
Approaches to Avoid
Overfitting in a Quantum Perceptron

Fernando M. de Paula Neto, Gustavo I. S. Filho, Cláudio A. Monteiro
Centro de Informática - CIn

Universidade Federal de Pernambuco - UFPE
Recife, Cidade Universitária, 50670-901

Email: {fernando, gisf, clam}@cin.ufpe.br

Abstract—In this paper, we analyze an existing Quantum Per-
ceptron in terms of its generalization performance and introduce
alternative strategies to avoid classification errors, the Circuit
Threshold Operator (CTO) and Neuron Threshold Variation
(NTV). The adjust of the CTO and NTV parameters increases
the probability of the neuron to tolerate differences between
input and stored weights allowing some noise level to be accept-
able. Experiments were conducted in IBM quantum simulator,
showing that our proposals are effective when compared to the
original fixed parameter. A hybrid classical-quantum training
was executed, using Genetic Algorithm to train the parameters
of the model classically and running our model in a quantum
simulator. Our solution achieves 78.57% and 76.43% of accuracy
on a noisy dataset, while the original neuron approach does not
exceed 53.57%.

Index Terms—quantum perceptron, quantum neuron, learning
algorithm, quantum machine learning, quantum computing,
genetic algorithm

I. INTRODUCTION

Quantum computing is being developed since the 60s with
Richard Feynman and in recent years the area has gained
strength due to technological advances in the manipulation of
matter at the atomic level [1], [2]. Noisy Intermediate Scale
Quantum (NISQ) computers are now available for execution
of quantum algorithms as well as simulators built with dis-
tributed processing on classical computers that allow the use
of high level programming languages [3]–[8]. Some benefits
of quantum computers are the speed of processing and the
multidimensional capability of storing large vector spaces due
to the its quantum mechanical properties [9]. Some existing
quantum algorithms solve problems involving optimization
[5], [10]–[13], which can be applied to develop quantum
machine learning applications [14].

Machine learning applications are being widely used around
the world for a wide variety of tasks such as speech and facial
recognition, process optimization in industries, knowledge dis-
covery, autonomous vehicles and more. With the exponential
growth of data storage, availability and complexity, one main
challenge is to optimize the processing of machine learning
algorithms. Quantum learning algorithms may be a solution for
large data mining applications and for the development of new
types of learning algorithms based on quantum mechanics.

The authors would like to thank CNPq for financial support.

In this work, we analyze a quantum perceptron in perspec-
tive of its generalization ability in a noisy dataset. Based on the
limitations found in the neuron, we propose two approaches in
which the degree of generalization of the neuron classification
increases. In Section II, some concepts of quantum computing
are described to explain our proposed approach. Section III
presents quantum existing neurons and the quantum perceptron
model. In Section IV, we propose two approaches to avoid
classification errors in a quantum perceptron learning and, in
Section V, we explain and analyze the experiments. Finally,
Section VI presents the conclusion of the work and future
study directions.

II. QUANTUM COMPUTING

A. Quantum bits

The classic computer enabled humanity to develop complex
information systems reaching all fields of life. The most basic
unit of classical information is the bit, which takes a value
of 1 or 0 based on high and low voltage. With the advance
of quantum mechanics, it was possible to conceive a quantum
computer that operate using properties subjected to the laws
of quantum mechanics. The quantum bit, or qubit, is an unit
vector in a two-dimensional complex vector space that can
store information as a superposition of 0 and 1 at the the same
time [1], with a given probability |α|2 to read the ’0’ state and
probability |β|2 to read the ’1’ state. The state normalization
ensures that |α|2+ |β|2 = 1. The canonical (or computational)
basis is composed of the vectors |0〉 = [1, 0]T and |1〉 =
[0, 1]T , where |·〉 is a notation introduced by Dirac to represent
quantum states [15]. The 〈·| notation represents the complex
conjugate of the vector |·〉. As such any qubit can be seen
as a linear combination (usually called superposition) of the
basis vectors, |ψ〉 = α |0〉+β |1〉, where α and β are complex
numbers.

The quantum state is the representation of an isolated quan-
tum system with a probability distribution for each observable
qubit. A multiple qubit system is mathematically represented
by the tensor operator ⊗. In a two qubit system for example,
|ψ1〉 = α1 |0〉 + β1 |1〉 and |ψ2〉 = α2 |0〉 + β2 |1〉, the tensor
operator produces the state |ψ1ψ2〉 = α1β1 |00〉 + α1β2 |01〉
+ β1α2 |10〉 + β1β2 |11〉.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

B. Quantum operators

Quantum information can be altered with the use of unitary
gates that acts as unitary operations over the quantum system.
For the purpose of this work, we describe the operators:
Identity I, NOT X, Hadamard H and Pauli-Z Gate Z. The
Identity operator I generates the output exactly as the input;
X operator works as the classic NOT in the computational
basis, flipping the value of the qubit; Hadamard H generates a
superposition of states when applied in a computational basis;
and the Z gate inserts a negative in front of the state applied
when the qubit is not zero.

I =
[
1 0
0 1

]
I |0〉 = |0〉
I |1〉 = |1〉

X =

[
0 1
1 0

]
X |0〉 = |1〉
X |1〉 = |0〉

H =
1√
2

[
1 1
1 −1

]
H |0〉 = 1/

√
2(|0〉+ |1〉)

H |1〉 = 1/
√
2(|0〉 − |1〉)

Z =

[
1 0
0 −1

]
Z |0〉 = |0〉
Z |1〉 = − |1〉

In addition to the single qubit unitary gates, there are
controlled operators, which act on several qubits and act as the
conditional structures (i.e. if / else) of programming languages.
The CNOT is an operation between two qubits where one
is the control and the other is the target. When the control is
1, X is applied on the second one, that is, the target. In the
same way, CZ is a 2-qubit gate that applies the control in the
first qubit and Z to the target.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT |00〉 = |00〉
CNOT |01〉 = |01〉
CNOT |10〉 = |11〉
CNOT |11〉 = |10〉

CZ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −1


CZ |00〉 = |00〉
CZ |01〉 = |01〉
CZ |10〉 = |10〉
CZ |11〉 = − |11〉

There is also the concept of negative controlled gates where
in the CNOT operator, the control can be set to be 0 instead
of 1 for the action of operator X to exist.

C. Quantum circuit

We can represent quantum algorithms by quantum circuits.
This graphical representation considers the qubits as wires
and quantum operators as boxes. The flow of execution, as in
classical circuits, is from left to right. Figure 1 is an example
of a quantum circuit composed of X gate and a CNOT
operator, where the control qubit is depicted by a filled circle
and the symbol ⊕ indicating the target qubit. The negative
controlled gate is drawn on a quantum circuit with an open
bullet (indicating control-on-zero), but can be also built using

|i〉 • •

|j〉 X Z

|k〉

Fig. 1. An example of quantum circuit using some operators. From left to
right: CNOT operator, using the notation of filled circle and ⊕ indicating
that the first qubit is the control and the third one is the target, a X operator
in the second qubit, and the CZ operator using the notation of filled circle
and Z gate, between the first and the second qubits.

CNOT and X gates. Figure 2 shows the equivalence between
the two approaches.

X • X
=

Fig. 2. Equivalence between quantum circuits using negative CNOT and with
only CNOT and X gates.

We call, in this paper, CNOTsNj to generalize a (N)−ary
CNOT having N − 1 control qubits and the last qubit being
the target. The control qubits form a control sequence that
depends on j and N which are decimal numbers. Turning j
into a binary number of size N , the controls-on-one are in the
position of that binary number has 1 and the controls-on-zero
are in the positions for that binary number has 0. An example
of CNOTs is given in Figure 3, where j = 20 (10100 in
binary string) and N = 6 qubits.

•

•

Fig. 3. Example of a CNOTs operator, CNOTsN=6
j=20.

Other N-controlled gate that we use in this work is the CNZ
operator to generalize an N -multiple CZ having N−1 control
qubits, and the last qubit being the target. In practice, when all
the qubits involved in the operation are 1, the operator includes
a negative phase (negative sign) in front of the quantum basis
state.

III. QUANTUM NEURONS

There are proposals for quantum neural networks (qNN)
with different approaches that try to combine the advantages of
quantum computing with the powerful and parallel processing
of neural computing [16]. In general, these approaches use
the paradigm of processing information using qubits, such
as classical computing, and using quantum logic gates to
manipulate their information [14], [17]–[20].

However, some effort has recently been made to represent
the information to be processed in the amplitudes of the
quantum states, a paradigm referred to as ”amplitude encod-
ing”. This paradigm concerns a non trivial way of building
algorithms, since it deviates from the usual paradigm in
computing [9], [21]. The benefits of representing information
in the amplitude are diverse, but the most important is to
minimize the amount of qubits used, making it possible
to run the algorithms on available quantum processors [3].
There is another discussion about storing information in the
quantum state as a nonlinear mapping of data, which allows
for computations that are classically intractable by kernel
functions [22]–[24].

In this work, we analyze the neuron generalization poten-
tial proposed in [9], carrying out experiments with available
quantum simulators and artificial datasets. In developed exper-
iments, we found that when the neuron has a high acceptance
threshold rate, it starts to function as a memory, with no power
to generalize and tolerate noise in patterns. In order to increase
the generalization power of the circuit, with minimal impact
on performance, we propose an operator coupled to the neuron
to increase its generalization power against noise bases which
we call Circuit Threshold Operator (CTO).

Tacchino et al. [9] made a proposal of a quantum neuron
based on the classical Rosenblatt’s ”perceptron”, using the
paradigm of amplitude enconding, as stated. As the neuron
input and weight values are binary, ij , wj ∈ {−1, 1}, it was
proposed that these inputs and weights be encoded in the
amplitudes of the quantum states. Equation 1 represents input
and weight states where m is a vector size and the amount of
amplitudes.

|ψi〉 =
1√
m

m−1∑
j=0

ij |j〉

|ψw〉 =
1√
m

m−1∑
j=0

wj |j〉

~i =


i0
i1
...

im−1

 , ~w =


w0

w1

...
wm−1


(1)

This type of quantum state that has −1 and 1 amplitude
values is known as real equally weighted (REW) state and
can be mapped as a quantum hypergraph [25]. In particular,
hypergraphs quantum states can be mapped into vertices and
hyperedges of generalized graphs and can be prepared using
only qubits and multi-controlled Z gates. Based on hypergraph
generator algorithm, it was possible to propose an algorithm
[9] that generates a circuit for a given REW quantum state,
without using a brute force search for this representation. In
this way, a quantum input and weight state can be efficiently
transformed into the quantum circuit. This algorithm was
called ”Hypergraph states generation subroutine” (HSGS) by
its authors and is detailed in Algorithm 1 [9].

Algorithm 1: HSGS Based Algorithm proposed in [9].

Result: Quantum circuit QC;
1 Input: a given v = {−1, 1}2N input vector;
2 Auxiliary variables: vAux = {1}2N vector;
3 if v[0] is -1 then
4 Flip all the values of v, i.e. v = -1 . v;
5 end
6 for i = 0; i < len(v); i++ do
7 if v[i] is -1 and there exist only one qubit is in

IntToBin(i) string then
8 Put Z gate on the circuit QC in the position of

the one qubit of the state IntToBin(i);
9 Update vAux vector, considering that a signal

change was applied in the position i;
10 end
11 end
12 for p = 2, p < N, p++ do
13 for i = 0; i < len(v); i++ do
14 if IntToBin(i) has p bits equal to one then
15 if vAux[i] is not equal to v[i] then
16 Put CpZ gate on the circuit QC

between the p qubits that have values
1 in IntToBin(i);

17 Update vAux vector considering that a
signal changed was applied in j
positions of vAux which p qubits that
have 1 value in IntToBin(i) are in the
same position in IntToBin(j);

18 end
19 end
20 end
21 end

The operator Ui and a part of the Uw, which form the
quantum neuron, are quantum operators which generate the
neuron input and weight quantum states, respectively.

The role of the HSGS algorithm is to modify the amplitudes
of the quantum state with N qubits so that they have the same
values as a given vector v, of size 2N , and which has only
-1 and 1 as values. To create the quantum operators of this
circuit that makes this transformation, the first step is to verify
if the value on the first position of this vector is -1 (line 3). If
so, change the sign of every position on the v vector (line 4).
This operation indicates that the neuron with weights w has
the same functioning as the neuron with weights −w.

Considering each index of the vector in its corresponding
representation of binary string, it is verified the binary string
representation that has only one ’1’ and that has its value in the
vector equal to -1. In these states, Z gates are applied in the
position of these binary representation values equal to 1 (lines
6-10). Then, the positions of the vector which the binary string
representation have p ∈ [2, · · · , N] bits equal to 1 and have
value in the vector -1 are checked each quantity p at a time.
For each of these states, we check whether it is still necessary

to include a controlled Z gate. This operator will only be
applied if the state does not have the desired amplitude. This
is necessary because some quantum gate previously inserted
in the circuit may have already transformed the amplitude of
the quantum state to the desired one (lines 12-20).

The HSGS algorithm creates the circuit that generates the
amplitudes of a given vector as amplitudes of a quantum state.
To create the neuron defined in [9], the circuit is defined as
follows. For N qubits, N Hadamard gates are added in order
to generate a superposition of basis quantum states with REW
amplitude. Then, the Ui, which is the circuit generated by the
HSGS algorithm for input vector ~i, is coupled. Next, the Uw

operator is coupled. This operator is composed of the circuit
generated by the HSGS algorithm for the weight vector ~w,
coupled with N Hadamard and N X gates. The result of the
inner product of the weight with the input will be as state
amplitude |11...1〉. To capture this amplitude information, the
authors suggest inserting a CNOTN

j=N−1 gate and applying
it to a qubit that will be read. As result, the probability of
reading that last auxiliary qubit will be read with the value 1
proportional to the value of the calculated inner product.

In Figure 4, it is shown an example of
a quantum neuron where the input is i =
{1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} and
w = {1, 1, 1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} generated
using the HSGS algorithm defined in Algorithm 21.

In their experiments [9], the authors trained a quantum
neuron with 4 qubits (i.e. 16 amplitude states) to recognize a
cross in a 4x4 pixels image using a quantum training algorithm
to do a random adjust of the weights. This algorithm was based
in the amount of different values between the input and the
weight operators.

IV. AVOIDING CLASSIFICATION ERRORS IN QUANTUM
PERCEPTRON MODEL

Analyzing the the proposed inner product’s behavior, we
noticed that when the difference between weight and input
increases linearly, the probability of the inner product been
still positive decreases quadratically. In Figure 5, it is possible
to see what happens when the input vectors and the weight
become increasingly different (horizontal axis). In this graph,
the line below represents the original neuron, which drastically
decreases its probability of measuring 1 at the end of its
operation, as input and weight are more different. For each
distance value, 1000 random possible states with respective
distances were generated and the average value between them
was calculated.

Given a real problem in which a pattern has noise, as
shown in Figure 8, the neuron behavior would cause a very
self-adjusted (data memorization) behavior to a certain value,
preventing it from generalizing. We found that the probability
of being correctly positively classified in the case where the
cross’s image has only two noises decreases more than 40%.
This means that the quantum neuron only has ability to accept
an input image with few differences in relation with its weight.

As consequence of overfitting implies not tolerate noise and
hence not being able to achieve good levels of generalization.

Fig. 5. The addition of different numbers of pixels versus the probability
of neuron output being one. An illustration that what occurs with the inner
product when the different bits number increases. The ”CT” means ”Circuit
Threshold” and it is equal to zero in the original proposal. In that case we
have a zero toleration that take us to overfit, since it does not tolerate many
different input values in relation to weight.

A. Neuron threshold variation

In order for the neuron to become tolerant to noise, the
threshold for accepting the output of the neuron can be varied
during its execution. In the presence of significant noise, the
neuron probability of giving output 1 becomes very low. Thus,
it is necessary that its execution must be repeated several times,
since the probability value is really low, and can be neglected
if it is executed only a few times.

B. Circuit threshold operator

Considering the |ψw〉 state defined in Equation 1 applied
to the Uw operator, built using Algorithm 21, coupled with
H⊗N and X⊗N quantum gates, it is possible to verify that
〈ψw| |ψi〉 = cm−1, which is the value of the internal product
between the two states (more details can be found in [9]).
What happens at the end of the neuron operations is that
this amplitude is concentrated in the amplitude of the state
|m− 1〉, which can be a low value, even with an insignificant
distance between the two vectors.

Therefore, our other proposal is that the amplitude to be
considered is not only that of the quantum state |m− 1〉, but
of some other quantum states, therefore the neuron decreases
its data memorization and starts to accept a tolerable noise
level. In this alternative, the probability of giving as output
1 is increased, preventing errors from being considered when
the number of executions of the neuron is not significant to
model the probability of its output.

For this, other CNOTs are coupled to the neuron so that
more amplitude values are added to the amplitude of the
final state to be measured. The operator that has CNOTs
was called CTO (Equation 2) and has two parameters that
are N and CT . N is the number of qubits manipulated
(considering the output qubit) and CT is how many CNOTs

Ui Uw

|0〉

H⊗N

• • • •

H⊗N X⊗N

•

|0〉 Z • Z • • • •

|0〉 Z Z Z Z Z Z •

|0〉 •

|o〉

Fig. 4. Quantum perceptron circuit of a N=4, where the input i1 = i2 = i3 = −1, and ij = 1, for j = 0, 4, 5, 6, 7 and the weight is w3 = −1, and 1 for
all other values, using HSGS algorithm to generate Ui and Uw circuits.

are considered in the calculation, i.e. what the circuit threshold
(CT) is.

CTON
CT =

CT∏
j=0

CNOTsNN−j (2)

The final quantum circuit of the quantum neuron with
a circuit threshold (CT) is shown in Figure 6. Figure 7
shows the quantum state amplitudes considered when the CT
parameter is applied in quantum neuron circuit building. The
CT parameter and the final amplitude of the output state are
positively correlated. It is possible to accept noise levels in the
original neuron (when CT = 0), it is necessary to significantly
lower the neuron threshold (NT) to values below 10% or 5%
for example.

|0〉

Ui Uw

CTON
CT

|0〉

· · ·

|0〉

|o〉

Fig. 6. Quantum perceptron circuit with parameter CT for circuit threshold.

Fig. 7. The quantum states (top) considered to increase the final amplitude
of the neuron output when the circuit threshold (CT) parameter is set.

Fig. 8. The computation of different numbers of noises. When we have
the pure crosses, there is no noise. In the basic implementations using 4x4
image there is only 4 possibility of crosses in different positions. When we
add noises, even if there is some noise, the cross is still there and those
possibilities must be consider.

V. EXPERIMENTS

In this section, we detail the experiments conducted to test
the two alternatives to avoid the data memorization mentioned
in the previous sections. From Figure 5, it is possible to
identify the NT values at which the neuron accepts more and
more noise: 0.01, 0.06, 0.12, 0.20, 0.37, 0.55, 0.75, 0.9. For a
given training set, how to choose the values of the CT and NT
parameters? Training the CT or NT together with the neuron

weights can be considered. To validate this training hypothesis,
we have a dataset with randomly distributed noises in 140
images with balanced classes (50% of cases each).

We did five sets of experiments, performing a classical-
quantum training on the models. First, a genetic algorithm
(GA) was executed to find the values of the quantum neuron
weights and its CT value. In the second experiment, GA was
executed to search for weight and NT values – next section
details the parameters of the genetic algorithm. In the third set
of experiments, we searched weights for some fixed values of
NT=0.05, 0.1, 0.15, 0.3, 0.4, 0.6, in the original neuron, i.e.
when CT = 0, using GA. We also performed the experiment
where CT = 0 and NT = 0.5, where the GA searches only for
weights. The last experiment attempted to perform the GA to
search for weights in fixed CT configurations.

Tests were conducted on Google Cloud Platform in a virtual
machine with 24 vCPUs Intel Skylake and 21.75 GB of mem-
ory, using the Qiskit programming language [26] that builds
executable quantum circuits in quantum processor simulators
and in real quantum processors from IBM. In our analysis we
focus on two parameters: the accuracy and the time of each
run. For each example of the training set, the HSGS algorithm
was used to generate the circuit and coupled with the operators
of each strategy (CTO or NTV).

A. Genetic Algorithm

Genetic algorithm was applied to perform weight, NT and
CT searches since they have already been used in weight
searches of neural networks and are fast for prototyping [27],
[28]. We follow an usual GA implementation. Initially, we
generate a population of nPopulation individuals, who encodes
the binary weights and, if applicable, NT and CT parameter.
CT is an integer that can vary between 0 (included) and 16, so
we can represent it as a 4-position binary vector. NT value was
modeled to be represented in 3 bits, since there are 8 possible
values. The Algorithm 2 details the general functioning of the
GA performed in our experiment. The crossover and mutation
operator is detailed in Figure 9. The size of population in
our experiment was 20 individuals. In each generation 19 new
individuals are created, considering the roulette algorithm to
choose the best performing parents. The most accurate weight
of the current iteration is maintained in the next iteration.

B. Experiments analysis

It is possible to verify in Figure 10 that training only the
weights for some fixed values of neuron threshold we found
good results. For example, for NT = 0.05, the hit rate was
83.57%. However, training weights and NT parameter with
GA, good rates were found, 76.43%, but not greater than
training weights with the CT parameter, which was 78.57%.
Probably, this experimental result was due to the fact that it
may be easier to find weights by increasing the level of noise
tolerance (i.e, varying CT) than to look for weight and NT.

It is also found that high values of NT have low accuracy in
training their weights, which was expected, since it has little
tolerance in noise. It was not placed in the graph for simplicity,

Fig. 9. Given two parents, in the crossover operator, a new child is created
by copping the head from one (blue) and merging to a tail from the other
(blue). The mutation flips some elements (red) probabilistically, with 10% of
probability.

but all the values found for GA, training weights and with fixed
values of NT = 0.5 and CT = 0, that is, the original neuron with
fixed threshold, the accuracy result remains constant 53.57%
in iterations. This means that the NT = 0.5 was not a good
value for this base and the GA did not find weights that would
satisfy the acceptance condition for the entire noisy base.

Table I shows the results found when fixing the value of
CT in a quantum neuron, and using GA to search for weights
in the neuron, in a noisy dataset. Table II shows the results of
GA execution to search for weights when NT has some fixed
value.

CT Best accuracy Time Generation
0 54.29% 04h04m 116
2 60% 05h05m 193
4 65.71% 06h06m 1
6 82.86% 06h06m 157
8 82.14% 07h07m 94

TABLE I
BEST ACCURACY OF WEIGHTS FOUND IN TRAINING CONDUCTED BY THE

GA WITH CT=0,2,4,6,8 FIXED, IN A NOISY DATASET.

From these tables, it is possible to verify that the GA
searching for weights and CT or NT, as shown in Figure 10,

Fig. 10. Accuracy of the best weight found in each GA generation for the eight experiments: GA searching for weights and CT parameter of the neurons;
GA searching for weights and NT parameter; and GA searching for weights when NT is 0.05, 0.1, 0.15, 0.3, 0.4, 0.6.

Algorithm 2: Genetic Algorithm to train any kind of
N size population

Result: Best neuron with weight and parameters
1 Parameters: nPopulation;
2 population ← newPopulation(nPopulation);
3 population ← rank(population);
4 generation ← 1;
5 while (generation != 50) do
6 lastBestWeight ← bestWeight(population);
7 population ← makeCrossover(population);
8 population ← makeMutation(population);
9 population ← population + lastBestWeight;

10 population ← rank(population);
11 generation++;
12 end

have not yet managed to achieve better general configurations,
probably because it needs more iterations.

NT Best accuracy Time Generation
0 .05 83.57% 04h04m 16
0.1 80.71% 04h15m 46

0.15 68.57% 04h06m 37
0.3 62.14% 04h06m 30
0.4 57.14% 04h05m 3
0.6 54.29% 04h08m 38

TABLE II
BEST ACCURACY OF WEIGHTS FOUND IN TRAINING CONDUCTED BY THE

GA WITH NT=0.05, 0.1, 0.15, 0.3, 0.4, 0.6 IN A NOISY DATASET.

VI. CONCLUSION

This work presents initial results to understand the behavior
of a quantum Perceptron proposed in [9] from the point of
view of learning and generalization in situations that require
the presence of noise, running it on the IBM quantum simula-
tor. It was verified that this model has the possibility to over-
adjust its weights to a dataset, causing overfitting and therefore
being unable to tolerate noise for fixed parameters. It has been
proposed to include a quantum operator, Circuit Threshold
Operator (CTO), which increases the functioning threshold
of the circuit threshold (CT), adding degrees of tolerance to its
classification, amplifying the amplitude of the expected output.

Another existing alternative is the adjustment of the neuron
threshold (NT). This approach implies that the adjustment
value of this threshold may be very low, which require that the
repetition of the neuron be rigorous to capture the statistical
behavior of its output.

In order to show the effectiveness of the proposed model,
experiments to search for weights, CT and NT were performed
using a classical genetic algorithm. The genetic algorithm
finding weights and CT reaches a hit rate value of 78.57%
while looking for weights and NT reached 76.43% hit rate. If
only the weight was searched with NT = 0.5, CT = 0 fixed
(original neuron), the hit rate is not higher than 53.57% in all
generations. Better results were found by searching for weights
for some fixed and low NT values. The need to vary circuit
or neuron thresholds is evident in order to generalize training
sets.

Some level of effort is being made for the maturation of
quantum models and their simulations. This work has exper-

imental contributions that can serve as a basis for classifiers
whose applications require noise levels. Future work can be
directed to the use of a quantum training algorithm instead of
a classic, which allows the use of quantum mechanical prop-
erties to solve optimization problems; and to the comparison
of different NISQ computers available for experimentation.

DATA AVAILABILITY

All the data that support the experiments shown in this study
alongside with the code that have been created are available
from the corresponding author upon a simple request.

ACKNOWLEDGMENT

We thank IBM for making the IBM Quantum Experience
platform available and Google for making credits available to
our research group on the Google Cloud Platform that enabled
the simulation to be efficient and faster. We also have to thank
the Brazilian National Council for Scientific and Technological
Development (CNPq) for financial support.

REFERENCES

[1] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[2] C. Wang, G. Yvonne, L. Frunzio, M. Devoret, and R. J. Schoelkopf III,
“Techniques for manipulation of two-qubit quantum states and related
systems and methods,” Jan. 17 2019, uS Patent App. 16/068,405.

[3] A. Cross, “The IBM Q experience and QISKit open-source quantum
computing software,” in APS March Meeting Abstracts, ser. APS Meet-
ing Abstracts, vol. 2018, Jan 2018, p. L58.003.

[4] Accessed: 2019-06-05.
[5] J. A. Jones, M. Mosca, and R. H. Hansen, “Implementation of a quantum

search algorithm on a quantum computer,” Nature, vol. 393, no. 6683,
pp. 344–346, 1998.

[6] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh et al., “Sympy:
symbolic computing in python,” PeerJ Computer Science, vol. 3, p. e103,
2017.

[7] P. D. Nation and J. Johansson, “Qutip: Quantum toolbox in python,”
online at http://qutip. org, 2011.

[8] H. A. et al, “Qiskit: An open-source framework for quantum computing,”
2019.

[9] F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni, “An artificial
neuron implemented on an actual quantum processor,” npj Quantum
Information, vol. 5, pp. 1–8, 2019.

[10] R. Orus, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, 02
2019.

[11] N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk search
algorithm,” Physical Review A, vol. 67, no. 5, p. 052307, 2003.

[12] K.-H. Han and J.-H. Kim, “Genetic quantum algorithm and its applica-
tion to combinatorial optimization problem,” in Proceedings of the 2000
Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512),
vol. 2. IEEE, 2000, pp. 1354–1360.

[13] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight
bounds on quantum searching,” Fortschritte der Physik,
vol. 46, no. 4-5, pp. 493–505, 1998. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/

[14] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, pp. 195–202,
2017.

[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[16] M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for
a quantum neural network,” Quantum Information Processing,
vol. 13, no. 11, p. 2567–2586, Aug 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11128-014-0809-8

[17] M. Panella and G. Martinelli, “Neural networks with quantum architec-
ture and quantum learning,” International Journal of Circuit Theory and
Applications, vol. 39, no. 1, pp. 61–77, 2011.

[18] W. de Oliveira, “Quantum ram based neural netoworks.” European
Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning, 01 2009.

[19] M. Schuld, I. Sinayskiy, and F. Petruccione, “Simulating a perceptron
on a quantum computer,” Physics Letters A, vol. 379, no. 7, pp. 660 –
663, 2015.

[20] F. M. de Paula Neto, T. B. Ludermir, W. R. de Oliveira, and A. J. da
Silva, “Implementing any nonlinear quantum neuron,” IEEE Transac-
tions on Neural Networks and Learning Systems, pp. 1–6, 2019.

[21] M. Schuld, M. Fingerhuth, and F. Petruccione, “Implementing a
distance-based classifier with a quantum interference circuit,” EPL
(Europhysics Letters), vol. 119, no. 6, p. 60002, sep 2017.

[22] M. Schuld and N. Killoran, “Quantum machine learning in feature
hilbert spaces,” Physical review letters, vol. 122, no. 4, p. 040504, 2019.

[23] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada,
and S. Lloyd, “Continuous-variable quantum neural networks,” Physical
Review Research, vol. 1, no. 3, p. 033063, 2019.

[24] R. B. de Sousa, E. J. Pereira, M. P. Cipolletti, and T. A. Ferreira, “A
proposal of quantum data representation to improve the discrimination
power,” Natural Computing, pp. 1–15, 2019.

[25] M. Rossi, M. Huber, D. Bruss, and C. Macchiavello, “Quantum hyper-
graph states,” New Journal of Physics, vol. 15, no. 11, 2013.

[26] A. Cross, “The ibm q experience and qiskit open-source quantum
computing software,” Bulletin of the American Physical Society, vol. 63,
2018.

[27] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65–85, 1994.

[28] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms.” in IJCAI, vol. 89, 1989, pp. 762–767.

