
in exploring the environment, but it is stronger in exploitation
that guiding the agent to learn useful skills. Whats more, the
results suggest that the proposed method enables an agent
to learn generalizable skills applied to novel scenarios. What
deserve to be ment is that, our method integrates seamlessly
with any reinforcement learning algorithm that learns a value
or action-value function through experience in any scenarios
with sparse reward.

VII. FUTURE WORK

Facing the strong opponents, the agent can not solve the
problem perfectly and there exists much space for improve-
ment with a limited number of training steps. Our method
solves the difficulties brought by the fixed environment well,
but it has a limited effect due to the strength and uncertainty
of the opponents. And our proposed method does not help
the agent learn to work with teammates and score with the
action of teammates. Next, we will further study how to solve
this problem, and enable the agent to cooperate with the
robot teammates. And we also want to further study how to
use reward shaping on multi-agents tasks to make the agents
cooperate better. We believe that future applications can benefit
from a better understanding of how reward signals affect
learning and from improved methods for designing them.
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