
YOLO-ASC: You Only Look Once And See
Contours

Petr Hurtik
CE4I, IRAFM

University of Ostrava
Ostrava, Czech Republic

petr.hurtik@osu.cz

Vojtech Molek
CE4I, IRAFM

University of Ostrava
Ostrava, Czech Republic

vojtech.molek@osu.cz

Pavel Vlasanek
CE4I, IRAFM

University of Ostrava
Ostrava, Czech Republic

pavel.vlasanek@osu.cz

Abstract—YOLO is a useful, one-stage tool for object detection
and classification. In this paper, we consider the application of
grocery product detection. The grocery stores have a significant
amount of product classes, so it is beneficial to postpone the
classification into a second, specialized neural network with a
higher capacity. Extracting bounding boxes for a classification
network is not precise enough as the detected area includes re-
dundant information about the background. We propose YOLO-
ASC, which, for rectangular-based objects, detects bounding
boxes together with object contour using a quadrangular. This
approach allows detecting objects more accurately and without
the background. For the quadrangular detection functionality,
YOLO-ASC shares the feature maps that are already present in
the network, and therefore its inference time is almost identical
to the original YOLO. YOLO reaches high detection precision
by using YOLO apriori knowledge, anchors extracted from data.
In this work, we present two experiments where we demonstrate
that YOLO-ASC training converges faster due to the symbiosis
between the bounding box detection and quadrangular detection.
Finally, we propose a tool for generating synthetic datasets with
quadrangular labels that is helpful for transfer learning.

Index Terms—YOLO, object detection, object mask

I. PROBLEM STATEMENT

In order to decrease money-cost or to increase effectiveness,
stores are automatized. As an example, we can mention hand
scanners or self-service cash desks. With the spread of ma-
chine learning-based image processing, different approaches
for improvement are available. In this study, we are focusing
on the automatic check of articles on shelves, where the
functionality is as follows. A part-time worker puts all the
goods on a shelf based on a previously-given manual, takes
a picture with a mobile phone camera, and the system will
automatically evaluate if the positions of the goods are correct;
the automatic check may save a supervisor’s time significantly.
Such automatic processes already exist in literature [1] and
usually consist of two phases: detection and recognition.
Modern object detectors can recognize objects at the same time
as they are detected, but it is better to realize classification
by a separate neural network with a corresponding capacity
and specialized on the specific task. This approach can be
observed usually in practice and also in competitions such
as Signate object detection, where the official tutorial (see
signate.jp/competitions/159/tutorials/11) follows the schema.
It is evident that for the correct recognition of an object,

Fig. 1. An illustration of the problem. Left: a shelf image with products
where a single instance is marked as detected. The green rectangle is standard
detection with a bounding box, blue quadrangle is given by four vertices.
Middle: the extracted instance in its original form given by the bounding
box. Right: extracted and rotated instance from the blue bounding quadrangle.
In comparison with the right image, the middle one includes only 65 % of
information related to the object.

it is necessary to do not fail in the detection phase. The
second issue is the most detectors are based on bounding boxes
detection without additional refinement, leading to a classifier
getting redundant data. For an illustration, see Figure 1, where
the object covers only 65 % of the detected bounding box; the
rest is a background that can be disturbing to a classifier. The
second area where the precise information is needed is instance
segmentation, where the goal is to distinguish between the
particular instances, notwithstanding they are of the same
class.

In our work, we use YOLOv3 [2], which is one of the
fastest detectors – see Figure 2 in [3]. We propose a way
how to improve YOLO bounding box detection capabilities
by additionally predicting vertices of a quadrangle without a
negative impact on processing speed. Assuming that a more
precise object boundary improves the classification accuracy,
our approach is valuable for the described problem of gro-
cery store products detections. In this paper, we present the
following contributions to the problem domain:

• with the re-use of YOLO feature maps, we expand its
output vector to predict vertices of an object bounding
quadrangle,

• we base the inference of vertices on apriori knowledge,
anchors, that is already available in YOLO, so no other
pre-preprocessing is needed,

• by the intelligent integration of our functionality into

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

YOLO, we avoid any significant addition to the size of the
network, and therefore the inference time is not affected,

• we propose and implement a simple and powerful tool
for generating synthetic data for training YOLO enriched
with bounding quadrangle detection.

Abbreviations used in the paper
IOU Intersect Over Union
YOLO You Only Look Once
BB Bounding Box
FC Fully Connected
CNN Convolutional Neural Network
LR Learning Rate
LSTM Long Short-Term Memory

II. RELATED WORK

Historically, the attempts to detect and recognize objects
were based on various hand-crafted features such as those
based on edges or contours [4], SIFT [5] and its derivatives
[6], or histograms [7], including HOG [8]. The features were
then classified using nearest neighbor in alternative space
[9], SVM [10], tree/forest-based methods [11], or by shallow
neural networks, to mention some of them. Let us note that the
methods usually suffer from low precision and low robustness
in varying conditions.

The big boom came with the development of deep neural
networks. However, the first methods were based on a simple
principle of sliding window [12] where each sub-part of an
image was classified separately. The process was improved by
generating proposal regions in R-CNN [13] and by integrating
into a CNN in Faster R-CNN [14]. The current generation
of neural networks, including SSD [15], YOLO [2], Corner-
Net [16], RetinaNet [3], or EfficientDet [17] is able to detect
bounding boxes directly in a single network pass; such a
functionality is called one-stage detector.

In our study, we are focusing on the quadrangle approx-
imation of object contours in order to obtain more precise
object detection. The similar (in the sense of the output) func-
tionality is presented in Mask R-CNN [18], where additional
convolutional layers are added at the end of the network to
realize instance segmentation of RoI (region of interest). It is
important to mention that additional functionality slows down
the training/inference time. The current state-of-the-art focuses
on adding the instance segmentation functionality to one-stage
detectors while keeping the inference time identical. Fu et al
[19] modified RetinaNet into RetinaMask, where the inference
time is decreased only negligibly, mainly due to additional
tricky speed-ups.

III. YOLO-ASC

YOLO (the acronym of You Only Look Once) has been
developed by Joseph Redmon et al [20] in 2016, further
developed by the same author in 2017 [21] and finally brought
to the final v3 version in 2018 [2]. The critical fact is that the
main idea has been preserved throughout the versions, and it
is recalled in the following subsection.

A. YOLO v3

Let us consider a standard convolutional neural network for
classification, which outputs a vector of class (e.g., dog, cat,
etc.) probabilities. Such a network would work/classify well,
but it will not be able to locate an object in a scene; adding
a regression of the object bounding box will not solve the
issue due to the network predicting the box even if the scene
does not include the object. On the other hand, when the
scene includes more than one object, the bounding box will be
predicted somewhere between them. Adding more bounding
box regressors will not solve the issue because they will be
placed again somewhere in the middle between the objects
due to their independence.

YOLO solves the independent bounding boxes (BBs) re-
gression problem by splitting an image into logical sub-areas
called cells, forming a grid. Each cell detects and classifies
a single object. To avoid multiple detections of a single
object by adjacent cells, non-maxima suppression is applied.
Furthermore, together with the standard tuples (x, y, w, h)
(i.e., top left corner of BB and its width and height), YOLO
learns confidence whenever given cell BB contains an object
or not.

In fact, YOLO can detect up to three objects in a single
cell; the problem of independent regressors is solved by so-
called anchors. Anchors are prototypical widths and heights of
BBs extracted from the data by K-means algorithm [22] and
are a form of apriori knowledge. Then, each of the three cell
regressors estimates BB using one of the anchors; thus, it is
guaranteed they will behave differently and try to detect dif-
ferent objects. Let us note that there is room for improvement
by using some of the modern and more powerful clustering
algorithms. To solve the problem of detecting objects with
varying sizes, YOLO uses three different scales, where each
scale has its own grid with its own anchors. In detail, YOLO
uses scales with the grids of 13 × 13, 26 × 26, and 52 × 52
cells, where the input image size is 416× 416px.

To be complete, the difference between the YOLO versions
is that the second version [21] adds batch normalization,
anchors selection, uses multi-scale prediction, and replaces the
FC layers at the end of the network by convolutional layers.
The current version follows the previous one and replaces
the backbone Darknet-19 with a deeper one – Darknet-53
having 53 convolutional layers. This leads to a decrease in
computation speed from 171FPS to 78FPS [2] on ImageNet,
but on the other hand, it increases the accuracy of the network.

Within three years from the first proposal, the original paper
reached more than six thousand citations and became well-
accepted in the community. Excellent application of YOLO
can be found in various areas such as video restoration [23],
object tracking [24], or car license plate recognition [25], to
name just a few.

B. Getting more

YOLO v3 backbone is a standard, fully convolutional net-
work. The known fact is that a CNN detects the basic features
such as edges in the first layers, middle layers combine them

W

H

B₀ B₁

B₂B₃

P₀ P₁

P₂P₃

C

Fig. 2. An example of the bounding box and quadrangle with their properties,
placed within a grid. The cell responsible for the detection of the box and the
corresponding quadrangle is marked by a green color.

into intermediate representations, and finally creates abstract
representations of objects in the last layers [26]. The logical as-
sumption is that Darknet-53 combines the features in the same
way as generic CNNs. We propose to leverage the learned
features to estimate the object bounding quadrangle given by
four vertices. It is a fact that the quadrangle differs from
bounding boxes only by the level of precision. Furthermore,
the vertices of the quadrangle always lie on the border of
the bounding box. Because of that, it is beneficial to use the
already trained Darknet-53 feature maps.

The output tensors contain the information about bounding
boxes, which is extracted by 1×1 output convolutional filters.
Considering that the YOLO grid includes n2 cells, we want
to predict c classes, the number of the output convolutional
filters per scale is given as 3n2(5+ c), where 3 stands for the
three anchors, 5 for predicting x, y, w, h coefficients, and the
confidence p. We assume our store products to be bounded
with rectangles under different transformations. We propose
to describe each vertex of a quadrangular by two values
so that the output vector size is 3n2(5 + c + 8), i.e., the
number of filters in the output layers is doubled. That may
seem like a significant increase; however, taking into account
the number of trainable parameters in the Darknet-53
backbone, the increase is only negligible 0.07% (61,523,734
vs. 61,566,814 parameters).

The question that remains unanswered is what two values
per vertex we should use and how to train YOLO to learn
them. The simple solution is to predict the absolute coordinates
within the 416×416px image (the native YOLO input size) or
to transform them into [0, 1]. As we mentioned above, YOLO
has apriori knowledge – anchors. The goal is, therefore, to use
the anchors to estimate the points of a quadrangle. For that,
we consider bounding box points B and quadrangle points P
as is shown in Figure 2. For such points, following holds:

1) P is always within the box given by B,
2) P always lie on the border established by B,

therefore, we formulate a hypothesis that the detection of
bounding box given by B can share CNN features with
detection of points P. Furthermore, we consider alternative

points P′ where P ′x ∈ [0,W] and P ′y ∈ [0, H], where W
and H denote width and height of a particular bounding
box. The transformation P 7→ P′ can be realized as P ′x =
Cx−Px +0.5W , P ′y = Cy −Py +0.5H , so prediction of P′

are estimated by using anchor in the same way, as is standard
YOLO estimating bounding box width and height. For P′, it
also holds that the vertices are always predicted inside the
bounding box and also independent of the size of an object.
For that, we propose to compute the loss value L for each of
the cells as

L = o`

4∑
i=1

(
xi

WA
− x̂i

)2

+

(
yi
HA
− ŷi

)2

,

where i represents particular vertex prediction and its ground-
truth value, o ∈ {0, 1} is a constant expressing if an object is in
the cell or not. The constant is derived from YOLO, the same
as ` ∈ [1, 2], which is computed from a box size, and it is used
to increase the importance of smaller boxes that generate a
lower error than the big ones. The variables WA and HA stand
for the width and height of the closest anchor that is found
for each ground truth box separately in a preprocessing phase.
The loss is added to the rest of YOLO losses (for x, y, w, h,
confidence, and classes) with the same weight. For the vertices,
we do not estimate confidences because they are shared with
the already trained one – it is obvious that the vertices cannot
be detected without a bounding box prediction.

Note, if a quadrangular vertex perfectly matches an original
vertex, it is then replicated and detected twice. The special
case appears where all the vertices match. That means the
quadrangular object is a box itself. Here, the two parts of the
loss function realize the same detection, so the original YOLO
functionality is preserved. That part is helpful for model
training: a standard dataset, where only boxes are labeled,
is used for the model pre-training. Then, the model can be
fine-tuned on a dataset with the fine annotation.

IV. EXPERIMENTS

In this study, we utilize two experiments based on artificial
and real data. The first one focuses on the usage of our
developed tool that is helpful mainly for pretraining when
one is facing a lack of data, or want to see the behavior of
the training process under various circumstances. The second
experiment demonstrates possible real-life usage for grocery
products – cigarette boxes. In the experiments, we show that
our intelligent integration leads to:

1) possibility of quadrangular border detection,
2) preserving YOLO inference speed,
3) fewer epochs for its full training,
4) improved precision of BB detection,
5) increased classifier accuracy.

A. Experiment with the synthetic data

Because the dataset used in the second experiment can be
considered rather small from the number of images point of
view, we implemented a tool for generating a synthetic dataset
that will be used for transfer learning. The tool supports a

Fig. 3. Illustration of generated images from the synthetic dataset.

variety of shapes to be rendered with various options and a
desirable amount of randomness. Its features are as follows:
• generates triangles, squares, pentagons, and stars,
• Each shape has a random position and color,
• supports randomized shape rotation,
• allows enabling/disabling occlusion,
• exports YOLO-friendly labels,
• everything mentioned above is fully customizable.
The tool is written in Python using the Jupyter platform, and

it is available on our GitLab1. Using the tool, we generated
4 · 103 training images, 1 · 103 validation images, and 4 · 103
testing images. All images have a resolution of 416 × 416px
and include 1-10 boxes per image with random size, aspect
ratio, color, background, and noise. The illustration of the
dataset images is shown in Figure 3. With the dataset, we
trained both standard YOLO and YOLO-ASC with the follow-
ing configuration: Adadelta optimizer, batch size 8, Reduce LR
with factor 0.5 and patience 2, 100 epochs, and early stopping
set to 10.

The training computation performance is 311s/epoch
for YOLO and 314s/epoch for YOLO-ASC; inference
28.2ms/image for YOLO and 28.4ms/image for YOLO-
ASC. The overhead is 0.9% for training and 0.7% for inference
time, which is negligible. On the other hand, the standard

1https://gitlab.com/irafm-ai/yolo-asc/tree/master/tool for synth data

TABLE I
COMPARISON OF THE PERFORMANCE ON THE synthetic test set

Average IOU for threshold
.5 .6 .7 .8

Type � ♦ � ♦ � ♦ � ♦

box-box .899 .914 .898 .914 .897 .913 .873 .904
box-poly .627 – .537 – .389 – .216 –
poly-poly – .871 – .870 – .862 – .786

� YOLO ♦ YOLO-ASC

YOLO has been early stopped at epoch 52 while the polygon
version at epoch 46, so the training time is 4 hours 12 minutes
for the standard and 4 hours 0 minutes for our proposed one.
All times are measured on an RTX-2080Ti graphic card.

For the trained models, we compared IOU0.5 on the test
dataset. Considering only the bounding boxes, the standard
version reached the score 0.899, while our proposed technique
reached 0.914; notwithstanding, it was trained for a shorter
time due to early stopping. It is obvious that the functionality
of quadrangle learning is connected with the functionality of
bounding box learning so they can strengthen each other.
For further analysis, we propose the following comparison
based on IOU0.5 metric. For YOLO, we compare ground
truth bounding box and prediction polygon representation.
For YOLO-ASC, we compare label polygon representation
and prediction polygon representation. YOLO reached 0.627,
which was outperformed by 0.871 score given by YOLO-ASC.
That shows that YOLO-ASC is not only better from a bound-
ing box estimation point of view, but it is capable of detecting
the precise information without a redundant background as
well. The output of the inference is visualized in Figure 4
and in Table I, where we show results of the additional IOU
metrics. As it is evident from the figure, the visual output
corresponds with the numerical results: YOLO-ASC detects
the quadrangular borders with nearly perfect precision,
and furthermore, the detection of bounding boxes is even
slightly more precise than the YOLO one.

B. Experiment with the real data

For the benchmark dataset, we have selected Grocery
Dataset [27] that is freely available online2. It consists of
353 shelf images, i.e., images where the various amount of
shelves with a variable number of products are captured.
The variability is the advantage of the dataset: according to
the authors, the images were captured in approximately 40
grocery stores by four different cameras. The images vary
in resolution, aspect ratio, lightness, orientation, and level of
detail. In total, the shelves’ images include 13054 cigarette
boxes. For an illustration, see Figure 5 that shows several
images. Because the labels are given in the form of bounding

2https://github.com/gulvarol/grocerydataset

Fig. 4. An example of predicted images from the synthetic test set for IOU0.5.
Left: the standard YOLO. Right: YOLO-ASC.

boxes, we manually annotated the quadrangular borders of the
cigarette boxes using CVAT tool3 and put the labels online4.

For our experiments, we extracted 30 randomly selected
images to serve as a test set. The images contain 1275 cigarette
boxes. Furthermore, when YOLO is trained, 10% of images
from the training set are used for validation. YOLO and
YOLO-ASC were trained with the same setting as in the
previous experiment, i.e., we used Adadelta, batch size 8,
reduce LR with factor 0.5 and patience 2, 100 epochs and
early stopping set to 10. Furthermore, we created a synthetic
dataset that mimics the real data using our tool described in
the previous section. The synthetic dataset serves as a basis
for transfer learning. The results support our assumption that
YOLO-ASC learned faster due to the fact that the detection of
bounding boxes and the detection of quadrangular borders are
linked together and support each other. While YOLO stopped
after 38 epochs, YOLO-ASC stopped after 21 epochs.

We tested the quality of prediction for four various IOU, see
Table II. YOLO includes its own IOU threshold for training

3https://github.com/opencv/cvat
4https://gitlab.com/irafm-ai/yolo-asc/tree/master/real dataset/annotations

Fig. 5. Illustration of randomly selected images from the real dataset.

TABLE II
COMPARISON OF THE PERFORMANCE ON THE real data test set

Average IOU for threshold
.5 .6 .7 .8

Type � ♦ � ♦ � ♦ � ♦

box-box .876 .878 .876 .877 .871 .871 .816 .822
box-poly .855 – .854 – .839 – .750 –
poly-poly – .860 – .859 – .847 – .777

� YOLO ♦ YOLO-ASC

that is set to value 0.5. Therefore, we selected IOU0.5 as
the minimum one in our comparison; lowering it does not
bring any significant difference. On the other hand, IOU0.8 (or
bigger) is selected only rarely; thus, we stopped here. As it is
obvious from the table, we fulfill our assumption that YOLO-
ASC can reach higher or the same accuracy for the BB
prediction as to the original one, even though it was trained
for the fewer epochs. Comparing BB to polygon prediction
(YOLO) or polygon to polygon prediction (YOLO-ASC), we
reached higher detection accuracy, especially for the higher
IOU thresholds.

In order to verify the claim that a more precise detection
would lead to a better classification, we trained a MobileNetV2
classifier. Then, we fed the trained classifier with two types
of data. The first are images extracted as standard boxes,
while the second are images where YOLO-ASC removed the
background according to its precise detection. The classifier
accuracy is 0.897 vs. 0.890, i.e., the quadrangular detection
leads to a slight increase of the classifier accuracy.

To put the results into the state-of-the-art context, we trained
Mask R-CNN [18] with ResNet50 backbone in the same way,
i.e., we pre-trained it on artificial data and then tuned on the
real one. Considering IOU0.5 and mask comparison, Mask R-
CNN achieved a great score of 0.897. On the other hand, the
training took approx 1450s per epoch (YOLO-ASC 130s) and
prediction approx 11s per image, which is more than 300×
slower than YOLO-ASC.

Fig. 6. Cropped results from the real data test set for IOU0.5. Left: YOLO.
Right: YOLO-ASC.

V. DEAD ENDS AND LIMITATIONS

During the development and experiment realization, we
observed that there are several issues to be mentioned and
can lead to further work.

The major dead-end of our original proposition that is the
motivation for our final proposed technique is that direct
prediction of vertices in the meaning of absolute coordinates
without their anchor estimation does not work properly. In
this case, the whole machinery achieves worse results than
the original YOLO.

The second issue we found is the problem of extending
the original YOLO functionality without deeper analysis. In
YOLO-ASC, we estimate box width and height by anchors
the same as in YOLO. Following the code, width and height
are used in their logarithmic form to reach a more accurate
result. However, applying log into quadrangle vertices leads to
the collapse of loss function into not-a-number (NaN) because
the vertices are from [0, 1], including zero. The application of
different preprocessing function is still open.

YOLO-ASC is based on YOLO; therefore, it inherits origi-
nal YOLO limitations. The noteworthy one is that considering
the big, medium, and small objects, the detection of big (ex-
tremely big) ones is the least precise. Actually, YOLO tends to
miss such objects completely. This is mentioned in the original
YOLO paper [2]: With the new multi-scale predictions, we see
YOLOv3 has relatively high APS performance. However, it has
comparatively worse performance on medium and larger size
objects. More investigation is needed to get to the bottom of
this.

The current most significant limitation of YOLO-ASC,
which gives direction to our future work, is how quadrangle
vertices are handled. Firstly, vertices have to be in the same
order across the whole dataset. It means that, e.g., left top
vertex has to be always placed on the same position in the
label vector. That is because the prediction of vertices is
realized without a knowledge of the previous vertex. For
the same reason, YOLO-ASC cannot be, in its current form,
generalized into the detection of a variable number of vertices.
Such functionality would require an LSTM-based approach

that would be time demanding and, therefore, not fitting our
requirement to retain the original YOLO speed. For illustra-
tion, see [28], where the same LSTM extension is applied to
semantic segmentation.

VI. SUMMARY

Following the increasing trends in automatization, we have
recalled the problem of grocery store goods localization and
recognition. Here, we keep the two-stage schema, where
objects are localized and extracted first and then recognized
by a separate system. In this paper, we have chosen YOLOv3
to be the detection algorithm due to its excellent computation
speed. We noticed that with the schema, the disadvantage is
that object extraction is based on BB and therefore includes
redundant information such as the background. Consequently,
we propose YOLO-ASC that is able to detect precise quad-
rangular shape. It extends the original YOLO by only several
convolution filters in output tensor, which increases the num-
ber of neural network parameters only by 0.07%. Therefore,
the inference speed remains the same in YOLO-ASC as in
the original YOLO. The inner logic of the precise detection
relies on the transformation of points of quadrangle into an
interval that can be estimated using anchors, i.e., YOLO apriori
knowledge. Such quadrangular detection is then linked with
BB detection that leads to the possibility of sharing feature
maps.

In the paper, we presented two experiments based on syn-
thetic and real data sets. Results show YOLO-ASC converges
faster, training time is reduced, the precision of BB detection is
increased, and that quadrangular detection eliminates the use-
less background. Comparing the results with Mask R-CNN, we
demonstrated that YOLO-ASC is significantly faster. Finally,
YOLO-ASC is available freely on our GitLab repository5.

ACKNOWLEDGMENT

The work was supported from ERDF/ESF ”Centre
for the development of Artificial Intelligence Methods
for the Automotive Industry of the region” (No.
CZ.02.1.01/0.0/0.0/17 049/0008414)

REFERENCES

[1] Y. Zhu, C. Zhang, D. Zhou, X. Wang, X. Bai, and W. Liu, “Traffic
sign detection and recognition using fully convolutional network guided
proposals,” Neurocomputing, vol. 214, pp. 758–766, 2016.

[2] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[3] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[4] B. Leibe and B. Schiele, “Analyzing appearance and contour based
methods for object categorization,” in 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2003. Pro-
ceedings., vol. 2. IEEE, 2003, pp. II–409.

[5] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

5https://gitlab.com/irafm-ai/yolo-asc

[6] A. E. Abdel-Hakim and A. A. Farag, “Csift: A sift descriptor with color
invariant characteristics,” in 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), vol. 2. Ieee,
2006, pp. 1978–1983.

[7] F. Porikli, “Integral histogram: A fast way to extract histograms in
cartesian spaces,” in 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE,
2005, pp. 829–836.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” 2005.

[9] Y. Tang, C. Zhang, R. Gu, P. Li, and B. Yang, “Vehicle detection and
recognition for intelligent traffic surveillance system,” Multimedia tools
and applications, vol. 76, no. 4, pp. 5817–5832, 2017.

[10] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vap-
nik, “Feature selection for svms,” in Advances in neural information
processing systems, 2001, pp. 668–674.

[11] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[12] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recog-

nition with convolutional neural networks,” in Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012). IEEE,
2012, pp. 3304–3308.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[16] H. Law and J. Deng, “Cornernet: Detecting objects as paired key-
points,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 734–750.

[17] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” arXiv preprint arXiv:1911.09070, 2019.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[19] C.-Y. Fu, M. Shvets, and A. C. Berg, “Retinamask: Learning to predict
masks improves state-of-the-art single-shot detection for free,” arXiv
preprint arXiv:1901.03353, 2019.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[21] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[22] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.

[23] S. Ali, F. Zhou, A. Bailey, B. Braden, J. East, X. Lu, and J. Rittscher,
“A deep learning framework for quality assessment and restoration in
video endoscopy,” arXiv preprint arXiv:1904.07073, 2019.

[24] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He,
“Spatially supervised recurrent convolutional neural networks for visual
object tracking,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2017, pp. 1–4.

[25] S. M. Silva and C. R. Jung, “Real-time brazilian license plate detection
and recognition using deep convolutional neural networks,” in 2017 30th
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).
IEEE, 2017, pp. 55–62.

[26] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning
of hierarchical representations with convolutional deep belief networks,”
Communications of the ACM, vol. 54, no. 10, pp. 95–103, 2011.

[27] G. Varol and R. S. Kuzu, “Toward retail product recognition on grocery
shelves,” in Sixth International Conference on Graphic and Image
Processing (ICGIP 2014), vol. 9443. International Society for Optics
and Photonics, 2015, p. 944309.

[28] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object
parsing with graph lstm,” in European Conference on Computer Vision.
Springer, 2016, pp. 125–143.

