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Abstract—Stream classification methods classify a continuous
stream of data as new labelled samples arrive. They often also
have to deal with concept drift. This paper focuses on seasonal
drift in stream classification, which can be found in many
real-world application data sources. Traditional approaches of
stream classification consider seasonal drift by including seasonal
dummy/indicator variables or building separate models for each
season. But these approaches have strong limitations in high-
dimensional classification problems, or with complex seasonal
patterns. This paper explores how to best handle seasonal
drift in the specific context of news article categorization (or
classification/tagging), where seasonal drift is overwhelmingly
the main type of drift present in the data, and for which the
data are high-dimensional. We introduce a novel classifier named
Seasonal Averaged One-Dependence Estimators (SAODE), which
extends the AODE classifier to handle seasonal drift by including
time as a super parent. We assess our SAODE model using two
large real-world text mining related datasets each comprising
approximately a million records, against nine state-of-the-art
stream and concept drift classification models, with and without
seasonal indicators and with separate models built for each
season. Across five different evaluation techniques, we show that
our model consistently outperforms other methods by a large
margin where the results are statistically significant.

Index Terms—high-dimensional stream classification, seasonal-
ity, seasonal concept drift, averaged one-dependence estimators

I. INTRODUCTION

Stream classifiers are able to learn a model and refine it as
more labelled data progressively are available [1], providing
scalability and responsiveness for classification of large data
streams. Many real-world applications involve stream classifi-
cation including text classification, power load classification,
network traffic analysis and high volume social network feeds,
making it an emerging area of research in the fields of data
mining, knowledge discovery and machine learning.

A variety of stream classification algorithms have been
proposed over past years [2]–[7]. Some of these classifiers
[5]–[7] are concept drift classifiers as they can handle concept
drift issues including the changes in data interpretations, class
proportions and input-output relationships that can degrade the

Fig. 1. Article proportions for the top four online sections of the NYT dataset:
Arts, Business, Opinion and New York and Region over article day of the week
for the first 31 days of the dataset. We note a strong weekly seasonality in
the proportions of all online sections.

classifier accuracy over time [8]. However, most of them do
not consider seasonality effects in designing the classification
model. Many real-world datasets show strong seasonal patterns
as shown in Fig. 1. Here, we can see that in a dataset of New
York Times (NYT) articles, there is a strong seasonal pattern in
the sense that there are more Arts, Opinion and New York and
Region articles on Sundays than during the other days, with a
decrease of Business articles. This type of phenomenon leads
to two potential issues:

1) Classification accuracy will be significantly impacted
when using a classifier that does not handle drift, and
only has the capacity to be incrementally updated, such
as a Hoeffding tree [2], and does not know the article
date. We show simply providing the day of the week
as a separate variable only mitigates the problem in our
experiments.

2) Using a stream classifier that can handle drift in the
distribution will have to forget a lot of what it has learnt
at the start of each period. This is because most drift
classifiers are built to forget part of the past every time
a change in the distribution is uncovered. This reason
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Fig. 2. Probabilities of appearing four text features: “book”, “company”,
“president” and “city” in the top four online sections of the NYT Dataset:
Arts, Business, Opinion and New York and Region, respectively, in weekdays
and weekends for the entire dataset. The graph shows the variation of
feature impact on stream classification in weekdays and weekends. It indicates
seasonal concept drift may occur in the dataset.

has been hypothesised before as a reason for decreasing
accuracy of classifiers over time [8]. We clearly observe
it in our experiments (Section V) where drift classifiers
actually perform worse than algorithms not built to
handle any sort of drift even if provided with a variable
indicating the period of the week.

In addition, seasonal changes are naturally not limited
to changes in the class distribution but will often impact
other aspects of the data distribution. This is illustrated in
Fig. 2 where we can see that in the category/class of articles
concerning the Arts, the term ‘book’ occurs more often during
the weekend edition than during the week; a pattern due to the
‘New York Times Sunday Book Review’ section.

A simple way to handle seasonality is to include an indicator
variable (e.g. ‘day of the week’) to the data. However, as we
show in Section V, for real-world applications that are high-
dimensional, that variable ends up being lost among thousands
of other variables, with state-of-the-art classifiers failing to be
beneficial.

Training multiple classifiers, one per each season, is another
possible approach to handle seasonality. However, we show
in Section V that it is not the best mechanism to handle
seasonality in high-dimensional stream classification.

Averaged One-Dependence Estimators (AODE) are an im-
proved version of Naı̈ve Bayes (NB) that relax the attribute
independence assumption [9] of NB. AODE is a fast, updatable
and accurate classifier that facilitates including additional
variables during the classification process.

In this paper, we make the following contributions:
1) We propose a novel classification model specifically

designed to tackle high-dimensional stream classification
with seasonal concept drift. Our model works with
discrete attributes and leverages the AODE algorithm
to be robust to seasonal variations while not forget-
ting about any past data. For this reason, we call our
model Seasonal Averaged One-Dependence Estimators
(SAODE).

2) We present a quantitative comparison of the relative
performance of our SAODE model against nine state-

Fig. 3. Classification accuracy percentages calculated for the RCV1-v2 dataset
in news stories classification for the proposed classifier: SAODE and the
standard stream and concept drift classifiers: Accuracy Updated Ensemble,
Hoeffding Tree, Hoeffding Option Tree, Hoeffding Adaptive Tree, Leverag-
ing Bagging, OzaBag and OzaBoost. SAODE demonstrates a classification
accuracy of 84.0% and outperforms all other standard stream/concept drift
classifiers by 10% accuracy.

of-the-art classifiers including both stream and concept
drift classifiers, and using two real-world text-mining
related datasets: the improved version of Reuters Corpus
Volume 1 dataset or simply RCV1-v2 dataset [10] and
the NYT dataset, each with over 800,000 instances.
Our model outperforms all standard stream and concept
drift classifiers used in the experiment by 10% accuracy
where the results are statistically significant.

3) Finally, all SAODE related implementations, experi-
ments and preprocessed datasets are publicly available
at: https://github.com/rakshitha123/SAODE

The remainder of this paper is organized as follows: Sec-
tion II reviews some related work. Section III introduces the
basic concept of AODE. We present our main contributions in
Section IV and Section V. Section VI concludes the paper.

II. RELATED WORK

In this section, we review existing methods that are relevant
to address stream classification and concept drift.

A stream classifier must start providing predictions when
only a subset of the data is available. It can assume either
that the samples are independent and identically distributed
or that the data distribution changes. The Hoeffding Tree
[2] is a stream classifier that captures the data distribution
more completely as data are made available. The Hoeffding
Option Tree [3] is a derivative of the Hoeffding Tree that
extends trees by maintaining more splits at each node acting
as a type of hybrid ensemble within the tree. OzaBag and
OzaBoost [4] adapt bagging and boosting respectively to a
stream classification context.

Stream classification can also target problems where there
is concept drift. There are different forms of concept drift
that can affect the effectiveness of machine learning models
including virtual concept drift and real concept drift [11].
A quantitative distinction between different types of concept
drift is given by Webb et al. [8]. Multi-stream classification
approaches also use techniques for drift detection [12]. Masud



et al. [13] present a new class detection method that can be
integrated with traditional classifiers in the presence of concept
drift.

Concept drift adaption is required to overcome the resulting
problems of concept drift [11]. The Concept-adapting Very
Fast Decision Tree (CVFDT) [14] updates tree statistics as
new examples are processed. Hoeffding Adaptive Trees [5]
are an extension of Hoeffding Trees that modify the tree
branching strategy to address concept drift. They use ADWIN
method [5] to detect drift by considering all possible large
subwindows for a distinct enough change where statistical
tests are used to determine sufficiency in the subwindow
sizes. Ensemble classifiers including the Accuracy Updated
Ensemble [6], Leveraging Bagging [7] and Dynamic Weighted
Majority [15], and non-ensemble classifiers including Support
Vector Machines (SVM) [16] and k-Nearest Neighbour (k-
NN) [17] are also popular methods in handling concept drift.
A more detailed analysis on diversity with the presence of
different drift types is available from Minku et al. [18].

However, the concept drift literature hardly discusses sea-
sonal concept drift. Consequently, the state-of-the-art concept
drift classifiers are not capable of addressing seasonal concept
drift. In this paper, we propose a novel classification algorithm
that can be effective in high-dimensional stream classification
with a high classification accuracy by addressing seasonal
concept drift.

III. FRAMEWORK: AVERAGED ONE-DEPENDENCE
ESTIMATORS

AODE [19] is an improved version of NB that relaxes NB’s
attribute independence assumption. It has gained popularity
since its introduction [20]–[22]. AODE forms the base for
building our novel classification model, SAODE. We choose
AODE for this purpose due to the following reasons.

1) AODE is a fast, updatable and accurate classifier.
2) Including a seasonal variable in a special way is easy

with AODE.
In the following, we denote: Y as the set of possible classes

such that Y = 〈y1, y2, ...yk〉 where k is the number of possible
classes, X as a sample of data such that X = 〈x1, x2, ..., xn〉
where xi is the value of the ith attribute and n as the number
of attributes in the dataset used for classification.

In AODE, each attribute depends on the class and a parent
attribute [19]. A set of attributes is chosen as parent attributes
according to the frequency of their values and for each of
the selected parent attributes, it constructs a separate One-
Dependence Estimator (ODE). In each ODE, the attributes
depend on their corresponding parent attribute and the class.
Finally, the probability estimation for a class given a particular
set of attribute values is calculated by averaging the probability
estimations provided by the set of ODEs. AODE classifies an
instance using the following equation [9]:

P (y,X) =

∑
i:1≤i≤n∧F (xi)≥m P (y, xi)

∏n
j:1 P (xj |y, xi)

|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}|
(1)

Fig. 4. A graphical representation of AODE. Let X be an instance that needs
to be classified such that X = 〈x1, x2, ..., xn〉 where xi is the value of the
ith attribute, n is the number of attributes in the dataset and y is the instance
label. AODE is a combination of ODEs and in each ODE, each attribute
depends on y and a parent attribute.

Here, F (xi) is the frequency of xi over the dataset and m is
the minimum attribute value frequency over the dataset to be
considered as a parent attribute. As a classification model seeks
the class that maximizes the resulting term, AODE ultimately
chooses the class for a given instance that maximizes [9]:

argmax
y∈Y

( ∑
i:1≤i≤n∧F (xi)≥m

P (y, xi)

n∏
j:1

P (xj |y, xi)

)
(2)

Fig. 4 illustrates the main idea of AODE.

IV. THE PROPOSED CLASSIFIER: SEASONAL AVERAGED
ONE-DEPENDENCE ESTIMATORS

We seek to increase the accuracy of AODE by integrating it
with time and seasonality factors. Therefore, as an extension
to AODE, we make the time factor a super parent attribute of
all other attributes in the dataset as follows:

P (y,X) ∝

∑
i:1≤i≤n∧F (xi)≥m P (y, xi, xt)∏n

j:1 P (xj |y, xi, xt)
|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}|

(3)

Here, xt is the value of the time attribute and n is the
total number of attributes other than the time attribute. The
accuracy of the classification model can be further improved
by considering the relationship between the class and the time
attribute. In this case, seasonality plays a major role as the
frequencies of the classes depend on the time period that the
classifying sample belongs to. This can be also considered as a
weighting mechanism which gives more weight for a particular
class according to the estimation of the posterior probability of
the seasonal factor given the class. Therefore, the probability
estimation of y given X can be calculated as follows:

P (y,X) =

∑
i:1≤i≤n∧F (xi)≥m P (y)P (xt|y)P (y, xi, xt)∏n

j:1 P (xj |y, xi, xt)
|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}|

(4)
As the term P (y)P (xt|y) is common for all terms inside

the sum, (4) can be further reduced as follows:



Fig. 5. A graphical representation of SAODE. Let X be an instance that
needs to be classified such that X = 〈x1, x2, ..., xn, xt〉 where xi is the
value of the ith attribute, xt is the value of the time attribute, n is the
number of attributes in the dataset other than the time attribute and y is the
instance label. SAODE is a combination of ODEs and in each ODE, each
attribute depends on y, xt and one other parent attribute. SAODE considers
the relationship between y and xt as well.

P (y,X) =

P (y)P (xt|y)
∑

i:1≤i≤n∧F (xi)≥m P (y, xi, xt)∏n
j:1 P (xj |y, xi, xt)

|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}|
(5)

A classification model seeks the class that maximizes the
resulting term, and therefore SAODE selects the class for a
given instance that maximizes:

argmax
y∈Y

(
P (y)P (xt|y)

∑
i:1≤i≤n∧F (xi)≥m

P (y, xi, xt)

n∏
j:1

P (xj |y, xi, xt)

)
(6)

Fig. 5 illustrates the main idea of SAODE. Algorithm 1
shows the SAODE training/updating process and Algorithm 2
shows the SAODE classification process using the calculated
frequencies of Algorithm 1.

A. Relationship to A2DE

A2DE is a special case of the Averaged n-Dependence
Estimators (AnDE) model where n = 2. In this case, each
attribute depends on the class and all possible size two attribute
sets in the dataset [23].

SAODE is related to the concept of A2DE as well. As in
A2DE, it also constructs the classification model by estab-
lishing two parent attributes for each attribute in the dataset,
namely the time attribute and one other attribute. But it does
not consider all possible attribute pairs as parent attribute sets
as in A2DE.

Despite the close relationship to A2DE, SAODE has the
following distinctive features which make it an attractive topic
of study.

1) A2DE does not consider seasonality and time factors
in its model construction. Also, it does not contain
any weighting mechanism which gives more weight
to a prediction estimation considering the relationship
between the time and the class label.

2) A2DE is not feasible with large amounts of attributes
as it considers all possible pairwise attribute combina-
tions as parent attribute sets which eventually creates
an ensemble of many models. Computational cost can
therewith be considerably higher for A2DE than for
SAODE.

Algorithm 1 SAODE training algorithm: Given the training set
X∗ and the number of attributes n other than the time attribute,
the algorithm returns a 4-dimensional joint frequency table
f counts, class frequency vector c counts, time-value fre-
quency vector t counts, attribute frequency vector a counts,
attribute-value frequency vector av counts and item count
count. The procedure TRAIN SAODE is used to train
SAODE. As a stream classifier, SAODE updates all frequency
vectors using the procedure TRAIN SAODE when a new
set of instances X∗ is received with one or more examples.

1: Initialization
2: count, f counts, c counts, t counts ← 0
3: a counts, av counts ← 0
4:
5: procedure TRAIN SAODE(X∗, n)
6: for x in X∗ do
7: count ← count + 1
8: c counts[y] ← c counts[y] + 1
9: if xt is known then

10: t counts[xt] ← t counts[xt] + 1
11: for i in 1 to n do
12: if xi is known then
13: a counts[i] ← a counts[i] + 1
14: av counts[xi] ← av counts[xi] + 1
15: for j in 1 to n do
16: if xj is known then
17: f counts[y, xt, xi, xj ] ←

f counts[y, xt, xi, xj ] + 1
18: end if
19: end for
20: end if
21: end for
22: end if
23: end for
24: end procedure

V. EXPERIMENTAL METHODOLOGY AND RESULTS

In this section, we evaluate the proposed SAODE classi-
fier using two real-world datasets. In particular, we evaluate
SAODE against nine state-of-the-art stream and concept drift
classification models: Hoeffding Tree [2], Hoeffding Option
Tree [3], OzaBag [4], OzaBoost [4], Hoeffding Adaptive Tree
[5], Accuracy Updated Ensemble [6], Leveraging Bagging [7],
NB and AODE [19] each with and without the consideration of
the seasonal feature. We also compare SAODE with the vari-
ations of NB, Hoeffding Tree and AODE containing multiple
classifiers: one for each considered season.



Algorithm 2 SAODE classification algorithm: Given an
instance X that needs to be classified such that X =
〈x1, x2, ..., xn, xt〉, the number of attributes n other than the
time attribute, the number of possible classes k, minimum
attribute value frequency over the dataset to be considered
as a parent attribute m and the frequency vectors obtained
during the training process: f counts, c counts, t counts,
a counts, av counts and count, the algorithm returns the
index of the corresponding class of X .

1: procedure CLASSIFY SAODE(X , n, k, m, f counts,
c counts, t counts, a counts, av counts, count)

2: for y in 1 to k do
3: prob[y] ← 0.0
4: p count ← 0
5: if xt is known then
6: for i in 1 to n do
7: if xi is known AND av counts[xi] > m

then
8: p count ← p count + 1
9: p ← P (y, x i, x t)

10: for j in 1 to n do
11: if xj is known then
12: p ← p * P (x j|y, x i, x t)
13: end if
14: end for
15: prob[y] ← prob[y] + p
16: end if
17: end for
18: prob[y] ← prob[y] * p(x t|y)
19: end if
20: prob[y] ← prob[y] * p(y)
21: if p count = 0 then
22: prob[y] ← NB(X, y) . Use NB to classify X
23: else
24: prob[y] ← prob[y]/p count
25: end if
26: end for
27: Choose c where max(prob) = prob[c]
28: end procedure

A. Datasets

We use the following two datasets related to text-mining,
which is a real-world application with a high-dimensional
feature space.

1) RCV1-v2 Dataset: This dataset contains over 800,000
manually categorized news stories collected between August
1996 and August 1997. RCV1-v2 is a revised version of the
RCV1 dataset, where data with errors have been removed
[10]. Each news story in the RCV1-v2 dataset includes a set
of words without any stop words and is related to one or
more topics. The topic set used for labelling has four parent
categories: Market, Economic, Government/Social and Corpo-
rate/Industrial. Therefore, the classification problem related to
this dataset is mapping one or more parent level categories to

each news story in the dataset. A seasonal feature (e.g. day
of week) is required with each news story for the SAODE
classification. The article date is used to calculate the seasonal
feature.

2) NYT Dataset: This dataset contains over 1.8 million
articles published in the NYT newspaper between January
1, 1987 and June 19, 2007 [24]. Around 97.73% of articles
contain one or more online sections where the articles are
placed on NYTimes.com. Therefore, the classification problem
related to this dataset is mapping one or more online sections
for articles in the dataset. The article date is used to calculate
the seasonal feature similar to the RCV1-v2 dataset.

B. Data Pre-Processing

We first pre-process the data before applying the classifi-
cation models. The following pre-processing techniques are
applied to the datasets.

1) Pre-processing of RCV1-v2 Dataset: We use the most
frequent words in the dataset to represent each news story.
Choosing the best features for text classification seems beyond
the scope of our work, as well as including more appropriate
embeddings such as Word2Vec [25]. Rankings of classifiers
are independent of text features as we use the same set of text
features with all classifiers. To identify the most frequent text
features, first we identify the unique words belonging to each
news story. The frequency of each unique word is calculated
over the dataset and the top 2000 words containing the highest
frequency are chosen for feature representation in the training
data. Each feature indicates the presence or absence of a
particular word in a news story. We assume the word frequency
is stable over the years in a real-world application. A time
feature is included in the dataset as the seasonal feature to
indicate the day of the week. Finally, the training dataset used
with SAODE contains 2001 features including the seasonal
feature. Each category combination is also mapped to a single
class and therefore, SAODE can estimate the probability of
each class at the testing time and map the highest possible
class to each news story.

2) Pre-processing of NYT Dataset: We identify the top four
online sections: Arts, Business, Opinion and New York and
Region that demonstrate the highest frequency over the full
dataset. Therefore, the final dataset that is used for model
building and evaluation contains 985,095 articles. The lead
paragraphs of the articles are used to identify the text features
after removing their stop words. The remaining pre-processing
techniques include identifying the top text features, adding
the seasonal feature and assigning classes to each article.
They are similar to the pre-processing techniques we use with
the RCV1-v2 dataset. Finally, the training dataset used with
SAODE contains 2001 features including the seasonal feature,
as in the RCV1-v2 dataset.

C. Evaluation

We evaluate our model against nine state-of-the-art stream
and concept drift classification models: Hoeffding Tree [2],



TABLE I
AP, HL, MLA, MLFS AND RMSE FOR ALL CONSIDERED MODELS FOR

THE RCV1-V2 DATASET WITH AND WITHOUT THE PRESENCE OF THE
SEASONAL FEATURE. SAODE OUTPERFORMS ALL OTHER CLASSIFIERS IN

ALL FIVE EVALUATION METRICS.

AP HL MLA MLFS RMSE

Classifiers without Seasonal Features

Accuracy Updated Ensemble 48.1 0.176 0.515 0.527 0.366
Hoeffding Tree 74.8 0.095 0.831 0.859 0.296

Hoeffding Option Tree 48.2 0.192 0.523 0.537 0.376
Hoeffding Adaptive Tree 32.9 0.251 0.380 0.400 0.431

Leveraging Bagging 58.5 0.171 0.675 0.708 0.353
OzaBag 55.1 0.163 0.603 0.621 0.352

OzaBoost 47.8 0.265 0.583 0.629 0.383
NB 68.8 0.121 0.795 0.832 0.332

AODE 82.7 0.085 0.894 0.916 0.294

Classifiers with Seasonal Features

Accuracy Updated Ensemble 38.8 0.202 0.415 0.424 0.384
Hoeffding Tree 68.5 0.118 0.762 0.789 0.322

Hoeffding Option Tree 48.2 0.191 0.521 0.535 0.377
Hoeffding Adaptive Tree 32.9 0.251 0.381 0.401 0.431

Leveraging Bagging 59.3 0.168 0.684 0.718 0.352
OzaBag 55.1 0.171 0.615 0.639 0.356

OzaBoost 41.2 0.308 0.533 0.589 0.402
NB 68.8 0.120 0.795 0.832 0.331

AODE 82.8 0.085 0.894 0.916 0.294

Multiple Classifiers, one per Season

Hoeffding Tree 72.4 0.099 0.812 0.842 0.299
NB 70.1 0.103 0.802 0.837 0.302

AODE 82.8 0.084 0.894 0.916 0.294

Proposed Classifier

SAODE 84.0 0.083 0.896 0.916 0.293

Hoeffding Option Tree [3], OzaBag [4], OzaBoost [4], Ho-
effding Adaptive Tree [5], Accuracy Updated Ensemble [6],
Leveraging Bagging [7], NB and AODE [19] each with and
without the consideration of a seasonal feature. Additionally,
we compare SAODE with three models containing multiple
classifiers: one for each considered season with the classifica-
tion models: NB, Hoeffding Tree and AODE using prequential
evaluation. We implement SAODE using Weka [26] and
use Weka and MOA (Massive Online Analysis) [27] built-
in implementations to run baseline classifiers. All classifiers
are run using their default parameters in Weka. All AODE
variations including SAODE have one sole parameter, named
m: the minimum attribute value frequency over the dataset to
be considered as a parent attribute and we use m = 1 that is
the default value used in Weka.

Both classification problems are multi-label classifications.
As we consider a small amount of labels, we can apply the
single-label multi-class classifiers considered in this paper
straightforwardly via a powerset approach. Due to this reason,
we use multi-label metrics for the model evaluation.

We evaluate each model based on five metrics: Accuracy
Percentage (AP), Hamming Loss (HL) [28], Multi-Label Ac-
curacy (MLA) [28], Multi-Label F1 Score (MLFS) [28] and
Root Mean Squared Error (RMSE) [29]. They are discussed
in the following.

Let D refer to the set of input documents, L is the set of

TABLE II
AP, HL, MLA, MLFS AND RMSE FOR ALL CONSIDERED MODELS FOR

THE NYT DATASET WITH AND WITHOUT THE PRESENCE OF THE
SEASONAL FEATURE. SAODE OUTPERFORMS ALL OTHER CLASSIFIERS IN

ALL FIVE EVALUATION METRICS.

AP HL MLA MLFS RMSE

Classifiers without Seasonal Features

Accuracy Updated Ensemble 57.6 0.133 0.589 0.593 0.317
Hoeffding Tree 80.0 0.092 0.813 0.818 0.279

Hoeffding Option Tree 55.3 0.151 0.566 0.570 0.332
Hoeffding Adaptive Tree 38.1 0.203 0.408 0.417 0.396

Leveraging Bagging 63.1 0.139 0.661 0.670 0.319
OzaBag 57.8 0.140 0.591 0.596 0.319

OzaBoost 56.7 0.138 0.581 0.586 0.316
NB 73.7 0.119 0.761 0.768 0.316

AODE 78.4 0.093 0.804 0.811 0.281

Classifiers with Seasonal Features

Accuracy Updated Ensemble 69.3 0.108 0.706 0.710 0.288
Hoeffding Tree 81.7 0.085 0.827 0.830 0.270

Hoeffding Option Tree 67.1 0.132 0.689 0.696 0.323
Hoeffding Adaptive Tree 51.8 0.171 0.537 0.544 0.363

Leveraging Bagging 64.1 0.129 0.663 0.670 0.309
OzaBag 68.9 0.122 0.707 0.714 0.295

OzaBoost 68.1 0.109 0.693 0.697 0.283
NB 75.4 0.114 0.769 0.775 0.311

AODE 80.2 0.086 0.815 0.819 0.273

Multiple Classifiers, one per Season

Hoeffding Tree 81.6 0.085 0.826 0.829 0.272
NB 78.0 0.093 0.792 0.796 0.281

AODE 82.4 0.084 0.835 0.838 0.271

Proposed Classifier

SAODE 83.5 0.082 0.845 0.848 0.265

possible labels, N is the total number of instances in the test
set, Nc is the number of correctly labelled instances in the test
set, λd,l is the probability given by a classifier that document
d has label l, Hd is the estimated set of labels for document
d and Yd is the actual set of labels for document d. For any
Boolean expression b, [[b]] returns 1 if b is true, otherwise, it
returns 0.

AP is the proportion of correctly classified instances of the
test set as a percentage:

AP =
Nc

N
× 100% (7)

HL [28]: the average proportion of members of L that are
incorrectly predicted is defined as

HL =
1

|D|
∑
d∈D

|Hd4Yd|
|L|

(8)

Here, 4 is the symmetric difference between sets.
MLA [28]: the average fraction of labels that are correctly

predicted is defined as

MLA =
1

|D|
∑
d∈D

|Hd ∩ Yd|
|Hd ∪ Yd|

(9)

This is the Jaccard Index of the predicted and actual label
sets.



Fig. 6. Plot of MLAs calculated over day of the week for seven high performing classifiers: AODE with Time, AODE without Time, Hoeffding Tree with
Time, Hoeffding Tree without Time, Multiple AODE Classifiers, Multiple Hoeffding Trees and SAODE. Left: MLAs calculated for the NYT dataset. Right:
MLAs calculated for the New York and Region section of the NYT dataset.

MLFS [28]: the harmonic mean between the precision and
recall is defined as

MLFS =
1

|D|
∑
d∈D

2|Hd ∩ Yd|
|Hd|+ |Yd|

(10)

RMSE [29]: the root mean square of the difference between
the predicted probability and the actual value for each label is
defined as

RMSE =

√∑
d∈D

∑
l∈L(λd,l − [[l ∈ Yd]])2

|D||L|
(11)

Tables I and II report results across the five metrics for
all considered models for the RCV1-v2 dataset and the NYT
dataset, respectively.

From the tables we can see that the proposed classifier,
SAODE, outperforms all other considered state-of-the-art clas-
sification models for both datasets, consistently across all error
measures. We also performed pairwise tests for statistical
significance using a Wilcoxon test [30] with a Bonferroni
correction for all methods against our method and all results
were highly significant (p-value < 10−16).

AODE provides the highest accuracy of 0.894 for the
RCV1-v2 dataset in classifying data without seasonal features
and SAODE improves this slightly to 0.896. The Hoeffding
Tree provides the highest accuracy of 0.813 in classifying data
without seasonal features for the NYT dataset and SAODE
improves this to 0.845. Furthermore, the accuracy of the
majority of classifiers increases when using a seasonal fea-
ture, for the NYT dataset. But the accuracies of Accuracy
Updated Ensemble, Hoeffding Tree, Hoeffding Option Tree
and OzaBoost decrease when using a seasonal feature for the
RCV1-v2 dataset.

However, just including an additional seasonal feature does
not considerably improve the accuracy of the models, due to
the large number of features used in this classification task.

SAODE gives the seasonal feature a special role by making
it a super parent of all other features and is therewith able to

achieve a higher accuracy. It outperforms all nine considered
state-of-the-art classification models.

We further investigate the classification accuracy of SAODE
for separate days of the week. The left-hand side of Fig. 6
illustrates this concept by plotting the calculated MLAs of
SAODE and other six high performing classifiers: AODE
with time, AODE without time, Hoeffding Tree with time,
Hoeffding Tree without time, multiple AODE classifiers and
multiple Hoeffding Trees for each day of the week in the NYT
dataset. The accuracy slightly increases for each day when
using a seasonal feature. The variations of the Hoeffding Tree
also perform better compared to the basic versions of AODE:
AODE with time and AODE without time. The variation of
AODE containing multiple classifiers, namely one per each
season, further improves the classification accuracy of each
day, but SAODE outperforms all of these high performing
classifiers for all days of the week in classification accuracy.

The right-hand side of Fig. 6 illustrates another pattern
we observe in classification accuracy. It shows the calculated
MLAs for the New York and Region section articles in
the NYT dataset for all days of the week for the same
set of classifiers. It further shows SAODE outperforms all
high performing classifiers consistently for each day of the
week in classification accuracy. Additionally, it shows how
SAODE here is able to maintain high classification accuracy
on Sundays, compared to other classifiers whose accuracy
degrades on this particular day of the week. This illustrates the
ability of SAODE to address the seasonal concept drift of this
dataset. We investigate the performance of AODE variations
in Fig. 7. The classification accuracy slightly increases when
using a seasonal feature for both datasets. The variation
of AODE including multiple classifiers for each considered
season further improves the accuracy of AODE with the NYT
dataset and decreases the accuracy of AODE with the RCV1-
v2 dataset. SAODE uses a seasonal feature as a super parent of
the other features, and it considers the relationship between the
class label and the seasonality whereas the traditional model
does not consider this relationship. As a result of this, SAODE
outperforms all AODE variations in classification accuracy for



Fig. 7. Plot of MLAs calculated with the RCV1-v2 dataset and the NYT
dataset for the variations of AODE: AODE without Time, AODE with Time
and Multiple AODEs for each seasonality and for our classifier: SAODE.

both datasets.

VI. CONCLUSION

Seasonal concept drift is a phenomenon commonly observed
that needs to be exclusively investigated. In this paper, we
have proposed a novel classification model, SAODE that is
designed for high-dimensional stream classification with the
consideration of seasonal concept drift. To address the seasonal
concept drift, SAODE builds on the AODE classifier by
combining it with a special seasonal feature. It then considers
the relationship between the seasonal feature and the class
label as well as the seasonal feature and every other feature of
the dataset. We have tested SAODE with two large real-world
datasets and it is able to consistently outperform nine state-of-
the-art stream and concept drift classification models across
different error measures where the results are statistically
significant.

The success of this approach encourages as future work to
build a classification model for more complex seasonalities,
and to use multiple seasonal features to classify data that
exhibit multiple seasonalities (e.g., daily, weekly, and quar-
terly). Next we will look at extending SAODE to work with
continuous attributes, for instance by using the incremental
discretizers that have been developed for stream data.
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