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Abstract—Despite being one of the most popular non-
parametric approaches, Gaussian process regression (GPR) suf-
fers from O(n3) computational burden and the computation is
infeasible for large-scale scenarios. To reduce the computational
complexity, many Shannon-mutual-information-based aggrega-
tion methods were proposed, whereas these methods can not
effectively identify the importance of experts in some cases.
To address this problem, we generalize the traditional mutual-
information-based methods (GPoE, RBCM, GRBCM) based on
Tsallis mutual information. Accordingly, the generated weight
distribution is more sparse tending to focus on those experts
with good performance. To obtain adaptive and data-dependent
entropic-index in Tsallis entropy, we propose three heuristic
algorithms to solve our model. Extensive experiments show that,
the proposed method can improve the prediction of both the
mean and variance, and the improvement of variance prediction
is significant in many cases.

Index Terms—Gaussian process, Tsallis entropy, local aggre-
gation

I. INTRODUCTION

Gaussian Process Regression (GPR) is one of the most pop-
ular Bayesian statistical approaches [1]. Due to its powerful
expression ability and elegant statistical property, GPR has
been widely explored in various scenarios, such as Bayesian
optimization [2], multi-task learning [3], computer vision [4]
and reinforcement learning [5].

Although GPR possesses convenient and elegant properties
in regression tasks, standard GPR suffers from O(n3) com-
putational burden and O(n2) storage complexity with respect
to the size of training set. Many previous works have been
devoted to addressing this issue over past twenty years. The
simplest strategy is to use an active set selected from the
training set to train a GPR model. There are many rules to
decide whether to choose a data point or not into the active
set, such as informative vector machine [6] and matching
pursuit [7]. Another stream of strategies is to employ m
(m � n) inducing points to summarize the whole training
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data. Some representative works belonging to this include
Sparse Pseudo-inputs Gaussian Process (SPGP) [8] and Sparse
Variational Gaussian Process (SVGP) [9]–[11]. Although the
inference for inducing points method can be performed in
O(nm2) complexity, studies indicate that it is difficult to
obtain a faithful representation for a quick-varying function
with significant local structure [12]. Although some recent
efforts of sparse approximately approaches have been made
to better capture the local structure [13]–[15], they introduce
extra hyperparameters that are difficult to tune and make the
training more challenging. Therefore, current improvements
for handling quick-varying functions by sparse approximately
methods still have somewhat limitations.

In this paper, we concentrate on local aggregation models
which are different from both strategies mentioned above.
This stream of works give the predictive distributions of test
outputs according to the feedback from a series of sub-models
named GPR experts. The main advantage of local aggrega-
tion is that it directly operates on training data rather than
inducing variables and the inference process can be achieved
with high parallelization efficiency [16]. A recent review on
scalable GPRs [17] also reveals that local aggregations are
often superior to aforementioned methods in applications.
Traditional aggregation algorithms usually assume the equality
of each expert’s contribution to the predictive distribution [18],
[19]. To improve the predictive accuracy, current state-of-the-
art aggregation algorithms employ a parameter to distinguish
the importance of each expert [20]–[22], whose computation
is based on Shannon mutual information between the prior
distribution and posterior ones given the dependent subsets.
However, can Shannon entropy based strategy explicitly reflect
the importance of each expert?

This paper aims to answer the question above. we use
a simple yet representative example to show that current
methods can not efficiently distinguish the “good” experts
(close to the test inputs) and “terrible” experts (far from the
test inputs), as shown in Figure 1. Specifically, experts with
terrible performance may also have relatively big weights.
Based on this observation, we introduce Tsallis entropy to
obtain a sparse weight distribution, which tends to focus on
those experts with good performance.

Overall, the major contributions of our paper are as follows:
1. To obtain an effective and sparse representation of
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(a) Shannon entropy (q = 1) (b) q = 2 (c) q = 3 (d) q = 4

Fig. 1: A toy example demonstrating the inadequacy of current aggregation models. (a): the prediction of Shannon-mutual-
entropy-based method. (b)-(d): the prediction of Tsallis-entropy-based methods with different entropic-index q . When q = 1
Tsallis entropy is equivalent to Shannon case. Red point represents a test input and each surrounding sub-area can be regarded
as an expert. The shade of color represents the weight of the expert, reflecting the importance of each expert. As shown
in the figures, Tsallis-entropy-based methods can effectively distinguish the importance of each expert and lead to a sparse
representation of weight distribution. More details can be found in Section 4.1.

expert’s weights, we propose a generalized local aggregation
framework for scalable GPRs based on Tsallis mutual infor-
mation.

2. We empirically demonstrate that the entropic-index q
in Tsallis entropy can characterize the sparsity of weight
distribution and previous aggregation models can prove to be
a special case in our framework (q = 1). Besides, we design
three heuristic algorithms to solve our model in order to obtain
adaptive and data-dependent entropic-index.

3. Extensive experiments show that the proposed method
can improve the accuracy of predictive distribution and in
many cases the improvement of variance prediction is sig-
nificant.

II. BACKGROUND

A. Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a well studied non-
parametric method for solving regression tasks [1], [23]–
[25]. In a regression task we are given a training dataset
D = {(xi, yi)}ni=1, where xi and yi denote a d-dim feature
vector and the scalar target output respectively. Besides we
denote X = {x1, · · · ,xn} and y = {y1, · · · , yn}. In GPR
the basic model is y = f(x) + ε, where ε represents i.i.d.
Gaussian noise and ε ∼ N (0, σ2), leading to the following
estimation:

p(y|f , σ) = N (f , σ2I). (1)

Furthermore, the regression function follows a Gaussian pro-
cess, i.e., f(x) ∼ GP(m(x), k(x,x′)), where m(x) and
k(x,x′) denote mean and covariance function respectively.
Therefore, f ∼ N (µ,K), where µ ∈ Rn and K ∈ Rn×n
represent the mean and the covariance matrix respectively. For
a given finite dataset, the covariance matrix K is characterized
by the kernel function, i.e. [K]i,j = k(xi,xj ;θ), where θ is
the set of kernel parameters. For the sake of brevity, it is
assumed that µ is zero. According to Bayes’ theorem, we can

obtain a closed form expression of the marginal likelihood of
y:

p(y|X, σ,K) =

∫
p(y|f , σ)p(f |K)df = N (y|0,Σ), (2)

where Σ = K +σ2I. The hyper-parameters σ and θ can then
be optimized by minimizing the negative log-likelihood, which
is given by

− log p(y|X, σ,K) =
1

2
y>Σ−1y+

1

2
log |Σ|+n

2
log 2π. (3)

For a test input x∗, the prediction of the target value y∗ also
follows the Gaussian distribution:

p (y∗|X,y,x∗) = N (y∗|µ̂∗, σ̂∗)
µ̂∗ = k>∗ Σ−1y

σ̂2
∗ = k (x∗,x∗;θ)− k>∗ Σ−1k∗ + σ2

[k∗]i = k (xi,x∗;θ) .

(4)

The determinant and inverse need to to be computed in O(n3)
which makes GPR infeasible for large datasets.

B. Local Aggregation

Local aggregation models aim to apply GPR on large-scale
datasets with a divide-and-conquer strategy. This intuitive
idea is to partition the original dataset into several subsets
such that each of them is small enough to deal with, and
then aggregate the predictions of individual experts by some
heuristic aggregation rules. Specifically, we first utilize k-
means clustering to partition the training set D into M subsets
{Dk}Mk=1. Certainly other clustering algorithms are feasible
providing that D = ∪Mk=1Dk and Dk∩Dl = φ when k 6= l. For
a new input xi, i /∈ [n], we could obtain the predictive mean
µ̂ik and variance σ̂2

ik based on the subset Dk. The next step is
to decide how to aggregate the individual predictions, which is
the key difference among various aggregation models. In what
follows we present a review of several aggregation strategies.



1) Product of Experts (PoE): Product of Experts (PoE)
aims to figure out a target probability distribution as the
product of a series of predictive distributions, each of which
was given by {xi,Dk}. Since we can acquire a predictive
distribution of yi by applying GPR on each subset, the ultimate
predictive distribution can be formulated as:

p(yi|xi,D) =
1

Z

M∏
k=1

pβik(yi|xi,Dk) =
1

Z

M∏
k=1

N βik(yi|µ̂ik, σ̂2
ik),

(5)
where Z denotes the normalized coefficient to ensure validity.
βik can be regarded as a measure of importance of each
expert on xi. As Gaussian distributions are closed under
multiplication, we can obtain an analytical form:

p(yi|xi,D) = N (yi|µ̂i, σ̂2
i ),

where µ̂i = σ̂2
i

M∑
k=1

βikµ̂ikσ̂
−2
ik , σ̂−2

i =

M∑
k=1

βikσ̂
−2
ik .

(6)

Original PoE assumes βik = 1(k = 1, 2, · · · ,M) [19]. In
contrast, Generalized product of Experts (GPoE) computes βik
according to the difference of Shannon mutual information
between prior distribution and posterior distribution depending
on Dk. The derivation of βik is as follows:

βik =I(yi;Dk|xi)
=H(yi|xi)−H(yi|xi,Dk)

=
1

2
log

[
σ̂2
i0

σ̂2
ik

]
,

(7)

where σ̂2
i0 denotes prior variance, i.e. k(xi,xi) + σ2.

2) Bayesian Committee Machine (BCM): Bayesian com-
mittee machine (BCM) is another approach to combine differ-
ent estimators in consideration of the prior distribution of yi
[18]. The target probability is defined to be:

p(yi|xi,D)=̇
1

Z

∏M
k=1 p

βik(yi|xi,Dk)

p(yi|xi)
∑M

k=1 βik−1

=
1

Z

∏M
k=1N βik(yi|µ̂ik, σ̂2

ik)

N (yi|0, σ2
i0)

∑M
k=1 βik−1

.

(8)

Closed form of predictive means and variances can be derived
similarly to PoE. Original BCM assumes βik = 1, k =
1, 2, · · · ,M . Inspired by GPoE, Deisenroth et al. proposed
robust Bayesian committee machine (RBCM) in which βik is
calculated in the same way of GPoE [21].

Generalized Robust Bayesian Committee Machine (GR-
BCM) is a variant of RBCM which employs a “communication
subset” Dc to enlarge other subsets [22] and the final predictive
distribution bears some resemblence with RBCM. A distinct
advantage of GRBCM is that it has been rigorously shown to
have consistency which other aggregation models (PoE, GPoE,
BCM, RBCM) do not possess.

3) Nested Pointwise Aggregation of Experts (NPAE):
NPAE [26] avoids the independent assumptions in BCM and
aggregate multiple experts in consideration of all pairwise
covariances between the sub-models. It provides a dedicated

covariance parameter estimation procedure at the cost of
greatly increased prediction complexity. Therefore we omit
the comparison with NPAE in experiments.

C. Tsallis Entropy

As an important concept in many disciplines such as sta-
tistical mechanics, thermodynamics, and information theory,
entropy measures the disorder of a system or uncertainty of
an event [27]. The most well-known Shannon entropy takes
the form H(ξ) = −

∑n
i=1 p (ξi) log p (ξi), where ξ denotes a

random variable. The summation is over all possible states
ξi and p(ξi) is the corresponding probability [28]. Tsallis
entropy generalizes this concept by introducing an adjustable
entropic index q [29], and has a wide range of applications in
statistical mechanics and thermodynamics [30]. Specifically,
Tsallis entropy takes the following form, and it can be verified
that when q = 1, Tsallis entropy is reduced to Shannon
entropy:

Sq(ξ) =
1

1− q

(
n∑
i=1

p (ξi)
q − 1

)
. (9)

Recent studies explore the possibility of bridging the in-
teractions between Tsallis entropy and machine learning. For
example, Wang et al discovered that two popular splitting
criteria (Gain ratio and Gini index) can prove to be special
cases of Tsallis entropy and therefore proposed a unified
framework of leaf splitting in the process of decision tree’s
construction [31], [32]. Besides, Tsallis entropy has also
been exploited in reinforcement learning community. Entropy-
regularized Markov decision processes (MDPs) forces the opti-
mal policy to be stochastic via a Shannon entropy term and Lee
et al recently proposed a Tsallis entropy based regularizer to
induce a sparse and multi-modal optimal policy in MDPs [33].
However, whether can we exploit Tsallis entropy to facilitate
Gaussian process aggregation models remains unknown.

III. GENERALIZED LOCAL AGGREGATION

In section 2, we review six popular local aggregation algo-
rithms. Among them, GPoE, RBCM and GRBCM introduce
a parameter βik to measure each GPR expert’s importance.
However, current weight calculations can not focus on perfor-
mant experts which has been shown in Figure 1. In this section,
we propose a generalized local aggregation framework with a
novel calculation of βik based on Tsallis entropy. The new
method outperforms previous work for the novel calculation
forces a sparser weight distribution compared with Shannon
based methods. Of particular note is that the sparsity of Tsallis
entropy is also verified in some recent works [33], [34].

A. Proposed Method

For continuous probability distributions, Tsallis entropy is
defined as:

Sq(ξ) =
1

1− q

(∫
(p(ξ))

q
dξ − 1

)
. (10)



Algorithm 1 Vanilla Version of Generalized Local Aggrega-
tion
Input:

Data subsets {D1, ...,DM}, test input xi, kernel function
k(x,x′), noise variance σ2, extropic-index q.

Output:
Final predictive mean µ̂i and variance σ̂2

i .
1: Compute prior variance σ̂2

i0 = k(xi,xi) + σ2.
2: for k ∈ {1, ...,M} do
3: Compute µ̂ik, σ̂2

ik according to equation (4).
4: Compute βik according to equation (11).
5: end for
6: Compute µ̂i and σ̂2

i according to equation (5), (8) or other
aggregation rules.

Our method employs Tsallis mutual information to represent
each expert’s weight. Tsallis mutual information between yi
and Dk conditioned on xi can be computed as:

βik =Iq(yi;Dk|xi)
=Sq(yi|xi)− Sq(yi|xi,Dk)

=
q

1
2 (2π)

1−q
2

1− q

[
(σ̂i0)

1−q − (σ̂ik)
1−q
]
.

(11)

It is obvious to observe that:

lim
q→1

Iq(yi;Dk|xi) = log

[
σ̂i0
σ̂ik

]
= I(yi;Dk|xi). (12)

The derivation of βik based on Tsallis mutual information
can be regarded as a generalization of previous calculations.
Compared with previous works, our method enhances the
model’s flexibility and generate a sparser representation of
expert’s weight distribution, which has been shown in Figure
1. Different values of q implicitly characterize the sparsity of
weight distribution which can not be expressed by Shannon
mutual information. The Vanilla version of our algorithm is
summarized in Algorithm 1.

B. Adaptive Entropic-index Optimization

The performance of the proposed method relies on a suitable
choice of the entropic-index q. Since the optimal value of q
varies from one dataset to another, a natural question to ask is
how to adaptively adjust entropic-index dependent on the given
dataset. In this paper, we propose three different strategies to
solve this problem.

1) Grid search: This method simply exhaustively searches a
subset of candidate q values, which are chosen uniformly from
a fixed interval. Although this is the most trivial approach, it
often works well in practice, and can serve as a baseline for
the more sophisticated methods. We denote this method as
grid-q.

2) Optimize single q by gradient descent: In this method,
the flexibility of the model is enhanced by introducing a
parameter q that is shared by every expert. Then the optimal
q value can be obtained by minimizing the objective loss

with gradient descent or maximizing the sum of log con-
ditional likelihoods with gradient ascent. In order to avoid
trivial solutions, we also add a regularization term in the
objective function. Specifically, assuming that there are M
experts whose associated subsets are D1, · · · ,DM . We define
D−i , {D1, · · · ,Di−1,Di+1, · · · ,DM}. For each data point
(xi, yi) ∈ Di, its loss is defined as the negative log-likelihood
condition on all the other subsets plus a regularization term:

l(q, (xi, yi),D−i) = − log p(yi|q,xi,D−i) +
1

2
λ

M∑
k=1
k 6=i

β2
ik.

(13)
The final objective loss to be minimized is defined as the

sum of all the individual losses:

l(q) =

M∑
i=1

∑
(xi,yi)∈Di

l(q, (xi, yi),D−i)

=

M∑
i=1

∑
(xi,yi)∈Di

− log p(yi|q,xi,D−i) +
1

2
λ

M∑
k=1
k 6=i

β2
ik

 .

(14)
Note that the likelihood of the data in the i-th subset is

conditioned on all the other subsets except itself. βik is a
regularization term of data point (xi, yi) induced by the k-th
subset, which is used to prevent experts being over-confident
in their own predictions.

The optimal q value can be inferred by applying the gradient
descent rule repeatedly: qi+1 = qi − η ∂l(qi)∂q , where η is the
learning rate. The next step is to derive the analytical form of
∂l(q)
∂q . By applying the chain rule, we have:

∂

∂q
l(q, (xi, yi),D−i)

=

M∑
j=1,j 6=i

(
∂

∂βij
l(q, (xi, yi),D−i)

∂βij
∂q

)
,

(15)

The first term ∂
∂βij

l(q, (xi, yi),D−i) depends on the partic-
ular aggregation rule being used. For example, if the aggrega-
tion rule is RBCM which is given as (8), we have:

∂

∂βij
l(q, (xi, yi),D−i)

=
∂

∂βij

− log p(RBCM)(yi|q,xi,D−i) +
1

2
λ

M∑
k=1
k 6=i

β2
ik


=−

(
log(σ̂i0)− log (σ̂ij) +

y2
i

2σ̂2
i0

− (yj − µ̂ij)2

2σ̂2
ij

)
+ λβij ,

(16)
where µ̂ij and σ̂2

ij denote the predictive mean and variance
of the j-th expert respectively, σ̂2

i0 denotes the prior variance.
The second term ∂βij

∂q can also be analytically derived:



Algorithm 2 single-q for RBCM aggregation

Input:
input-output pair (xi, yi), Data subsets {D1, · · · ,DM},
predictions {(µ̂i1, σ̂2

i1), · · · , (µ̂iM , σ̂2
iM )} from every ex-

pert,
iteration step iter, regularization parameter λ, learning
rate η

Output:
q∗ optimized by gradient descent

1: n← 0
2: Randomly initialize q(n)

3: while n < iter do
4: Randomly select Di (the probability of selecting Di is

|Di|∑M
j=1 |Dj |

)
5: Randomly select (xi, yi) ∈ Di
6: for j ∈ {1, ...,M} do
7: if j 6= i then
8: Compute ∂

∂βij
l(q(n), (xi, yi),D−i) according to

equation (16)
9: Compute ∂βij

∂q(n) according to equation (17)
10: end if
11: end for
12:

∂l(q(n))
∂q(n) ←

∑M
j=1,j 6=i

∂
∂βij

l(q(n), (xi, yi),−i )
∂βij

∂q(n) (by
equation (14) and equation (15))

13: q(n+1) ← q(n) − η ∂l(q
(n))

∂q(n)

14: n← n+ 1
15: end while
16: q∗ ← q(n−1)

∂βij
∂q

=
1

(q − 1)2q3/2
2−q−

1
2π

1
2−qσ̂−qij σ̂

−q
i0 (A+B)

A =−
(
σ̂ij σ̂

q
i0 − σ̂i0σ̂

q
ij

)
×(

2
q
2 +1πq/2q + (2π)q/2(q − 1)(q log(2π) + 1)

)
B =− 2

q
2 +1πq/2(q − 1)q×(

σ̂ij σ̂
q
i0 log(σ̂ij)− σ̂i0σ̂qij log(σ̂i0)

)
.

(17)
The correctness of this equation can be verified by math-

ematical software such as Mathematica, or numerical test
(∂βij

∂q ≈ βij(q+∆q)−βij(q)
∆q for small ∆q). We denote this

method as single-q.
3) Optimize multiple q’s by gradient descent: This

method is similar to 2). The key difference is that instead
of sharing the same q across all the experts, now each expert
is associated with an individual qi. Similarly, for each data
point (xi, yi) ∈ Di, its loss takes the form

l(q1...M , (xi, yi),D−i)

=− log p(yi|q1...M ,xi,D−i) +
1

2
λ

M∑
k=1
k 6=i

β2
ik.

(18)

Here we use the notation q1...M as the abbreviation of the
sequence q1, ..., qM . The final objective loss is:

l(q1, ..., qM )

=

M∑
i=1

∑
(xi,yi)∈Di

l(q1...M , (xi, yi),D−i)

=

M∑
i=1

∑
(xi,yi)∈Di

− log p(yi|q1...M ,xi,D−i) +
1

2
λ

M∑
k=1
k 6=i

β2
ik

 .

(19)
Note that qj is the only free variable in βij . By similar

reasoning when j 6= i, we have:

∂

∂qj
l(q1...M , (xi, yi),D−i)

=
∂

∂βij
l(q1...M , (xi, yi),D−i)

∂βij
∂qj

.

(20)

The method for computing ∂βij

∂qj
and that of computing

∂
∂βij

l(q1...M , (xi, yi),D−i) remain the same. We denote this
method as multi-q.

As concrete examples, Algorithm 2 and 3 summarize the
details of applying the single-q and multi-q methods in RBCM
aggregation respectively.

C. Complexity

Assuming that each expert has equal number of training
data. We denote n as the size of the training dataset, m0

as the size of each subset, n′ as the size of test set, t as
the iteration steps in the gradient optimization of q. NPAE
scales poorly with O(n′n2). Our models have the same
complexity with Shannon entropy based models in calculating
βi, the measure of importance for each expert. Hence the
time complexity in prediction process is exactly the same
as previous methods, which scales as O(nm2

0) + O(n′nm0)
for (G)PoE and (R)BCM. Certainly the optimization of the
parameter q introduces extra computational cost which scales
as O(tnm0) but t is relatively small and usually less than
10000. Therefore the overall complexity of our methods scale
as O(nm2

0) +O(n′nm0) +O(tnm0).

IV. EXPERIMENTS

In this section, we compare our methods with three pop-
ular aggregation approaches: GPoE, RBCM, GRBCM. As
discussed in the previous sections, the above models employ
Shannon mutual information to balance each expert’s impor-
tance. By generalizing them with Tsallis entropy, we denote
our methods as TEGPoE, TERBCM, TEGRBCM respectively.

The assessment criteria include Standard Mean Square Error
(SMSE) and Mean Standardized Log Loss (MSLL) [1]. SMSE
can be obtained to normalize MSE by the variance of the
targets of the test cases. Next we mainly introduce another
criteria: MSLL.



Algorithm 3 multi-q for RBCM aggregation

Input:
input-output pair (xi, yi), Data subsets {D1, · · · ,DM},
predictions {(µ̂i1, σ̂2

i1), · · · , (µ̂iM , σ̂2
iM )} from every ex-

pert,
iteration step iter, regularization parameter λ, learning
rate η

Output:
{q∗k, k = 1, 2, · · · ,M} optimized by gradient descent

1: n← 0
2: Randomly initialize q(n)

k , k = 1, 2, · · · ,M
3: while n < iter do
4: Randomly select Di (the probability of selecting Di is

|Di|∑M
j=1 |Dj |

)
5: Randomly select (xi, yi) ∈ Di
6: for j ∈ {1, ...,M} do
7: if j 6= i then
8: Compute ∂

∂βij
l(q1...M , (xi, yi),D−i)

9: Compute ∂βij

∂q
(n)
j

10: ∂

∂q
(n)
j

l(q
(n)
1...M )←

11: ∂
∂βij

l(q1...M , (xi, yi),D−i) ∂βij

∂q
(n)
j

12: q
(n+1)
j ← q

(n)
j − η ∂

∂q
(n)
j

l(q
(n)
1...M )

13: end if
14: end for
15: n← n+ 1
16: end while
17: for j ∈ {1, · · · ,M} do
18: q∗j ← q

(n−1)
j

19: end for

As GPR is a probabilistic model, one obtains the negative
log predictive density:

− log p(y∗|x∗,D) =
1

2
log(2πσ2

∗) +
(y∗ − µ∗)2

2σ2
∗

. (21)

Another trivial density estimation of y∗ is Gaussian dis-
tribution with the mean and variance of training data. The
difference between the two negative log predictive densities
measures the accuracy of predictive variances. This can be
denoted as Mean Standardized Log Loss (MSLL) by averaging
over the test cases. MSLL can be negative and smaller means
better.

A. Synthetic Datasets

In this section, we conduct experiments on a two-
dimensional synthetic dataset to show that different q’s values
have huge impacts on the behaviors of Gaussian process
aggregation models, and it is possible to make great improve-
ments in the predictive accuracy by choosing a suitable q.
Considering the function f(x, y) = sin

√
(x− 1)2 + y2 −

sin
√

0.5(x+ 1)2 + y2 − sin 0.05
√
x2 + y2, we generate

160 × 160 uniformly distributed instances (x, y) within the

q’s value SMSE MSLL

q = 1 0.0665 0.0242
q = 2 0.0652 -0.8996
q = 3 0.0643 -1.1135
q = 4 0.0638 -1.1359

TABLE I: Results of synthetic datasets.

Datasets Training/Test Size Dimensions Area

kin40k 10000/30000 8 Robotics
sarcos 44484/4449 21 Robotics
energy 18300/1375 27 Computer
protein 40000/5730 8 Life
network 400000/34874 3 Computer

TABLE II: Description of the datasets.

interval [0, 1]× [0, 1] as the training input . The corresponding
outputs z’s values are produced via z = f(x, y) + ε, where
ε ∼ N (0, 0.04) denotes i.i.d. random noise.

(a) f(x, y) (b) Vertical View of f(x, y)

Fig. 2: Two-dimensional synthetic datasets.

We select [0, 0] as the test input and use k-means [35]
to partition the training dataset into 50 groups then experi-
ment with different q’s values to see how they influence the
value of each expert’s weight. Here we report the results of
q = 1, 2, 3, 4 as depicted in Figure 1 where each sub-block
indicates an expert and their weights are displayed by shade
of color . Of particular note is when q = 1 the models
degenerate to Shannon-entropy-based aggregation models, the
results of which are showed in Figure 1. We can observe
that the weight distribution dependent on Tsallis entropy is
sparser than Shannon case. Total 2000 test are generated
according to (x, y) ∼ U(−4, 4) × U(−4, 4), z = f(x, y)
and the experimental results are summarized in Table 1, from
which we can observe that previous methods of calculating
weights (q = 1) usually can not generate optimal predictive
accuracy, whereas Tsallis entropy based calculating leads to a
more satisfactory result.

B. Realistic Datasets

We evaluate our models’ performance on five realistic
datasets: kin40k [22], sarcos [1], energy [36] , protein [37]
and network [38] . Detailed descriptions about the datasets
are listed in Table 2.



In order to allow the algorithms to converge faster, and
also find better local minimums, we run grid-q first and then
use the optimal q’s values as the initial points to guide the
search in single-q and multi-q. The experimental procedure is
as follows: 1. We run the grid-q algorithm and select two
different q’s values: q1 corresponds to the optimal MSLL
and q2 corresponds to the optimal MSE.2. Use q1 and q2 as
different initial q’s values, and run the single-q and multi-q
algorithms.

Experimental results have been summarized in Table 3-5.
We can observe that almost all Tsallis entropy based models
outperform the Shannon entropy based models, which verifies
our claim that the weights calculated with Tsallis mutual
information tend to capture more explicit interactions behind
data than Shannon case.

Specifically, for SMSE criteria, TEGPoE achieves the op-
timal performance for protein dataset, TERBCM shows ad-
vantage on sarcos dataset, and TEGRBCM performs best for
kin40k dataset. So in terms of SMSE, all the three algorithm
are equally competitive after being enhanced by Tsallis en-
tropy. Our method demonstrates obvious advantage for MSLL
criteria. For kin40k dataset, all the three methods significantly
reduce MSLL scores, particularly the TEGPoE and TERBCM
variants. The same tendency can also be observed in many
results across other datasets. For all the experiments, the
best MSLL results are always achieved by TEGRBCM. In
many cases, our method can greatly improve the performance
of TEGPoE and TERBCM with respect to their baselines,
so that their gaps between TEGRBCM are notably reduced.
As mentioned above, smaller values of MSLL means more
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Fig. 3: Sensitivity analysis of hyperparameter λ.

explicit predictive uncertainty, which is a core advantage of
Gaussian process models.

We also perform experiments to show that the proposed
algorithm is relatively insensitive to the specific choice of the
hyperparameter λ. We report the experimental results on multi-
q algorithm on the energy dataset, though similar phenomenon
can be observed across other domains. As we can see in
Figure 3, while varying the λ value in the range of [10−1, 103]
both the two criterions MSE and MSLL appear to be stable,
especially when λ is in the range [10−1, 101].

V. CONCLUSION

In this paper, we aim to improve the effectiveness of
weight calculating for Gaussian process aggregation models.
Current aggregation models compute each expert’s weight
using Shannon mutual information. As a generalization of
Shannon entropy, Tsallis entropy tends to characterize the
implicit relationships among data via parameter q . Inspired

Model SMSE MSLL
kin40k sarcos energy protein network kin40k sarcos energy protein network

GPoE 0.1887 0.0112 0.0001 0.3700 0.0091 3.8437 1.0700 19.7039 -0.2425 -2.7155

TEGPoE(grid-q) 0.1500 0.0068 0.0001 0.3635 0.0091 -0.2535 -0.9777 19.3985 -0.3888 -2.7452
TEGPoE(single-q) 0.1498 0.0068 0.0001 0.3660 0.0091 -0.2605 -0.9807 19.3593 -0.3889 -2.7530
TEGPoE(multi-q) 0.1487 0.0067 0.0001 0.3634 0.0091 -0.3113 -0.9766 18.9144 -0.3910 -2.7452

TABLE III: Comparison of GPoE and TEGPoE. The boldface terms refer to top three results among all conducted methods.
SMSE and MSLL are two assessment criteria and smaller means better.

Model SMSE MSLL
kin40k sarcos energy protein network kin40k sarcos energy protein network

RBCM 0.0802 0.0082 0.0001 0.4140 0.0140 -0.8009 -0.1519 18.4559 -0.4879 -2.7244

TERBCM(grid-q) 0.0722 0.0063 0.0001 0.3834 0.0103 -1.3882 -1.2087 18.4559 -0.5430 -2.3910
TERBCM(single-q) 0.0722 0.0063 0.0001 0.4530 0.0115 -1.3888 -1.2087 18.4405 -0.5430 -2.6767
TERBCM(multi-q) 0.0723 0.0063 0.0001 0.3783 0.0124 -1.3880 -1.1959 18.3953 -0.5433 -2.7545

TABLE IV: Comparison of RBCM and TERBCM.

Model SMSE MSLL
kin40k sarcos energy protein network kin40k sarcos energy protein network

GRBCM 0.0685 0.0073 0.0001 0.4088 0.0139 -1.1745 -2.1450 0.6241 -0.5389 -2.7256

TEGRBCM(grid-q) 0.0639 0.0066 0.0001 0.3783 0.0103 -1.4548 -2.1450 -3.9794 -0.5629 -2.3949
TEGRBCM(single-q) 0.0639 0.0074 0.0001 0.4331 0.0115 -1.4548 -2.1457 -3.9792 -0.5629 -2.6789
TEGRBCM(multi-q) 0.0639 0.0066 0.0001 0.3763 0.0124 -1.4549 -2.1440 -3.9786 -0.5628 -2.7560

TABLE V: Comparison of GRBCM and TEGRBCM.



by this, we propose generalized local aggregation models and
demonstrate its validity and effectiveness in both synthetic and
realistic datatsets. To adjust entropic-index to varying datasets,
we propose three heuristic algorithms to solve our model.
Extensive experiments show that, the proposed method can
generate a sparse and effective representation of each expert’s
weight and improve both the mean and variance predictions,
and in many cases the improvement of variance prediction is
significant. We will continue to explore more effective ways
to define entropic-index in future work.
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