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Abstract—This paper addresses a design problem of a
Proportional-Integral-Derivative (PID) controller with new adap-
tive updating rule based on Reinforcement Learning (RL) ap-
proach for nonlinear systems. A new design scheme that RL
can be used to complement the conventional control technology
PID is presented. In this study, a single Radial Basis Function
(RBF) network is introduced to calculate the control policy
function of Actor and the value function of Critic simultaneously.
Regarding to the PID controller structure, the inputs of RBF
network are system error, the difference of output as well as
the second order difference of output, and they are defined as
system states. The Temporal Difference (TD) error in this study
is newly defined and involves the error criterion which is defined
by the difference between one-step ahead prediction and the
reference value. The gradient descent method is adopted based
on TD error performance index, then the updating rules can be
obtained. Therefore, the network weights and the kernel function
can be calculated in an adaptive manner. Finally, the numerical
simulations are conducted in nonlinear systems to illustrate the
efficiency and robustness of the proposed scheme.

Index Terms—Adaptive control, PID control, Reinforcement
Learning

I. INTRODUCTION

PID control is considered as an effective tool and is one of
the most common control schemes and has been dominated the
majority of industrial processes and mechanical systems, since
it is of versatility, high reliability and ease of operation [1].
PID controllers can be manually tuned appropriately by the
operators and control engineers based on the empirical knowl-
edge when the mathematical model of the controlled plant
is unknown. Some classical tuning methods, such as Ziegler-
Nichols method [2] and Chien-Hrones-Reswich method [3],
are applied to the process control and the performance then
is significantly outperformed compared to the one that is
manually tuned. However, those methods work well for simple
controlled plants, but for complex systems with non-linearity,
the performance can not be guaranteed due to the presence
of uncertainty and unknown dynamics. In addition, there is
not existing an exact model which can be built from the real
systems. Therefore, the adaptive PID control has been received
considerable attentions in last 20 years in order to deal with
those systems.

Several adaptive PID control strategies which include
model-based adaptive PID control in [5], [6], [7], adaptive PID
control based on neural network [8], [9]. It has been clarified

that model-based adaptive PID control needs an assumption
that the established model could represent the true plant
dynamics exactly [10]. However, modeling complex systems
are time-consuming and lack of accuracy, hence the PID
parameters may not be adjusted in a proper way. On the other
hand, the adaptive PID control based on neural network adopts
the supervised learning to optimize the network parameters.
Therefore, there are some limitations in the application of
those methods, such as the teaching signal is hard to be
obtained, and it is difficult to predict values for unlabeled data.
As a result, the adaptive PID control based on various more
advanced machine learning technologies has been discussed
with the rapid development of computer science.

Machine learning technology has been increasingly applied
in various fields, including the control engineering community
introduced in the [11]. The numerous algorithms have been
developed to achieve desirable performance and intelligent
decision making for many complex control problems. On
the other hand, the great advances in computing power have
enabled us to implement the sophisticated learning algorithms
in practice. Bishop et al. [12] has clarified that machine learn-
ing is customarily divided into three classes of algorithms:
supervised learning, unsupervised learning and reinforcement
learning. Reinforcement learning (RL) differs significantly
from both supervised and unsupervised learning [13]. A def-
inition of RL from [14] is expressed as: a RL agent has the
goal of learning the best way to accomplish a task through
repeated interactions with its environment. It already enable
innovations in broad applications [15], [16]. From the control
perspective, RL refers to an agent (controller) that interacts
with its environment (controlled system) and then modifies
its actions (control signal) [17]. It has strong potential to
combine the RL technology with the adaptive PID control to
have an impact on process control applications, and it has
been investigated in studies [4], [18], [19], [20], [21]. In the
literature [4], the reinforcement signal was defined by a error
between current output and reference signal, which may cause
the prediction loss. [18], [20], [21] adopted the same updating
rule and did not provide the trajectories of PID parameters.
Moreover the updating rule for three parameters is compacted
in one equation. The model based design method was given
in [19].

Based on the observations above, this paper considers a
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PID controller with new adaptive updating rule based on
RL technology for nonlinear systems. Actor-Critic structure
[22] is one of classes in RL technology and is regarded as
an benchmark in some design method, in which an actor
component applies control signal to a system, and a critic
component assesses the value of the output simultaneously.
Besides, it has been investigated that the Actor-Critic structure
is the most general and successful to date [13]. In this study,
the idea of realization of an actor and a critic by using RBF
network where it can reduce demands of storage and avoid
repetitive calculation. Under the Actor-Critic structure based
on RBF network, the new adaptive updating rule can be
designed.

The main contributions of this study are summarized as
follows. First, the reinforcement signal is re-defined by consid-
ering the one-step predictive output, therefore, the prediction
error is involved in the TD error. Second, the new adaptive
updating rule can be calculated based on the one-step TD error.
Finally, the proposed scheme is model free design, which is
much suitable for complex real systems.

The remainder of this paper is organized as follows. The
problem formulation is discussed in Section 2, where two
reasonable assumptions are introduced as well. In Section 3,
the adaptive PID controller based on Actor-Critic algorithm
is proposed. Numerical simulation and comparative study are
provided to illustrate the efficiency and feasibility in Section
4. Finally, Section 5 concludes this paper.

II. PROBLEM STATEMENT

Consider the following discrete-time systems described by
nonlinear dynamics in the affine state space difference equa-
tion form

x(t+ 1) =f(x(t)) + g(x(t))u(t)

y(t) =h(x(t), u(t− 1)),
(1)

with state x(·) ∈ Rm, control input u(·) ∈ Rn and output
y(·). Since in the RL technology, the detail information of a
model can be unknown, therefore, the above system can be
generalized to a compact form:

x(t+ 1) =F (x(t), u(t))

y(t) =h(x(t), u(t− 1)).
(2)

It is required to provide two assumptions on the above system
in order to capture the ideas about RL technology.

Assumption 2.1: The above system satisfies the 1-step
Markov property since the state at time t+ 1 only depends on
the state and inputs at the previous time t, independent with
the historical data.
This assumption is under the framework of Markov decision
processes (MDP), whose objective is to achieve a specified
goal through a satisfactory control policy. It is defined in a
similar way with RL technology, which makes it significant
impact in combining control problem with RL technology.
MDP is a mathematically idealized form of the RL problem
[14].

Fig. 1. The block diagram of the proposed scheme

Assumption 2.2: The sign of partial derivatives of h(·) with
respect to all arguments is known, and it is also regarded as
the sign of system Jacobian [25].

A. Controller structure

It is well recognized that a PID controller is applied to
process systems, therefore, the derivative kick sometimes has
an impact on the performance of the closed-loop system. As a
consequence, this paper introduces the following velocity-type
PID controller which can reduce the derivative kick:

u(t) = u(t− 1) +KI(t)e(t)−KP (t)∆y(t)−KD(t)∆2y(t),
(3)

that is
∆u(t) = K(t)Θ(t), (4)

where, Θ(t) is defined as

Θ(t) := [e(t),−∆y(t),−∆2y(t)]T , (5)

and it is regarded as system state. ∆ denotes the difference
operator defined by ∆ := 1−z−1. The ∆2y(t) then becomes:

∆2y(t) = y(t)− 2y(t− 1) + y(t− 2) (6)

K(t) := [KI(t),KP (t),KD(t)] is a vector of control param-
eters. e(t) is the control error and is defined by the difference
between reference signal yd and system output y as follows,

e(t) = yd(t)− y(t). (7)

B. Objective

The schematic diagram of the proposed method is show in
Fig. 1, in which the system state Θ(t) is constructed based
on e(t) and current system output firstly, and then they will
be used as inputs to the Actor-Critic structure. The Actor
tunes the controller on-line using the observed system state
along the system trajectory, while the Critic, which receives
the system state and reinforcement signal r(t + 1), assesses
the performance and produces the Temporal Difference (TD)
error. The TD error is viewed as a crucial basis for updating
the parameters. As a result, the objective of this paper is to
design a PID controller with new adaptive updating rule under
the Actor-Critic structure.



Fig. 2. RBF network topology with Actor-Critic structure

III. ADAPTIVE CONTROLLER DESIGN

The proposed algorithm will be explained in detail in this
section.

A. Temporal Difference (TD) error

We will first introduce a value function which is defined as

V (t) =

∞∑
i=t

γi−tr(x(i), u(i)) (8)

with 0 < γ ≤ 1 a discount factor and u(t) control signal.
Function r(x(i), u(i)) is known as reinforcement signal, and
can be selected based on quadratic function.

By rewriting (8) as

V (t) = r(x(t), u(t)) + γ

∞∑
i=t+1

γi−(t+1)r(x(i), u(i)). (9)

Instead of evaluating the infinite sum of above equation, one
can use the current control signal u(t) to solve the following
difference equation equivalent:

V (t) = r(x(t), u(t)) + γV (t+ 1), V (0) = 0. (10)

This equation is also known as Bellman equation.
Based on the Bellman equation, a TD error can be defined

as the difference between the two sides:

δTD(t) = r(x(t), u(t)) + γV (t+ 1)− V (t). (11)

If the Bellman equation holds, the TD error is zero. Therefore,
the current control signal may be regarded as the optimal
control policy at each time t.

B. Actor-Critic learning based on RBF network

The RBF network has been used as a technique to identify
parameters by performing function mappings. The simple
structure, parameters convergence and adequate learning are
recognized as merits of RBF network and are discussed in
[23]. As a consequence, the implementation of Actor-Critic is
used by RBF network in this study, and the network topology
is shown in Fig. 2. It consists of three-layer neural networks.

The input layer consists the available process measurements
and system states are constructed. On the basis of the RBF

network topology, it allows to pass the system states to
the hidden layers which are shared by the Actor and the
Critic directly. The control signal u(t) and value function are
generated by means of a simpler way that is the weighted sum
of the function value associated with units in hidden layer [24].
The detail of each layer is described as follows.

The input layer includes the system state variable xi where i
is an input variable index. Input vector Θ(t) ∈ R3 is passed to
the hidden layer and is used to calculate the output of hidden
unit.

In hidden layer, Φj(t) is a vector which contains the
elements [φ1(t), · · · , φh(t)], where h is the number of the
hidden units. The Gaussian function is selected as a kernel
function of the hidden unit of RBF network, therefore, the
output Φ(t) is shown as following:

Φj(t) = exp

(
−
||Θ(t)− µj(t)||2

2σ2
j (t)

)
, j = 1, 2, 3, . . . , h

(12)
where, µj and σj are the center vector and width scalar of the
unit, respectively. The center vector is defined as follows.

µj(t) := [µ1j , µ2j , µ3j ]
T .

The third layer is called output layer where the outputs of
the Actor and the Critic are involved. It should be noted that
as mentioned previously the outputs are calculated in a simple
and direct way. Therefore, it can yield the PID parameters
K(t) in the following:

KP,I,D(t) =

h∑
j=1

wP,I,Dj (t)Φj(t), (13)

with the weights wnj between the jth hidden unit and output
layer of the Actor. The value function of critic part can be
obtained as follows:

V (t) =

h∑
j=1

vj(t)Φj(t), (14)

where vj(t) denotes the weight between the jth hidden unit
and output layer of the Critic.

Those various output weights can be trained by gradient-
based learning algorithm. Therefore, we can obtain the adap-
tive updating rule under user-specified parameters. Recall the
(5), the reinforcement signal in this study is defined as

r(x(t), u(t)) :=
1

2
(yd(t+ 1)− y(t+ 1))2, (15)

which indicates the difference between predictive performance
and reference value. The TD error then becomes

δTD(t) =
1

2
(yd(t+ 1)−y(t+ 1))2 +γV (t+ 1)−V (t). (16)

As a result, the cost function in this study is denoted in the
following:

J(t) =
1

2
δ2TD(t). (17)



Thus, the partial differential equations with respect to each
output weight of the Actor are developed as

wPj (t+ 1) = wPj (t)− αw
∂J(t)

∂wPj (t)
(18)

where, αw is a learning rate, and

∂J(t)

wPj (t)
=

∂J(t)

∂δTD(t)

∂δTD(t)

∂y(t+ 1)

∂y(t+ 1)

∂u(t)

∂u(t)

∂KP (t)

∂KP (t)

∂wPj (t)

=δTD(y(t)− y(t− 1))Φj(t)
∂y(t+ 1)

∂u(t)
.

(19)

∂J(t)

wIj (t)
=

∂J(t)

∂δTD(t)

∂δTD(t)

∂y(t+ 1)

∂y(t+ 1)

∂u(t)

∂u(t)

∂KI(t)

∂KI(t)

∂wIj (t)

=− δTDe(t)Φj(t)
∂y(t+ 1)

∂u(t)
.

(20)

∂J(t)

wDj (t)
=

∂J(t)

∂δTD(t)

∂δTD(t)

∂y(t+ 1)

∂y(t+ 1)

∂u(t)

∂u(t)

∂KD(t)

∂KD(t)

∂wDj (t)

=δTD(y(t)− 2y(t− 1) + y(t− 2))Φj(t)
∂y(t+ 1)

∂u(t)
.

(21)

It should be noted that a prior information about the system
Jacobian ∂y(t+ 1)/∂u(t) is required in order to calculate the
above equations. Here, we consider a relation ε = |ε|sign(ε),
therefore, the system Jacobian is obtained by the following
equation.

∂y(t+ 1)

∂u(t)
=

∣∣∣∣∂y(t+ 1)

∂u(t)

∣∣∣∣ sign
(
∂y(t+ 1)

∂u(t)

)
, (22)

with sign(ε) = 1(ε > 0),−1(ε < 0). Based on the above
assumption, the sign of the system Jacobian can be obtained.
[25]. The updating rule for output weight of the Critic is

vj(t+ 1) =vj(t)− αv
∂J(t)

∂vj(t)

=vj(t) + αvδTD(t)Φt(t),

(23)

with a learning rate αv .
The centers and the widths of hidden units in the hidden

layer are considered to be updated in the following ways:

µij(t+ 1) =µij(t)− αµ
∂J(t)

∂µij(t)

=µij + αµδTD(t)vj(t)Φj(t)
ψi(t)− µij(t)

σ2
j (t)

,

(24)

while,

σj(t+ 1) =σj(t)− ασ
∂J(t)

∂σj(t)

=σj + ασδTD(t)vj(t)Φj(t)
||ψi(t)− σj(t)||2

σ3
j (t)

,

(25)

where αµ and ασ are learning rates of center and width,
respectively.

C. Algorithm summary

The every design step of the proposed adaptive PID con-
troller under Actor-Critic structure based on RBF network is
presented in Algorithm 1. To achieve a better performance,
an explanation has to be clarified that the user-specified
parameters are inevitable. Some limited trial and errors have
to be conducted when the algorithm is implemented.

Algorithm 1 Adaptive PID controller under Actor-Critic based
on RBF network

1: Initialize instant t = 0, control input signal u(0) and
reference signal yd(t).

2: Initialize the parameters wP,I,Dj (0), vj(0), µij(0), σj(0)
and set the values for the use-specified learning rates αw,
αv , αµ, ασ .

3: for t = 1 : EndTime
4: Measure the system output y(t) and then the system error
e(t) can be obtained.

5: Compute the kernel function (12) in hidden layer.
6: Calculate the output of Actor, that is the current PID pa-

rameters from (4), and the output of Critic value function
V (t) from (14) at time t.

7: Obtain the current control signal by

∆u(t) = KI(t)e(t)−Kp(t)∆y(t)−Kd(t)∆
2y(t).

8: Apply the control signal to controlled system and yield
predictive value of system output y(t+ 1).

9: Construct the system state by the predictive value:

Θ(t+ 1) := [e(t+ 1),∆y(t+ 1),∆2y(t+ 1)]T .

10: Calculate the value function V (t+ 1) from (14).
11: Obtain the TD error δTD(t) from (16).
12: Update the weights of the PID parameters by (19) - (21)

and the weights of the value function according to (23).
13: Update the centers and the widths of RBF kernel functions

by (24) - (25).
14: end for

IV. NUMERICAL SIMULATIONS

The numerical simulation and comparative study are con-
ducted in this section in order to evaluate the efficiency and
feasibility of the proposed scheme. Consider the following
non-linear system from [26]:

y(t+ 1) =
y(t)y(t− 1)[y(t) + 2.5]

1 + y(t)2 + y(t− 1)2
+ u(t) + ξ(t), (26)

where ξ(t) denotes the Gaussian noise with zero mean and
variance of 0.012. It should be noted that the static property
of this non-linear system is not provided because of page
limitation.The reference signal values are set as follows:

yd(t) =


2.5(0 ≤ t < 100)

3.5(100 ≤ t < 200)

1(200 ≤ t < 300)

3(300 ≤ t < 400)

. (27)



The user-specified learning rates included in the proposed
are summarized as follows:

αw = 0.013, αv = 0.021, αµ = 0.0025, ασ = 0.009,

and the coefficient γ equals to 0.98. The hidden units in
topology RBF network are decided as 3. The initial PID
parameters in the proposed scheme are set as

K(0) = [0, 0, 0]T .

There is no need to give the initial value in the proposed
scheme.

The simulation results are presented in Fig. 3, where the
output signal can track the reference signal by employing the
proposed scheme. Regardless of the strong non-linearity, the
proposed scheme can work well when the reference signal is
changed. Moreover, the PID parameters are depicted in Fig.
4, where they can be updated based on the updated weights.
Furthermore, they ultimately tended to reach constant values,
which illustrates that the new updating rule works well within
a certain range. The TD error is provided as well in Fig. 5,
where the value is close to zero at steady state.

Fig. 3. Control result obtained by the proposed scheme

The comparative study for the proposed scheme is discussed
by employing a conventional adaptive PID tuning method.
The normal gradient method is adopted to update the PID
parameters. The control results are shown in Fig. 6 and Fig.
7, respectively. Fig. 6 shows the practical tracking problem
can be solved, however, the overshoot is apparent larger than
that one from the proposed scheme. This should be due to the
strong non-linearity in the system.

V. CONCLUSIONS

This paper has studied a novel adaptive PID controller
under the Actor-Critic structure based on RBF network for
nonlinear systems. A new adaptive updating rule was presented
via weights update in the network. First, the conventional

Fig. 4. Trajectories of adaptive PID parameters

Fig. 5. Trajectories of TD error

PID controller combined with the reinforcement learning on
the basis of RBF network, and the PID tuned in an on-line
manner. The reinforcement signal was defined by considering
the predictive output, thus, the update could perform in an
accurate way. Then, the hidden layer of RBF network was
shared by the Actor and the Critic. The storage space could
be saved and the computation cost was reduce for the outputs
of the hidden units. In addition, the initial PID parameters
are set as zero, which means there is no need to know the
prior knowledge on the controlled system. Finally, numerical
simulations were given to indicate the efficiency and feasibility
of the proposed scheme for complex nonlinear systems. The
PID parameters based on the new adaptive updating rule
reached to constant values. The deficiency of the proposed
scheme is that some user-specified parameters needed to set
by empirical trials and they can not be exceeded a certain
range. An interesting problem is to how one can set the initial



Fig. 6. Control result obtained by the conventional scheme

Fig. 7. Control result obtained by the conventional scheme

parameters properly. Furthermore, the proposed scheme will
be employed in a real system to verify the effectiveness from
the practical point of view.
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