
Instance-Based Ensemble Selection Using
Deep Reinforcement Learning

Zhengshang Liu
School of Computing and Information Systems

The University of Melbourne
Parkville, Australia

zhengshangl@student.unimelb.edu.au

Kotagiri Ramamohanarao
School of Computing and Information Systems

The University of Melbourne
Parkville, Australia

kotagiri@unimelb.edu.au

Abstract—Ensemble selection is a very active research topic in
machine learning area. It aims to achieve a better performance
by selecting a proper subset of the original ensemble, which is
essentially a searching problem in large combinatorial spaces. In
this paper, we propose an instance-based reinforcement learning
(IBRL) model, that selects distinct subsets for different instances.
Specifically, we use deep Q-network to approximate the optimal
policy. Rather than considering the overall performance of each
classifier, the network learns from the feedback of classifiers on
individual instance, so that it generates non-static subsets for
different instances. Experiments are conducted to compare our
model against state-of-the-art approaches for both selection and
combination. The proposed method generates promising results
and it shows exceptional advantage in large scale distributed
environment. Due to the environment-free characteristic of rein-
forcement learning, our model is adaptable to various real world
tasks with minimal changes.

Index Terms—Ensemble Selection, Reinforcement Learning,
Instance-based

I. INTRODUCTION

Ensemble method is a very active research topic in machine
learning area. It refers to construct proper combination of
classifiers [1]. The fundamental principle behind is when there
is no correlation between errors made by different classifiers,
the aggregated result tends to be more accurate [2]. Conse-
quently, ensemble methods have been applied to improve the
performances of individual classification or regression models.

Originally, ensemble methods consist of two major steps:
sub-model construction and combination. Some recent studies
[3], [4], [5], [6], [7] have introduced an extra step, termed as
ensemble selection or ensemble pruning. The main purpose of
this step is to pursue a higher accuracy by finding the subset
of most promising classifiers, rather than considering all of
them through complex weighting functions.

Selecting the optimal subset from an ensemble of classifiers
is an NP-complete problem [8]. Some studies [9], [10] apply
greedy approaches to reduce the searching space. However,
these approaches may lead to a suboptimal subset since they
only visit a small number of combinations. Reinforcement
learning, especially with approximation methods, tackles prob-
lems that have large state spaces [11]. Research [6] performs
ensemble pruning using reinforcement learning, namely Q-
learning with eligibility trace.

The ensemble selection problem is essentially a searching
problem with a large amount of possible answers. All existing
solutions generate a fixed set of classifiers for all instances.
In this paper, we introduce an instance-based reinforcement
learning (IBRL) model which produces different sets of clas-
sifiers for different instances. Figure 1 shows a hypothetical
distribution of data, such that data instances in a certain
group can be perfectly predicted by a set of classifiers. Once
we find such distribution and corresponding classifiers, we
have the optimal solution to the ensemble selection problem.
The proposed method applies reinforcement learning to gain
a strong comprehension over the entire state space, and it
produces instance-based predictive results. When evaluating
a classifier, our model refers not only to the overall error rate,
but also the performance on a specific label.

In section II, we cover background and related works.
Our proposed model is illustrated in section III, experimental
results and analysis are shown in section IV. Our main con-
tributions in this paper are 1) we propose a novel model that
achieves instance-based behaviour; 2) our approach provides
higher accuracy on prediction tasks, and shows significant
advantage in distributed environment; 3) we study how ho-
mogeneous and heterogeneous ensembles benefit different
ensemble methods.

Fig. 1. Hypothetical distribution of data

II. BACKGROUND AND RELATED WORK

A. Ensemble Methods

1) Ensemble Construction: Training sub-models with iden-
tical datasets usually leads to common flaws. This problem can
be addressed by manually injecting variance into sub-models.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

A well-known methodology is bootstrapping (sometimes re-
ferred as bagging) [12]. Bootstrapping can also be applied on
features: the random forests [13] algorithm splits its trees, at
each node, using a group of random selected features.

An ensemble can be composed by homogeneous and het-
erogeneous sub-models. Different models that follow different
formulations have different views and assumptions on the
data. For example, comparing to k-NN, multilayer perceptrons
are more robust to noise. Recent research [14] shows that
ensembles of hybrid classifiers have significantly smaller error
rates.

2) Model Aggregation: Two most common ways to com-
bine an ensemble of models are majority vote and weighted
vote. In a majority vote schema, each classifier outputs a
predicted label. The label that proposed by most classifiers
is then chosen to be the final result. On the other hand,
when using weighted vote, classifiers produce probabilistic
measurements rather than deterministic judgements. Those
measurements are then summed up with respect to each label,
and the label with highest cumulative probability is regarded
as the final output.

A greedy approach, forward selection (FS) was proposed
in [10], which constructs an ensemble in a hillclimbing style.
Caruana et al. [9] apply a similar method to prune an ensemble
of 1000 heterogeneous classifiers that are trained by different
sets of parameters. The procedure of this method is straight-
forward: 1) it starts with an empty ensemble, 2) it adds a new
classifier to the ensemble as long as it contributes to a higher
accuracy on the validation set, 3) it stops when all classifiers
are selected or no further improvement can be made.

Stacking, sometimes named stacked generalization, is an-
other way to combine multiple classifiers [3], [7]. Stacking
method consists of two parts: base-level (level 0) models
and meta-level (level 1) model, and it aims to learn a meta-
algorithms to combine those base models.

B. Reinforcement Learning

Reinforcement learning emphasizes on finding the optimal
way to interact with an environment even when the mechanism
behind is unclear to the agent [11]. Most reinforcement learn-
ing problems are modeled as a finite Markov decision process
(MDP), which consists of four elements: states, actions, state
transition probability function, and reward function. The agent
is guided by a policy π(a | s) which maps actions to values
given a state. Our objective is to find a policy that maximizes
the accumulated rewards. Given a policy, we can define the
Q-function of a state-action pair as the synthesis of sequential
rewards when starting from that certain state and action:

Qπ(s, a) = Eπ[

∞∑
t=0

γtRt | S0 = s,A0 = a]

Q-learning [15] is a common approach to utilize Q-function
and solve the reinforcement learning problem. It updates the
Q-value through an iterative process:

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s′, a′)−Q(s, a))

where α is the learning rate, γ is the discount factor, and s′

is the resulting state by applying action a in state s.

C. Deep Q Network

In many reinforcement learning tasks, the Q-function is
approximated using a linear combination of some features.
However, simple linear combination is not accurate enough
for problems with large state spaces. As a versatile structure,
deep neural network is one of the best candidate to fill this
gap.

Mnih et. al [16] first used a deep neural network to
approximate Q-function and proposed the idea of deep Q-
network (DQN). The neural network takes the state (e.g. image
in the original research) as input, and outputs the Q-value for
all possible actions. Two approaches, experience replay and
delayed update, are applied to make the training more stable.

D. Ensemble Pruning via RL

A related research that prunes an ensemble via reinforce-
ment learning (EPRL) was conducted recently [6]. In order
to map an ensemble selection problem into reinforcement
learning model, the authors define the problem as follows:

1) C = c1, c2, ..., cn is a set of classifiers to be pruned;
2) A state is a tuple (C ′, ci), where C ′ is the current

ensemble and ci is the classifier that currently under
consideration;

3) There are two available actions, include(ci) and
exclude(ci), for any given state except the very last one;

4) The reward is zero everywhere except for the final
evaluation action, and that reward is correlated to the
predictive performance of the ensemble.

Similar to other ensemble methods, this model generates a
static subset of ensemble for all validation instances. This
solution leads to two disadvantages: 1) a particular subset of
ensemble could be the optimal choice for some instances but
suboptimal for others; 2) in validation phases, all instances
have to iterate through all classifiers, and consequently, large
computational overheads are required.

Reinforcement learning is not widely used in ensemble
selection (pruning). Besides this similar study, two related
models are proposed. These studies provide us with pos-
sibilities to address ensemble selection problem with rein-
forcement learning method. Dimitrakakis and Bengio [17]
apply reinforcement learning to select supervised learning
classifiers. More precisely, this model consists of a group of
multi-layer perceptrons (MLPs) that serve as classifiers, and
one additional top-level MLP that takes training instance as
input and outputs the classifier that fits the instance best. The
selected classifier will then be trained using that instance.
Lagoudakis and Littman [18] use Markov decision process
(MDP) to simulate algorithm selection problem and solve
with reinforcement learning, specifically a variation of the Q-
learning algorithm. Their goal is to select an algorithm that
can solve a given task best. The states of this MDP are the
feature representations of tasks, and the actions are choosing
different algorithms. There is only one state transition, so the

Fig. 2. Agent’s activity in one episode

only reward is associated with algorithm selection, and it is
relevant to the cost of running that algorithm.

III. MODEL

We formulate the ensemble selection problem into a re-
inforcement learning model, which contains the following
components:

1) the training dataset with k instances, where X =
{x1, x2, ..., xk} is the set of features and Y =
{y1, y2, ..., yk} is the set of corresponding true labels;

2) an ensemble with n classifiers: C = {c1, c2, ..., cn};
3) the state si consists of the prediction results on

the i-th instance. It is represented as a tuple
(c1(xi), c2(xi), ..., cn(xi)), where cj(xi) is the predic-
tion from classifier cj on data instance xi. If a classifier
has not been selected yet, then c(xi) = nil. Conse-
quently, the entire state space is S = {si | i ∈ [1, k]};

4) two types of actions: visiting a classifier if it is unused,
or evaluating the ensemble at current state if at least one
classifier has been visited. Given a state si, the action
space is

A(si) ={v(cj) | cj(xi) = nil, j ∈ [i, n]}
∪ {e(si) | si is not empty};

5) the reward function that covers three different scenarios:
a) visiting any classifier gives no reward R(v(c)) = 0,
b) incorrect evaluation also gives zero reward

R(e(si) 6= yi) = 0,
c) if the evaluation produces correct result, the reward

depends on the proportion of accurate classifiers
R(e(si) = yi) =

of accurate classifiers
of selected classifiers ;

and
6) the policy function which takes a state as input and

outputs the most desirable action.

Our objective is to find a policy which maximizes the overall
rewards on the validation dataset.

The activity of our agent is illustrated in figure 2. For each
episode, our agent starts with an empty state and ends with
evaluation action. A validation instance is provided and it
determines the reward and states transition within that episode.
As shown in figure 2, 2/3 of the ensemble correctly classify in-
stance 1 (green), so the final reward is 0.67. On the other hand,
the ensemble make mistake on instance 2 (red), which leads to
zero reward. The number of steps that our agent performs in
a single episode is bounded by the number of classifiers plus
the evaluation, that is, n + 1. At each step, the agent selects
an action using the following exploration strategy: with certain
probability, it randomly selects an available action, otherwise,
it selects the action with highest Q-value. After a classifier
is selected, our agent retrieves the predictive result from that
classifier and uses it to generate the next state. We utilize
a fractional decreasing exploration rate, which has an initial
value of 0.5 and decreases by 8× 10−6 in each episode.

When applying nonlinear function such as deep neural
network to approximate the Q-function, the reinforcement
learning process becomes unstable or even diverge [16]. The
fundamental reason for this problem is that reinforcement
learning (especially Temporal-Difference method) relies on
the self defined Bellman equation. The Q-function of next
generation is heavily impacted by the current one in two
ways. On one hand, the TD estimation depends fully on the
existing Q-function. On the other hand, the reward from the
environment is affected by our policy, and the policy also
relies on the current Q-function. As a result, a slight change
to the Q-function changes both the state-value evaluation
and the policy distribution, and thus, updates the Q-function
for the next iteration in an unpredictable way. In order to
circumvent this problem, we use mini batch to train the neural
network. When an action is performed, rather than updating

the target Q-network immediately, we memorize all related
information of this state transition and save as a history
tuple (s, a, s′, r). Those collected history tuples are then split
into two groups. The first group contains all tuples that are
related to evaluation action. All records in this group will be
considered when updating the Q-network since each record
in this group involves a non-zero reward. The second group
contains the rest tuples. Instead of selecting all records in
this group, we sample a portion of it. Because no reward
is involved in actions other than evaluation, so the target Q-
value fully depends on the value of the next state, and it is
meaningless to perform such update massively before our Q-
network is trained preliminarily. We use a negative quadratic
function to sample the training records dynamically:

s rate(t) = max(
−t2 + β × 105t

2β × 1010
, 0.5),

where t is the current episode, and β is a tunable parameter.
We use 4 for beta in this paper and the s rate starts with 0
and reaches its pinnacle, 0.5, at the 200k-th episode. After that,
the sampling rate remains unchanged. Given the total training
episode T , the time complexity of our training process is the
integral of the s rate function:∫ T

0

s rate(t)× k × n.

Q-learning is applied to solve our reinforcement learning
model. Our policy function is updated at iteration i using
the minimum square error between observed Q-value and
approximated Q-value:

Li(θi) = E(s,a,r,s′)∼S(H)[(r + γmax
a′

Q(s′, a′)−Q(s, a))2] ,

where S(H) is the training history set sampled by the pro-
posed approach, and γ is the discount factor. We use gradient
descent, namely Adam algorithm, to optimize the Q-network.
In this paper, the discount factor is always set to 1. Because
the only reward for our system comes from the predictive
performance, so using a fractional discount factor prevents us
from selecting more classifier.

The deep Q-network in our model consists of two fully
connected hidden layers, where each of them contains 256
nodes. All layers except the output layer are followed by ReLU
activation layer. In order to address the overfitting problem, the
dropout technique [19] is applied to all but the output layer,
and we select 0.5 as the dropout rate.

IV. RESULTS AND ANALYSIS

A. Experimental Design

We conduct the experiments on 10 datasets acquired from
UCI [20] online data repository. Table I shows the statistics
of these datasets.

Our proposed model, instance-based reinforcement learning
(IBRL), will be compared against classifiers combination
approaches majority voting (MV) and weighted voting (WV),
and ensemble selection methods forward selection (FS)[9].
We split the dataset into 10 exclusive groups, 4 of them are

Dataset # of instances # of features # of labels
abalone 4177 8 29
audiology 226 69 24
breast w 699 9 2
cmc 1473 9 3
credit card 30000 23 2
glass 214 9 6
heart 270 14 2
human activity 10299 561 6
iris 300 4 3
lymphography 148 18 4

TABLE I
DATASETS SUMMARY

used to train the basic classifiers, 4 of them are used to train
the RL model, and the rest 2 groups are used for testing.
10 different experiments are conducted on each dataset by
switching training and testing groups, the results are averaged
with respect to the datasets. We evaluate different models on
multiple datasets based on their average accuracies and ranks
across all datasets [21].

We examine the proposed model on both homogeneous and
heterogeneous ensembles. In homogeneous cases, we build
ensembles that consist of pure decision trees or MLPs. The
heterogeneous ensembles are composed of four different types
of classifiers: decision trees, MLPs, k-NNs, and naive Bayes.
Each type of sub-model contributes roughly 1/4 of the entire
ensemble.

B. Homogeneous Case

The homogeneous ensemble contains only one kind of clas-
sifier. We average the results from decision tree ensembles and
MLP ensembles. Table II shows the accuracies and ranks for
different algorithms selecting ensembles with 100 classifiers.

Although our proposed model obtains the highest accuracy
in most of the datasets, the gaps between our approach and
both voting mechanisms are relatively small. The fundamental
reason is that the classifiers in the ensemble selection models
(FS, IBRL) are weaker than those in voting models (MV, WV).
Because the ensemble selection models require an additional
set of data to train the meta-level algorithm, only a half of
data is fed to the base-level models. Another reason that
voting mechanisms perform well is the correlation between
homogeneous models. Classifiers with the same structure have
similar views of data, and consequently have similar predictive
behaviours. So, it is unlikely to have neither extraordinary
well classifiers nor exceptionally poor ones. As a result, the
ensemble selection algorithms will not benefit a lot from
removing those underperformed classifiers.

Another pattern shown in the experiment is that the im-
provement made by our model is more significant in dif-
ficult datasets, where the accuracy is less than 80%. This
phenomenon can be explained by the binomial distribution.
When the average error rate of the classifiers decrease, the
probability that more than half of them failed plunges with a
much larger extent.

Dataset Accuracy (Higher is better) Rank (Lower is better)
MV WV FS IBRL MV WV FS IBRL

abalone 0.2554 0.2536 0.2213 0.2638 2.0 3.0 4.0 1.0
audiology 0.7456 0.7456 0.7156 0.7246 1.5 1.5 4.0 3.0
breast w 0.9607 0.9607 0.9571 0.9643 2.5 2.5 4.0 1.0
cmc 0.4974 0.5008 0.4534 0.5330 3.0 2.0 4.0 1.0
credit card 0.8147 0.8145 0.8034 0.8153 2.0 3.0 4.0 1.0
glass 0.7727 0.7727 0.7575 0.7878 2.5 2.5 4.0 1.0
heart 0.8271 0.8271 0.7407 0.8395 2.5 2.5 4.0 1.0
human act 0.9757 0.9757 0.9692 0.9764 2.5 2.5 4.0 1.0
iris 1.0000 1.0000 1.0000 1.0000 2.5 2.5 2.5 2.5
lympho 0.8000 0.8000 0.8222 0.7555 2.5 1.0 2.5 4.0

average 0.7649 0.7651 0.7440 0.7660 2.35 2.3 3.7 1.65

TABLE II
HOMOGENEOUS ENSEMBLES WITH 100 CLASSIFIERS

Dataset Accuracy (Higher is better) Rank (Lower is better)
MV WV FS IBRL MV WV FS IBRL

abalone 0.2736 0.2604 0.2726 0.2959 2.0 4.0 3.0 1.0
audiology 0.7609 0.7827 0.7827 0.8696 4.0 2.5 2.5 1.0
breast w 0.9691 0.9707 0.9636 0.9743 3.0 2.0 4.0 1.0
cmc 0.5795 0.5778 0.5797 0.5920 3.0 4.0 2.0 1.0
credit card 0.7963 0.7900 0.8117 0.8040 3.0 4.0 1.0 2.0
glass 0.7273 0.7727 0.8182 0.7955 4.0 3.0 1.0 2.0
heart 0.8395 0.8889 0.8889 0.9012 4.0 2.5 2.5 1.0
human act 0.9777 0.9825 0.9864 0.9874 4.0 3.0 2.0 1.0
iris 1.0000 1.0000 1.0000 1.0000 2.5 2.5 2.5 2.5
lympho 0.8222 0.8222 0.8667 0.8889 3.5 3.5 2.0 1.0

average 0.7746 0.7848 0.7971 0.8109 3.3 3.1 2.25 1.35

TABLE III
HETEROGENEOUS ENSEMBLES WITH 100 CLASSIFIERS

C. Heterogeneous Case

The heterogeneous ensembles contain four different types
of classifiers: decision trees, MLPs, k-NNs, and naive Bayes.
Table III shows the accuracy and rank for different algorithms
on ensembles with 100 classifiers.

Our proposed model out performed the other three ap-
proaches in the heterogeneous cases. Unlike homogeneous
ensembles, there is little correlation between classifiers with
different structures, and the variation within the ensemble
is much larger. Because different types of classifiers have
different perspective towards the dataset, some structures may
have outstanding performance in some particular situation. For
example, the k-nearest neighbor classifiers have the highest
average accuracy in the glass dataset while the multilayer
perceptrons perform the best in the heart dataset. Due to this
variation, the range of accuracies of the base-level classifiers
is much larger than that in homogeneous ensembles. As a
result, combining all sub-models with voting mechanisms does
not have advantage to ensemble classifiers: those outstanding
classifiers are counteracted by those exceptional poor models.
On the contrary, the benefit of eliminating those bad classifier
is greater than in homogeneous ensembles. We also perform
the two sample t-test [22] on the pairwise ranks of different

approaches. We set the null hypothesis as there is no difference
between our proposed method and benchmarking methods.
With confidence level p < 0.05, for all benchmarking ap-
proaches, it shows a significant difference which indicates the
predominance of our proposed model over other methods.

In most cases, the heterogeneous ensemble methods have
higher accuracy than the homogeneous ensemble methods. The
average accuracy of heterogeneous ensembles is 1.5% higher
than the homogeneous ensembles. The ensemble selection
algorithms usually focus on those base-level models that have
high accuracy. Therefore, we compare the top one quarter of
all classifiers among homogeneous ensembles and heteroge-
neous ensembles. The difference is larger that heterogeneous
ensembles obtain a 2.6% advantage over the homogeneous
ensembles. An intuitive interpretation is that homogeneous
models have similar structure, so they tend to make similar
mistakes. Consequently, if an instance cannot be correctly
predicted by one classifier, it may not be properly classified by
all others. Heterogeneous models have different performance
on a particular instance, so if a classifier failed to predict on
an instance, some others may be able to complement.

Dataset Accuracy (Higher is better) Rank (Lower is better)
MV WV FS IBRL MV WV FS IBRL

abalone 0.2535 0.2448 0.2289 0.2488 1.0 3.0 4.0 2.0
audiology 0.7934 0.7934 0.7717 0.8043 2.5 2.5 4.0 1.0
breast w 0.9476 0.9571 0.9524 0.9619 4.0 2.0 3.0 1.0
cmc 0.4416 0.4687 0.4653 0.4974 4.0 2.0 3.0 1.0
credit card 0.7825 0.7853 0.7968 0.7934 4.0 3.0 2.0 1.0
glass 0.6954 0.7065 0.7113 0.6975 4.0 2.0 1.0 3.0
heart 0.7901 0.8148 0.8025 0.8025 4.0 1.0 2.5 2.5
human act 0.9264 0.9229 0.9334 0.9302 3.0 4.0 1.0 2.0
iris 0.9433 0.9433 0.9632 0.9646 4.0 3.0 2.0 1.0
lympho 0.7111 0.6888 0.7111 0.8222 2.5 4.0 2.5 1.0

average 0.7285 0.7326 0.7337 0.7523 3.3 2.65 2.5 1.55

TABLE IV
PARTIAL DATA WITH 50 CLASSIFIERS

D. Partial Dataset
Ensemble method is a widely applied solution when models

cannot be efficiently trained on the entire dataset. Many real
world tasks may be involved in these situations:
• Dataset is geographically divided due to economic or

security issues [23].
• Dataset is temporally distributed such as streaming data

[24], [25].
• Some datasets are just too big to fit into one single model

[26], [27].
In order to simulate this situation, we split training data into

three different parts, where each part contains all data instances
but with only one third of the features randomly, and different
parts share no common feature. Each base-level classifier is
then trained using a single portion of data. Table [8] shows
the average accuracy of different algorithms on ten datasets.
These experiments are conducted on both homogeneous and
heterogeneous ensembles with 50 classifiers.

Comparing to the heterogeneous ensembles, all algorithms
suffer from universal decrease in accuracy. However, our
proposed model is the most robust one that endures the least
amount of decrease. The average rank of our model is better
in this experiment than the heterogeneous experiments. We
perform the two sample t-test on the pairwise average ranks of
different algorithms. Our proposed model is compared against
each of the benchmarking technique individually with the null
hypothesis that those algorithms are identical. With confidence
level p < 0.05, the tests show significant difference between
our proposed model and voting techniques (MV, WV). With
confidence level p < 0.1, the tests show critical difference
between our model and FS. Therefore, the IBRL model is
an ideal alternative in the distributed environment, where
accuracy can be somewhat sacrificed in order to reduce the
amount of data transportation.

V. CONCLUSION

Our proposed model, instance-based reinforcement learning,
tackles the ensemble selection problem. It essentially solves
a searching problem in large state spaces using reinforce-
ment learning with deep Q-network. Our proposed model is

the first ensemble selection method that provides instance-
based selection. The experimental results indicate that the
instance-based characteristic ensures stronger performances in
predicting tasks compared to traditional ensemble selection
methods that consult fixed set of classifiers. We also show that
ensemble selection method, especially ours, have outstanding
performances in selecting heterogeneous ensembles, which is
a more preferable form than the homogeneous ensembles. Our
model is scalable, and it is more adaptable to distributed
databases. Due to the environment free characteristics of
reinforcement learning, our model is capable to solve various
real world problems with some minute changes.

We also study on the partitioned datasets, which is a simu-
lation of the distributed data storage. The experimental results
show that our IBRL model is the most robust one that suffered
from acceptable reduction in accuracy. This performance prove
that our proposed model can be scaled up easily in large
and distributed environment. Although we define the rewards
solely based on the final result, the definition of costs and
rewards are extremely flexible. This feature enables our model
to be adaptable to many real world scenarios. For example,
this model can be applied to the specialist consulting problem
where each specialist is regarded as a sub-model and the
consultation comes with a certain price.

One drawback of our model is the sequential computation
for ensemble selection in validation stage. Because of that, our
model has to sacrifice some efficiency for accuracy, which
is a classic trade-off in machine learning field. A potential
solution to this problem is the batch consulting to classifiers.
That is, instead of visiting a single classifier at once, we
choose a bunch of sub-models and read the prediction from
them. This modification introduces a different transition form
to the Markov Decision Process. Moreover, this approach leads
to a much larger action space, a larger neural network, and
consequently, a longer training time.

REFERENCES

[1] T. G. Dietterich, “Machine-learning research,” AI magazine, vol. 18,
no. 4, pp. 97–97, 1997.

[2] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, no. 10, pp.
993–1001, 1990.

[3] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better
than selecting the best one?” Machine learning, vol. 54, no. 3, pp. 255–
273, 2004.

[4] Y. Freund, “An adaptive version of the boost by majority algorithm,”
Machine learning, vol. 43, no. 3, pp. 293–318, 2001.

[5] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[6] I. Partalas, G. Tsoumakas, and I. Vlahavas, “Pruning an ensemble of
classifiers via reinforcement learning,” Neurocomputing, vol. 72, no. 7-
9, pp. 1900–1909, 2009.

[7] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[8] C. Tamon and J. Xiang, “On the boosting pruning problem,” in European
conference on machine learning. Springer, 2000, pp. 404–412.

[9] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble
selection from libraries of models,” in Proceedings of the twenty-first
international conference on Machine learning. ACM, 2004, p. 18.

[10] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,”
in ICML, vol. 97. Citeseer, 1997, pp. 211–218.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[12] B. Efron, “Bootstrap methods: another look at the jackknife,” in Break-
throughs in statistics. Springer, 1992, pp. 569–593.

[13] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[14] A. M. Canuto, L. M. Oliveira, J. C. Xavier, A. M. Santos, and M. C.
Abreu, “Performance and diversity evaluation in hybrid and non-hybrid
structures of ensembles,” in Fifth International Conference on Hybrid
Intelligent Systems (HIS’05). IEEE, 2005, pp. 6–pp.

[15] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[17] C. Dimitrakakis and S. Bengio, “Online adaptive policies for ensemble
classifiers,” Neurocomputing, vol. 64, pp. 211–221, 2005.

[18] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using
reinforcement learning.” in ICML. Citeseer, 2000, pp. 511–518.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[20] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[21] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[22] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.
[23] A. Prodromidis, P. Chan, S. Stolfo et al., “Meta-learning in distributed

data mining systems: Issues and approaches,” Advances in distributed
and parallel knowledge discovery, vol. 3, pp. 81–114, 2000.

[24] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, “New
ensemble methods for evolving data streams,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2009, pp. 139–148.

[25] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2001, pp. 377–382.

[26] L. Hall, K. Bowyer, W. Kegelmeyer, T. Moore, and C.-m. Chao,
“Distributed learning on very large data sets,” in Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Citeseer, 2000, pp. 79–84.

[27] Y. Zhang and S. Bhattacharyya, “Genetic programming in classifying
large-scale data: an ensemble method,” Information Sciences, vol. 163,
no. 1-3, pp. 85–101, 2004.

