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Abstract—Deep hashing has recently been attracting more and
more attentions for large-scale image retrieval task owing to
its superior performance of search efficiency and less storage
space requirements. Among deep hashing models, asymmetric
deep hashing performs feature learning on query dataset and
directly generates hash code on database images, significantly
improving the retrieval performance of deep hashing models.
Meanwhile, recently works also establish that high-order statistic
of deep features are helpful to obtain more discriminant repre-
sentations of images. Therefore, to boost the retrieval capability
of deep hashing, this work tries to integrate merits of the
high-order statistic module and the asymmetric deep hashing
architecture, and it further proposes a novel deep high-order
asymmetric supervised hashing (DHoASH) for image retrieval.
More specifically, we utilize a powerful global covariance pooling
module based on matrix power normalization to compute the
second-order statistic features of input images, which is fluently
embedded into an asymmetric hashing architecture in an end-
to-end manner, leading to the generation of more discriminant
binary hashing code. Experiment results on two benchmarks
illuminates the effectiveness of the proposed DHoASH, which
also achieves very competitive retrieval accuracy compared to
the state-of-the-art methods.

Keywords—Deep supervised hashing, high-order statistics, co-
variance pooling, asymmetric, image retrieval

I. INTRODUCTION

Hashing, representative Approximately Nearest Neighbor
(ANN) [1] algorithm, has been attracting wide attentions in
practical application for a long time due to its advantages of
search efficiency and less storage space requirements. Current
hashing methods can be divided into data-dependent and data-
independent methods according to whether it depends on the
data for generating hash code. Locality Sensitive Hashing
(LSH) [2] is a typical data-independent method proposed in
the early stage, which achieves binary hash code through a
random hash function. Compared to data-independent hashing,
data-dependent hashing commonly gains superior performance
and has been addressed by more researchers in recent years.
Besides, data-dependent hashing can be further classified into
unsupervised hashing [3] [4] [5] and supervised hashing [6]
[7] according to the label information used for the learning, in
which supervised hashing generally encourage better retrieval
performance than unsupervised hashing.

With the breakthrough progress of convolutional neural
networks (CNNs) in various computer vision tasks, deep

hashing, the integration of hashing and CNN, has also achieved
great success for image retrieval application. Representations
of deep hashing methods consist of convolutional neural
network hashing (CNNH) [8], deep learning of binary hash
codes (DLBHC) [9], deep supervised hashing with pairwise
labels (DPSH) [10], deep supervised hashing with triplet labels
(DTSH) [11], etc. To be specific, CNNH and DLBHC are two
early works of pointwise deep hashing. CNNH [8] employs
an adjustable coordinate descent algorithm to decompose the
pairwise similarity matrix to generate approximate hash code,
which automatically learns the hash function and feature
representation through a deep neural network. On the contrary,
DLBHC [9] adds a hidden layer to the last fully connected
layer of the network structure, learning the hash function and
feature representation of input image directly in an end-to-
end manner. Different from pointwise deep hashing methods,
DPSH [10], a representative pairwise deep hashing method,
simultaneously learns hash function and feature expression
based on pairwise label information of two input images.
Besides, DTSH [11] simultaneously performs feature repre-
sentations and hash code learning through supervised label
information of image triples. All of the above methods learn
the hash function for query images in the same way as the
database images. More recently, Jiang and Li propose a novel
asymmetric deep supervised hashing (ADSH) architecture,
which learns two asymmetric hash functions in an asymmetric
data stream, significantly improves the retrieval performance
of deep hashing models [12]. In ADSH, the hash functions
of query points are obtained through the adopted network,
while the hash codes of dataset points are directly learned,
achieving the new state-of-the-art performance. Following the
stream, some researchers further put forward the deep asym-
metric pairwise hashing (DAPH) [13] and dual asymmetric
deep hashing (DADH) [14], which also achieves promising
performance for image retrieval task.

Besides, recent works have established that global high-
order statistics of deep features provide more discriminant
representations of natural images, which has illustrated wide
potentiality on a number of visual recognition tasks [23], [27],
[29], [30]. Deep high-order models capture more complex
relationships of deep convolutional features through second-
order or higher-order functions inserted into convolutional
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Fig. 1. The overall framework of the proposed DHoASH mainly consists of feature learning part and loss function part. The feature learning part performs
extractions of both first-order and high-order features. We adopt the classic CNN-F network as the backbone architecture to extract first-order features,
which will be regarded as the input of the covariance pooling layer to obtain high-order features of images by constructing covariance matrix and matrix
power normalization. During this process, COV, EIG and Pow represent the covariance matrix, eigenvalue decomposition, and matrix power normalization,
respectively. For the loss function part, the similarity matrix is generated by the label, provided by the given dataset. The loss function optimizes the parameters
through approximate hash code of query images (query codes) and the supervised information (similarity matrix). Ultimately, data codes are generated relying
on supervised information, query codes, and loss functions.

layers, leading to the classification performance improvement
of CNNs. Representative deep high-order statistical models
mainly consist of deep second-order pooling (DeepO2P),
bilinear-CNN (B-CNN), matrix power normalized covariance
(MPN-COV), etc. [23], [27], [29]. Among them, DeepO2P
[27] integrates a second-order pooling layer into existing first-
order convolutional network in an end-to-end learning manner.
By contrast, B-CNN [29] computes second-order statistic
features by applying an outer product of convolutional activa-
tions from two convolutional network streams, and experiment
results illustrate its competitive performance compared to
the current state-of-the-art on fine-grained visual recognition
task. Then, Li et al. [23] embeds covariance square root
normalization to capture deep second-order statistic features
of input images and obtains excellent results on large-scale
visual recognition tasks. To further improve the performance,
GSoP-Net [30] inserts global covariance pooling in-between
network to provide more distinguishable second-order feature
representations. Therefore, this work tries to combine merits
of the high-order statistics and the asymmetric deep hashing
method to boost the retrieval performance of existing deep
hashing methods. More specifically, it proposes a novel deep
high-order asymmetric supervised hashing (DHoASH) for
image retrieval, in which a powerful global covariance pooling
module based on matrix power normalization (MPN) is em-
bedded into an asymmetric hashing network to capture deep
second-order covariance features, and this potentially leads to
generating more discriminant binary hashing code. The overall
framework of DHoASH can be demonstrated in Figure 1. The
main contributions of our work are summarized as follows:

(1) A novel deep high-order asymmetric supervised hashing
(DHoASH) is presented for image retrieval application, which
is the first attempt to combine high-order statistic model
and asymmetric supervised hashing architecture. (2) DHoASH
utilizes global covariance pooling based on matrix power
normalization to capture the second-order statistic features of
input images, which is naturally embedded into an asymmetric
hashing network to generate more discriminant binary hash
codes in an end-to-end learning manner. (3) Experiment results
on two benchmarks illuminates the effectiveness of DHoASH,
and it achieves very competitive retrieval accuracy compared
to the state-of-the-art methods.

II. METHOD

A. Problem definition

Given m query images and n database images respectively
denoted as X = {xi}mi=1 and Y = {yj}nj=1, the pairwise
supervised information (i.e., the similarity matrix) is derived
as S ∈ {−1,+1}m×n.
Sij = 1 indicates that the two images belong to the

same class and share common class labels. On the contrary,
Sij = −1 means that they belong to different classes and
have different labels. Therefore, the supervised information
matrix makes it convenient to judge whether the corresponding
images are similar or not, which can guide the binary hash
codes learning of query images and database images. These
hash codes conserve the feature statistics of query images and
database images. More specifically, for two similar images,
the hamming distance of the corresponding hash codes should
be relatively small while the hamming distance should be



as far as possible if they are dissimilar. In this work, the
learned binary code for query images is denoted as U =
{ui}mi=1 ∈ {−1,+1}m×c and V = {vj}nj=1 ∈ {−1,+1}n×c
is set to signify the directly learned binary hash codes of
database images, where c represents the length of binary codes.
Features of query images are mapped to a K-bit continuous
representation in the process of approximate hash learning,
which can be quantified to binary code through the function
sign(·). Ultimately, the hash code of query images U can be
obtained for image retrieval.

B. Network structure

As shown in Figure 1, DHoASH roughly includes two
parts, the feature learning part and the loss function part.
The principal work of DHoASH mainly focus on extracting
high-order features of query images. Due to the pairwise
similarity measurement module based parameter optimization
strategy, our loss function should take the pairwise similarity
information into account. The classic CNN-F [22] network is
applied for first-order characteristic learning of images, which
can be replaced with other deeper networks certainly, such
as the ResNet. Through the operation of covariance matrix
power normalization, we extract higher-order features from
the input image, which carries sufficient global image features
and grasps the similarity relationship between image pairs.
The comprehensive configuration of the proposed network is
listed in Table I. As aforementioned, we apply the designed
loss function to ensure binary codes preserve the relationships
among query images, database images, and similarity matrix.

TABLE I
CONFIGURATION OF NETWORK

Layers Configuration
conv1 filter 64×11×11, stride 4×4, pad 0, LRN, pool 2×2
conv2 filter 256×5×5, stride 1×1, pad 2, LRN, pool 2×2
conv3 filter 256×3×3, stride 1×1, pad 1
conv4 filter 256×3×3, stride 1×1, pad 1, pool 2×2
conv5 filter 256×3×3, stride 1×1, pad 1

high-order covariance pooling
fc 32896
fc 4096

latent K bit

Please note that DHoASH integrates the feature learning
part and the loss function part into an end-to-end network
framework, both of which can give feedback when an image
pair passes through the network. It should be noted that the
process of feature learning is only performed on the query
images, while the hashing code of database images can be
directly learned through the learned query image features and
the existing similarity matrix S.

C. Feature learning

We employ the fundamental CNN-F [22] network as the
extractor of the first-order features for the query images,
keeping the top five conv. layers unmodified but abandoning
the Pooling and Relu operations of the fifth layer. Features
extracted from the first thirteen layers of the CNN-F network

are regarded as the input of the covariance pooling layer, which
can be expressed as Eq. (1).

G = φ(xi; Θ) (1)

where φ and Θ represent the process of first-order feature
learning and the parameters of the backbone network, respec-
tively. G ∈ Rd×n is a matrix with n conv. features of d-
dimension.

Embedding the covariance pooling layer behind the fifth
convolutional layer, we can obtain a robust covariance matrix
by extracting image features and performing matrix operations,
such as eigenvalue decomposition (EIG), on the first-order rep-
resentations, which models the holistic correlation of images.
The covariance matrix can be established as follows:

O = GIGT (2)

The I appeared in the equation can be calculated by I =
1
N (I − AAT ), where I denotes an n× n identity matrix and
A represents an n-dimensional vector, all elements of which
are set to 1. T represents the transpose of the matrix.

The maximum likelihood estimation is adopted to assess the
efficiency of the constructed covariance matrix, whose perfor-
mance might be dissatisfying if the feature matrix develops
into a small size but high dimensions. Generally speaking,
the output features of the last layer of deep neural networks
are higher dimensions with fewer feature vectors. As we
all know, the eigenvalues of a non-full rank matrix can not
match the dimensions, which means that some useful features
extracted before might be missed, thus potentially limiting
the capacity of the covariance matrix to represent features.
It is worth noticing that the geometric structure established
by the covariance matrix, a more detailed and plentiful fea-
ture representation, is a Riemannian manifold. Additionally,
matrix power normalization has been proven to handle the
above problems properly and evaluate the covariance matrix
comprehensively for taking its manifold space into account.
Therefore, after obtaining the robust covariance matrix through
the matrix power normalization(MPN) operation on the sam-
pled covariance matrix, the preliminary global features of the
holistic image can be captured by utilizing the geometry of
the Riemannian manifold, which is beyond the ability of the
first-order feature representations [23].

Considering that the covariance matrix characterizes sym-
metric semi-definite properties, the eigenvalue decomposition
operation can be performed on it, which can be written as
follows:

O = BΛBT (3)

where Λ = diag(λ1, ..., λd) represents the diagonal matrix
corresponding to each eigenvalue, B is the orthogonal ma-
trix composed of eigenvectors. Thereafter, the matrix power
normalization of O can be obtained by performing a power
operation on matrix Λ.

E , Oα = BΛαBT (4)



In Eq. (4), Λα = diag(λα1 , ..., λ
α
d ), where the exponent

α refers to a positive real number less than 1. During this
course, the brief but effectual MPN operation produces a
robust covariance matrix and utilizes its Riemann geometric
features, for which the robust covariance matrix E can model
complex global relationships, outperforming the commonly
used first-order feature statistics. Empirically, the performance
of the covariance matrix E achieves the best when α equals
0.5.

From the above formula description, it can be observed
that the forward propagation process of the covariance
pooling layer is concise and explicit. In the process of
back-propagation, following [23], [27], the derivative of the
loss function with respect to O, G can be derived by the
principle of matrix back-propagation, respectively. We employ
the spectral norm (L2 normalization) after the operation of
MPN, which is denoted as

√
λmax(EET ), enhancing the

generalization ability of the extracted feature matrix. In
order to convert the deep covariance representation into a
compressed binary code, we add a hidden hash layer for the
hash function learning, mapping the resulting feature matrix
of the above operations to a fixed K-bit code. By doing
so, binary-like code carrying global statistical characteristics
can be obtained. We set F (xi; Θ) as the final output of the
network. Thereafter, the hash code of query images U can be
learned through the threshold function sign(·) and written as
below:

U = sign(F (xi; Θ)) (5)

It is worth mentioning that the entire network is optimized
in an end-to-end pattern. During the test process, to retain
and integrate the inherited global attributes of coding features
naturally, an out-of-sample extension need to be conducted
to generate the K-dimensional binary vectors and detect the
capability of our network, which will be elaborated in the next
section.

D. Loss optimization and learning

In order to generate the hash code that stores pairwise sim-
ilarity, the L2 loss between the similarity matrix (supervised
information) and the inner product matrix of query-database
image pairs should be required as small as possible, which is
defined as follows:

min
U,V

= L(U, V ) =

m∑
i=1

n∑
j=1

(uTi vj − cSij)2

s.t. U ∈ {−1,+1}m×c, V ∈ {−1,+1}n×c.
(6)

Here, ui = sign(F (xi; Θ)), where F (xi; Θ) ∈ Rc. During
back-propagation, we use tanh(·) to approximate the sign(·)
for avoiding the problem of vanishing gradients.

In practical applications, our obtained images generally
cover the whole database Y = {yj}nj=1, instead of the query
set that have been partitioned. In this case, we can randomly
sample m data images from the database images as the query
set. More precisely, we set X = Y Ω, where Y Ω indicates the

database images indexed by Ω. We use Γ = {1, 2, ..., n} and
Ω = {i1, i2, ..., im} ∈ Γ to indicate the indices of the database
images and the sampled query images, respectively. Thereafter,
we set S = SΩ to represent the similarity information, where
SΩ ∈ {−1,+1}m×n indicates sub-matrix of S rows indexed
by Ω. Please note the affiliation of Ω ∈ Γ. Consequently, yi
can be expressed from two perspective: One is the binary hash
code of database vi, and the other is the query expression
tanh(F (yi; Θ)). We add an extra consistency constraint to
make vi and tanh(F (yi; Θ)) as close as possible, and regard
hyper-parameter γ as the coefficient. The final loss function
can be written as below:

min
Θ,V

= L(Θ, V ) =
∑
i∈Ω

∑
j∈Γ

[tanh(F (yi; Θ))T vj − cSij ]2

+γ
∑
i∈Ω

[vi − tanh(F (yi; Θ))]2
(7)

s.t.V ∈ {−1,+1}n×c

Next, in order to directly represent the process of net-
work back-propagation, we calculate the partial derivatives
from the hash layer to the covariance pooling layer of
the original first-order network. For the purpose of conve-
nience, Hadamard product can be represented by � and
ũi = tanh(F (yi; Θ)). According to the loss function formula
and the back-propagation algorithm, the derivative can be
calculated:

∂L

∂H
= {2

n∑
j=1

[(ũi
T vj − cSij)vj ] + 2γ(ũi − vj)

� (1− ũi2)}

(8)

Given the partial derivatives propagated from the hash layer,
we can easily obtain the partial derivatives related to the
eigenvalue decomposition through the back-propagation chain
rule ∂L

∂H → ∂L
∂O → ∂L

∂G , this calculation process can be
expressed in matrix form:

∂L

∂O
= B((QT � (BT

∂L

∂B
)) + (

∂L

∂Λ
)diag)B

T (9)

where the symbol diag represents matrix diagonalization and
Q = Qij denotes a square matrix when Qij = 1/(λi −
λj) if i 6= j and Qij = 0 otherwise. Readers can refer to
[23], [27] for details.

Ultimately, given ∂L
∂O , the partial derivatives of loss function

and feature matrix G can be written as below:
∂L

∂G
= IG(

∂L

∂O
+ (

∂L

∂O
)T ) (10)

For the entire network, the supervised information will
be used as the optimization specification to learn the hash
function, re-updating and optimizing the parameters of the
network gradually to obtain better results.

Since our proposed network has the property of asymmetric
structure, the details of directly learning database image hash
codes will be introduced next. By extracting the query image



features, the parameters in the network are optimized. After
training, all parameters of the network are fixed. Then, we
update V column by column, keeping the other columns fixed
when any column of V is being updated. The procedure is
defined as follows:

min
V

L(V ) =||ŨV T ||2F + tr(V ZT ) + const (11)

where Z = −2cST Ũ − 2γU , and const represents a con-
stant value unrelated to V . Here, U = {uj}nj=1 and uj ={
uj if j ∈ Ω

0 otherwise
. Naturally, expand Eq. (11):

min
V∗p

L(V∗p) = tr(V∗p[2Ũ
T
∗pÛpV̂

T
p + ZT∗p]) + const

s.t. V∗p ∈ {−1,+1}n
(12)

V∗p indicates the pth column of V and V̂p denotes the matrix
of V precluding V∗p. Ũ∗p expresses the pth column of Ũ
and Ûp indicates the matrix of Ũ precluding Ũ∗p. Similarly,
Z∗p denotes the pth column of Z. Finally, hash codes of the
database image can be learned through Eq. (13):

V∗p = −sign(2V̂pÛ
T
p Ũ∗p + Z∗p) (13)

Ultimately, hash code of the database images will be
learned. Readers can read [12] for more details on asymmetric
strategies.

III. EXPERIMENT

We conduct experiments to evaluate the effectiveness of
the proposed DHoASH. All experiments are performed on
a server with 3.30GHz CPU, 64GB RAM, and NVIDIA
GTX 1080GPU using MatConvNet [21] toolkit in MATLAB
R2014a.

A. Datasets and settings

Two benchmarks, i.e., CIFAR-10 [19] and NUS-WIDE [20],
are used to verify the performance of our DHoASH. CIFAR-10
dataset is a single-label dataset containing 60,000 RGB images
with a resolution of 32×32 in ten categories in total. If the
labels of the selected two images are consistent, we consider
the two images belong to the same category and completely
similar. NUS-WIDE dataset contains 269,648 images collected
from Flickr which contains 5018 unique tags. It is a multi-
label dataset where each picture individually uses one or more
label concepts from the given 81 concepts. Following [12], we
select 195,834 images associated with the 21 most widely used
concepts in our experiments, each of which contains at least
5,000 RGB images.

We adopt the mean average precision (MAP) of different
bits {12, 24, 32, 48} to evaluate the quality of the retrieved
data images. Considering that our loss function is based on
asymmetric pairwise similarity relations, the pairwise simi-
larity matrix S is established based on the category labels. In
CIFAR-10, two images with a semantic label are shared by the
semantically similar pair relationship Sij = 1. As for multi-
label dataset NUS-WIDE, we define similar pairs as sharing

at least one semantic label. In addition, we employ different
learning rate strategies for training on different datasets. To be
specific, the learning rate we used on the CIFAR-10 dataset is
set to [10−4, 10−6]. As for the NUS-WIDE, the learning rate
is [10−4.5, 10−6]. Besides, we set the same hyper-parameter γ
value as 200 for both benchmarks.

B. Experiment results

The compared experiment results on CIFAR-10 are reported
in Table II. We compare our DHoASH with some representa-
tive deep supervised hash methods including deep supervised
hashing (DSH) [15], deep hashing network(DHN) [16], deep
quantization network(DQN) [17], deep supervised hashing
with pairwise labels(DPSH) [10], deep supervised discrete
hashing(DSDH) [18], deep forest hashing(DFH) [24], deep
policy hashing network(DPHN) [25], and deep saliency hash-
ing(DSaH) [26]. Among these methods, DSH, DHN, DPSH,
DSaH, DFH and DPHN belong to symmetric hashing models
while the remaining three methods are based on asymmetric
hashing architectures.

TABLE II
COMPARED MAP RESULTS ON CIFAR-10

Method Year 12 bits 24 bits 32 bits 48 bits
DSH [15] 2016 0.6441 0.7421 0.7703 0.7792
DHN [16] 2016 0.6805 0.7213 0.7233 0.7332
DPSH [10] 2016 0.6818 0.7204 0.7341 0.7464
DSaH [26] 2018 0.8003 0.8457 0.8476 0.8478
DFH [24] 2019 0.4570 0.5130 0.5240 0.5590
DPHN [25] 2019 0.8440 0.8620 0.8680 0.8780
DAPH [13] 2017 0.7569 0.8213 0.8307 0.8448
ADMH [28] 2019 0.9226 0.9379 0.9477 0.9433
ADSH [12] 2018 0.8898 0.9280 0.9310 0.9390
DHoASH – 0.9293 0.9394 0.9409 0.9472

As illustrated in Table II, DPHN is the optimal one among
the six symmetric hashing methods. However, our DHoASH
still outperforms it by a large margin. DHoASH obtains 8.53%,
7.74%, 7.29% and 6.92% gains over DPHN on 12, 24, 32 and
48-bit results, respectively. Compared with asymmetric hash-
ing models, DHoASH achieves the best retrieval performance
on three cases (12, 24 and 48 bits), only inferior to ADMH on
32 bits. Additionally, DHoASH gains 3.95%, 1.14%, 0.99%,
0.82% performance improvement over its first-order baseline
of ADSH. These compared experiment results powerfully
illuminate the effectiveness of the proposed DHoASH, which
mainly are contributed to the robust high-order statistic fea-
tures employed in deep hashing.

The compared MAP results with four various bits on NUS-
WIDE dataset are listed in Table III. Here, we also compare
DHoASH with seven symmetric hashing models [10], [16]–
[18], [24]–[26] and three asymmetric hashing networks [12],
[13], [28], which are regarded as the representative state-of-
the-art deep hashing methods proposed in recent four years.
As illuminated in Table III, our DHoASH achieves the optimal
retrieval results on all of the four cases. It significantly outper-
forms DSaH by 1.16%, 3.84%, 3.27% and 3.56% in cases of
12, 24, 32 and 48 bits, respectively. Note that DSaH gains the



Fig. 2. Examples of visualization express the top-10 images retrieved from the the NUS-WIDE dataset by different methods of 24-bit. The first column for
each sub-figure enclosed in a blue bounding box indicates the query samples and the following ten columns represent the top-10 returned samples. Note that
the red box marks denote the “negative samples”.

best performance on this dataset among the seven symmetric
models, and slightly outperforms DPHN. Since NUS-WIDE
has more categories and multiple semantic labels for each
image, it is more challenging to improve retrieval accuracy
on this benchmark. However, compared with ADSH model,
DHoASH still outperforms it by 0.96%, 1.40%, 0.16%, and
0.31% on 12, 24, 32 and 48 code bits. These compared results
once again demonstrate the well performance of DHoASH for
image retreival.

TABLE III
COMPARED MAP RESULTS ON NUS-WIDE

Method Year 12 bits 24 bits 32 bits 48 bits
DHN [16] 2016 0.7719 0.8013 0.8051 0.8146
DQN [17] 2016 0.7680 0.7760 0.7830 0.7920
DPSH [10] 2016 0.7941 0.8249 0.8351 0.8442
DSDH [18] 2017 0.7760 0.8080 0.8200 0.8290
DSaH [26] 2018 0.8380 0.8540 0.8640 0.8730
DFH [24] 2019 0.6220 0.6590 0.6740 0.6950
DPHN [25] 2019 0.8340 0.8490 0.8500 0.8540
DAPH [13] 2017 0.7167 0.7706 0.7870 0.8164
ADMH [28] 2019 0.8405 0.8835 0.8851 0.9069
ADSH [12] 2018 0.8400 0.8784 0.8951 0.9055
DHoASH – 0.8496 0.8924 0.8967 0.9086

Taking the more challenging NUS-WIDE dataset as an
instance, we further conduct the retrieval performance com-
parison of 24-bit hash code based on CNN-F [22] network.
Randomly selecting two images as query samples, we can
obtain an image sequence sorted by the hamming distance
between the query image and database image, and then exhibit
the first 10 retrieved images. Specifically, for each given query
sample, we calculate the hamming distance based on the hash
code, which is determined by a deep hashing paradigm com-
bined with covariance estimation. Negative samples suggest
the query image and retrieved images have no shared label,
which can be confirmed based on the ground-truth label of the
returned 10 samples. In particular, for the multi-label attributes
of NUS-WIDE, the retrieval accuracy refers to whether the
retrieved sample and the query sample share at least one
semantic label. As shown in Figure 2, the first column in
the blue borders represents the query samples, and the next

10 columns represent the search results corresponding to each
query, in which the “negative samples” are encapsulated in red
borders. Here, we present the comparison result of our method
DHoASH and ADSH for the NUS-WIDE dataset, through
which the retrieval performance can be evaluated roughly
based on the top-10 ground-truth neighbors and the number
of red boxes. Obviously, the number of “negative samples”
contained in the red border of our DHoASH is less than that
of ADSH, demonstrating the better performance achieved by
DHoASH and the effectiveness of the covariance merged into
deep hashing. Compared with ADSH, our proposed DHoASH
achieves superior hash code representations in the mode of
embedding robust covariance estimation, so that the retrieved
images are more similar to the semantics of query images.

IV. CONCLUSION

In this work, we propose a novel deep high-order asym-
metric supervised hashing (DHoASH) for image retrieval ap-
plication. DHoASH embeds a robust covariance pooling layer
into asymmetric hashing network in an end-to-end manner,
providing a new perspective for learning asymmetric deep
hash code via exploiting high-order statistic feature inter-
actions. Experiment results on two benchmarks illuminates
the effectiveness of DHoASH. Our future work is to recover
more powerful high-order global statistics descriptor for deep
hashing models. We will also vigorously explore the influence
of time complexity on deep high-order hashing, and strive to
improve the retrieval accuracy with less time complexity.
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