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Abstract—Deep neural networks have achieved out-
standing performance in many real-world applications
with the expense of huge computational resources.
The DenseNet, one of the recently proposed neural
network architecture, has achieved the state-of-the-
art performance in many visual tasks. However, it
has great redundancy due to the dense connections of
the internal structure, which leads to high computa-
tional costs in inference with such dense networks.
To address this issue, we design a reinforcement
learning framework to search for efficient DenseNet
architectures with layer-wise pruning (LWP) for dif-
ferent tasks, while retaining the original advantages
of DenseNet, such as feature reuse, short paths, etc.
In this framework, an agent evaluates the importance
of each connection between any two block layers, and
prunes the redundant connections. In addition, a novel
reward-shaping trick is introduced to make DenseNet
reach a better trade-off between accuracy and float
point operations (FLOPs). Our experiments show that
DenseNet with LWP is more compact and efficient
than existing alternatives.

Index Terms—DenseNet, Reinforcement learning,
Compact neural network

I. INTRODUCTION

Deep neural networks are increasingly used on
mobile devices, where computational resources are
quite limited [5; 27; 34; 22; 31]. Despite the success
of deep neural networks, it is very difficult to make

efficient or even real-time inference on low-end
devices, due to the intensive computational costs
of deep neural networks. Thus, the deep learning
community has paid much attention to compressing
and accelerating different types of deep neural
networks [4].

Among recently proposed neural network archi-
tectures, DenseNet [14] is one of the most dazzling
structures which introduces direct connections be-
tween any two layers with the same feature-map size.
It can scale naturally to hundreds of layers, while
exhibiting no optimization difficulties. In addition, it
achieved state-of-the-art results across several highly
competitive datasets. However, recent extensions
of DenseNet with careful expert design, such as
CondenseNet [13], have shown that there exists high
redundancy in DenseNet. Our paper mainly focuses
on how to compress and accelerate the DenseNet
with less expert knowledge on network design.

A number of approaches have been proposed to
compress deep networks. Generally, most approaches
can be classified into four categories: parameter
pruning and sharing [9; 16; 10; 29], low-rank
factorization [30; 32; 8; 23; 28], transferred/compact
convolutional filters [6; 33; 17], and knowledge
distillation [11]. Unlike these approaches requiring
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intensive expert experience, automatic neural archi-
tecture design has shown its potential in discovering
powerful neural network architectures. Neural archi-
tecture search (NAS) has been successfully applied
to design model architectures for image classification
and language models [19; 35; 25; 18; 3]. Most
of the above four compression approaches can be
conjunction with the neural architecture searched by
NAS.

However, NAS algorithms based on reinforcement
learning or evolution algorithm [35; 1; 26] are
computationally expensive and time consuming.
Weight sharing strategy is adopted in recent NAS
algorithms[25; 19] to reduce the computation costs,
but these approaches have to search the architecture
in a shallow network while evaluate in a deeper one.
Therefore, these approaches are hard to applied to
DenseNet due to its extreme depth and diversity of
connections in different blocks. It is thus interesting
and important to develop an adaptive strategy for
searching an on-demand neural network structure for
DenseNet such that it can satisfy both computational
budget and inference accuracy requirement.

To this end, we propose a layer-wise pruning
method for pre-trained DenseNet based on rein-
forcement learning. Our scheme is that an agent
learns to prune as many as possible weights and
connections while maintaining good accuracy on
validation dataset. As illustrated in Figure 1, our
agent learns to output a sequence of actions and
receives reward according to the generated network
structure on training datasets. Additionally, our agent
automatically generates a curriculum of exploration,
enabling effective pruning of dense connections.

Extensive experiments on several highly competi-
tive datasets show that our method largely reduces
the number of parameters as well as flops, while
maintaining or slightly degrading the prediction
performance, such that the corresponding network ar-
chitecture can adaptively achieve a balance between
inference accuracy and computational resources.

II. METHOD

We analyze the dense connections of DenseNet in
Section II-A, then we model the layer-wise pruning
as a Markov decision process (MDP) and design a

Long-short term memory( LSTM) [12; 20] controller
to generate inference paths in Section II-B. The
interaction between the agent (i.e., the LSTM con-
troller) and the environment (i.e., the DenseNet) is
described in Figure 2. The reward shaping technique
in our method is introduced in Section II-C. Finally,
we show the complete training process of LWP in
Section II-D.

A. Pretrained Dense Convolutional Networks

Vanilla DenseNet consists of four parts: the first
convolution layer, multiple dense blocks, transition
layers and finally the fully-connected layer. The
first convolution layer is only for feature extraction
from raw data. As for the multiple dense blocks,
each dense block consists of multiple layers. The
transition layers are used as down-sampling layers
to change the size of feature maps and the last
full-connected layer is used for image classifica-
tion. Obviously, the dense connections are mainly
reflected on the dense blocks. Therefore, we study
the connection policy for dense layers in this paper.

B. Generate Infeience Paths with an LSTM Con-
troller

Suppose the DenseNet has L layers, the controller
needs to make K (equal to the number of layers in
dense blocks) decisions. For layer i, we specify the
number of previous layers to be connected in the
range between 0 and ni (ni = i). All possible con-
nections among the DenseNet constitute the action
space of the agent. However, the time complexity of
traversing the action space is O(

∏K
i=1 2

ni), which
is NP-hard and unacceptable for DenseNet [14]. For-
tunately, reinforcement learning is good at solving
sequential decision optimization problems and we
model the network pruning as a Markov Decision
Process(MDP). Since these hierarchical connections
have time-series dependencies, it is natural to train
LSTM as the controller to simply solve the above-
mentioned issue.

At the first time step, the LSTM controller
receives an empty embedding vector as the input
that is regarded as the fixed state s of the agent, and
the output of the previous time step is the input for
the next time step. The activation function of each



(a) Vanilla DenseNet

(b) DenseNet with layer-wise pruning

Fig. 1. An illustration of layer-wise pruning method based on vanilla DenseNet. For one layer, not all connections are
required and each layer has its unique connections. After being pruned some dense connections, the network can still
predict correctly.

output neuron in the LSTM is δ(x) = 1
1+e−x , so

that the output oi defines a policy pi,ai
of keeping or

dropping connections between the current layer and
its previous layers as an ni-dimensional Bernoulli
distribution:

oi = f(s; θc) (1)

pi,ai =
∏ni

j=1
o
aij
ij (1− oij)(1−aij), (2)

where f denotes the controller parameterized with
θc. The j-th entry of the output vector oi, denoted
by oij ∈ [0, 1], represents the likelihood probability
of the corresponding connection between the i-th
layer and the j-th layer being kept. The action ai ∈
{0, 1}ni is sampled from Bernoulli(oi). aij = 1
means keeping the connection, otherwise dropping
it. There are total ni connections for the i-th layer,
but the output dimension of LSTM at each time
step is K. To unify the action space dimension and
LSTM output dimension, we set both to K and the
output of each time step take a mask ∈ {0, 1}K
operation, where the mask numbers from 1-th to
ni-th element are 1 and others are 0. Finally, the
probability distribution of the whole neural network
architecture is formed as:

π(a1:K |s; θc) =
∏K

i=1
pi,ai (3)

C. Reward shaping
Reward shaping is introduced to help the con-

troller make progress to an optimal solution. The
reward function is designed for each sample and not
only considers the prediction correct or not, but also
encourages less computation:

R(a) =

{
1− ηα if predict correctly
−γ otherwise.

(4)

where η = SUBFLOPs
FLOPs measures the percentage

of float operations utilized. SUBFLOPs, FLOPs
represent the float point operations of the child
network and vanilla DenseNet, respectively. In order
to maximize the reward, the prediction needs to be
correct and SUBFLOPs should be reduced as much
as possible. The trade-off between performance and
complexity is mainly controlled by α and γ.

D. Training with Advantage Actor-Critic
After obtaining the feedback from the child

network, we define the objective function as the
following expected reward:

J(θc) = Ea∼πθc [r(s, a)] (5)

To maximize Eq (5) and accelerate policy gradient
training over θc, we utilize the advantage actor-
critic(A2C) with an estimation of state value function
V (s; θv) to derive the gradients of J(θc) as:



Fig. 2. Illustration of our proposed framework. In each iteration, the output of the i-th time step makes keeping or
dropping decisions for the i-th layer. All outputs of the LSTM controller generate a child network by sampling from
K ×K-dimensional Bernoulli distribution. Then, the child network forwards propagation with mini-batch samples and
the reward function can be evaluated with the predictions and FLOPs. The controller is optimized with policy gradient.

∇θcJ(θc) =
∑
a

[
(r(s, a)− V (s; θv))π(a|s, θc)

∗ ∇θc log π(a|s, θc)
]

(6)

The Eq (6) can be approximated by using the
Monte Carlo sampling method:

∇θcJ(θc) =
1

n

n∑
t=1

[
(r(t)(s, a)− V (s; θv))

∗ ∇θc log π(a|s, θc)
] (7)

where n is the batch size. The mini-batch samples
share the same child network and perform forward
propagation in parallel. Therefore, they have the
same policy distribution π(a|s, θc) but different
r(s, a). We further improve exploration to prevent
the policy from converging to suboptimal determin-
istic policy by adding the entropy of the policy
π(a|s, θc),H(π(a|s, θc)) to the objective function.

The gradient of the full objective function takes the
form:

∇θcJ(θc) =
1

n

n∑
t=1

[
(r(t)(s, a)− V (s, θv))

∗ ∇θc log π(a|s, θc) + β∇θcH(π(a|s, θc))
]

(8)

As for the value network, we define the loss function
as Lv and utilize gradient descent methods to update
θv:

Lv =
1

n

n∑
t=1

(
r(t)(s, a)− V (s; θv)

)2
(9)

E. Algorithm framework

The entire training procedure is divided into
three stages: curriculum learning, joint training and
training from scratch.

a) Curriculum learning: It is easy to note that
the search space scales exponentially with the block
layers of DenseNet and there are total

∏K
i=1 2

ni

keeping/dropping configurations. We use curriculum
learning [2] to solve the problem that policy gradient
is sensitive to initialization. For epoch t (1 ≤ t < K),



the LSTM controller only learns the policy of the
last t layers and keeps the policy of the remaining
K−t layers consistent with the vanilla DenseNet. As
t ≥ K, all block layers are involved in the decision
to make process.

b) Joint training: The previous stage just up-
dates parameters θc and θv . The controller learns to
identify connections between two block layers to be
kept or dropped. However, it prevents the agent from
learning the optimal architecture. Jointly training the
DenseNet and controller can be employed as the
next stage so that the controller guides the gradients
of θv to the direction of dropping more connections.

c) Training from scratch: After joint training,
several child networks can be sampled from the
policy distribution π(a|s, θc) and we select the
child network with the highest reward to train from
scratch, and thus better experiment results have been
produced.

III. EXPERIMENT

We evaluate the LWP method on three bench-
marks: CIFAR-10, CIFAR-100 [15] and ImageNet
2012 [7] for image classification task.

A. Datasets and evaluation metrics

CIFAR-10 and CIFAR-100 consists of 10 and
100 classes images with 32 × 32 RGB pixels.
Both datasets contain 60, 000 images, of which
50, 000 images for training and 10, 000 images for
testing. There are total 1.33 million colored images
with 1000 visual classes in ImageNet, 1.28 million
images for training and 50k for validation. The
data augmentation schemes the same as DenseNet
training [14] were adopted for these three datasets.

B. Results on CIFAR

a) Pretrained DenseNet: For CIFAR datasets,
DenseNet-40-12 and DenseNet-100-12 are selected
as the backbone CNN. During the training time,
the backbone CNN needs to make predictions with
dynamic computation paths. In order to make the
backbone CNN adjust to our algorithm strategy, we
reproduced the DenseNet-40-12 and DenseNet-100-
12 on CIFAR based on Pytorch [24] and the results
are shown in Table I.

b) Comparisons and analysis: The results on
CIFAR are reported in Table I. For CIFAR-10
dataset and the vanilla DenseNet-40-12, our method
has reduced the amounts of FLOPs, parameters by
nearly 81.4%, 78.2%, respectively and the test error
only increase 1.58%. The exponential power α and
penalty γ can be tuned to improve the performance.
In this experiment, we just modify hyperparameter
α from 2 to 3 so that the model complexity (105M
vs 173M FLOPs) is increased while test error rate
is reduced to 6.00%. The same law can be observed
on the DenseNet-100-12 with LWP. Our algorithm
also has advantages on Condensenet [13] which
needs more expert knowledge and NAS [35] which
takes much search time complexity and needs more
parameters but gets higher test error.

We can also observe the results on CIFAR-100
from the Table I that the amounts of FLOPs in
DenseNet with LWP are just nearly 46.5%, 66.3%
of the DenseNet-40-12 and DenseNet-100-12. The
compression rates are worse than that for CIFAR-
10. This may be caused by the complexity of the
CIFAR-100 classification task. The more hard task,
the more computation is needed.

C. Results on ImageNet

a) Pretrained DenseNet: We compress the
DenseNet-121-32 which has four dense blocks([6,
12, 24, 16]) on ImageNet. The growth rate of
DenseNet-121-32 is 32 and this neural network
architecture is equipped with bottleneck layers and
compression ratio fixed at 0.5 that are designed to
improve the model compactness. In the following
section, we prove that the model can be further
compressed. This model is initialized by loading the
checkpoint file of pretrained model from Pytorch.

b) Make comparisons and analysis: Although
the bottleneck layer and compression ratio are
introduced in DenseNet-121-32, the result shows
that there is still much redundancy. As observed
from Table II, we can still reduce 54.7% FLOPs
and 35.2% parameters of the vanilla DenseNet-121-
32 with 1.84% top-1 and 1.28% top-5 test error
increasing.



TABLE I
RESULTS ON CIFAR. DENSENET-40-12 AND DENSENET-100-12 ARE SELECTED AS THE BACKBONE ON CIFAR DATASET AND
OUR ALGORITHM IS APPLIED TO THE TWO MODELS. THE FLOPS, PARAMETERS AND TEST ERROR OF THE DENSENET WITH LWP
ARE COMPERED WITH THE VANILLA DENSENET AND THE NEURAL NETWORK ARCHITECTURE WITH OTHER PRUNED METHODS.

Model FLOPs Params CIFAR-10 CIFAR-100
DenseNet-40-12 [14](our impl.) 566M 1.10M 5.24 25.09
DenseNet-100-12 [14](our impl.) 3.63G 7.19M 4.34 20.88
VGG-16-Pruned [16] 206M 5.40M 6.60 25.28
VGG-19-pruned [21] 195M 2.30M 6.20 -
VGG-19-pruned [21] 250M 5.00M - 26.52
ResNet-110-pruned [16] 213M 1.68M 6.45 -
DenseNet-40-pruned [21] 190M 0.66M 5.19 25.28
CondenseNetlight-94 [13] 122M 0.33M 5.00 24.08
CondenseNet-86 [13] 65M 0.52M 5.00 23.64
NAS v2 predicting strides [35] - 2.5M 6.01 -
DenseNet-40-12-LWP (α = 2, γ = −0.5) 105M 0.24M 6.82 -
DenseNet-40-12-LWP (α = 2, γ = −0.5) 263M 0.66M - 26.99
DenseNet-40-12-LWP (α = 3, γ = −0.5) 173M 0.40M 6.00 -
DenseNet-100-12-LWP (α = 2, γ = −0.5) 716M 1.43M 5.12 -
DenseNet-100-12-LWP (α = 2, γ = −0.5) 2.42G 5.15M - 21.14
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Fig. 3. Quantitative results on DenseNet-40-12 wth LWP. Left: the number of input channel in vanilla DenseNet-40-12
and the learned child network. Right: the connection dependency between any two layers is represented as the average
absolute wights of convolution layer.

TABLE II
RESULTS ON IMAGENET. DENSENET-121-32 IS

SELECTED AS THE BACKBONE CNN ON IMAGENET. IT
CAN BE FURTHER COMPRESSED EVEN IF ITS

PARAMETERS ARE ALREADY QUITE EFFICIENT.

Model FLOPs Params Top-1 Top-5
DenseNet-121-32-BC [14] 5.67G 7.98M 25.35 7.83
DenseNet-121-32-BC-LWP 2.57G 5.17M 27.19 9.11

D. Quantitative Results

In this section, we argue that our proposed
methods can learn more compact neural network

architecture by analyzing the number of input
channel in convolution layers and the connection
dependency between a convolution layer with its
preceding layers.

In Figure 3 left, the red bar represent the number
of input channel in DenseNet-40-12-LWP (D40-12-
LWP) and the blue bar represent the number of input
channel in vanilla DenseNet. We can observe that
the number of input channel grows linearly with the
layer index because of the feature concatenation
and D40-12-LWP has layer-wise input channels
identified by the controller automatically. The input



channel is 0 means this layer is dropped so that the
block layers is reduced from 36 to 26. The number
of connections between a layer with its preceding
layers can be obtained from the right panel of Figure
3. In Figure 3 right, the x, y axis define the target
layer t and source layer s. The small square at
position (s, t) represents the connection dependency
of target layer t on source layer s. The pixel value of
position (s, t) is evaluated with the average absolute
filter weights of convolution layers in D40-12-LWP.
One small square means one connection and the
number of small squares in the vertical direction
indicates the number of connections to target layer.

As DenseNet [14] reported, there are redundant
connections because of the low kernel weights on
average between some layers. The right panel of
Figure 3 obviously shows that the values of these
small square connecting the same target layer t
are almost equal which means the layer t almost
has the same dependency on different preceding
layers. Naturally, we can prove that the child network
learned from vanilla DenseNet is quite compact.

IV. CONCLUSION

We propose an algorithm strategy to search effi-
cient child network of DenseNet with reinforcement
learning agent. The LSTM is used as the controller
to layer-wise prune the redundancy connections.
The whole process is divided into three stages:
curriculum learning, joint training and training from
scratch. The extensive experiments based on CIFAR
and ImageNet show the effectiveness of our method.
Analyzing the child network and the filter parameters
in every convolution layer proves that our proposed
method can learn to search compact and efficient
neural network architecture.
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