SDCN: Sparsity and Diversity Driven Correlation
Networks for Traffic Demand Forecasting

Wenjie Li"f, Xue Yang?3*, Xiaohu Tang!, Shutao Xia??
1School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
2Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
3PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, China
still2009Q@163.com, xhtang@swijtu.edu.cn, {yang.xue, xiast}@sz.tsinghua.edu.cn

Abstract—Traffic demand forecasting is essential to intelligent
transportation systems and is widely used to support urban
planning, traffic management and vehicle dispatching. One chal-
lenge of this problem is to model the complex spatial-temporal
correlation. Although both factors have been studied, many
of the existing works have strong limitations. They rely too
heavily on the locality assumption (i.e., the local area is more
relevant than the remote area) and only use a distance-based
correlation measurement. However, the spatial correlation is also
global (i.e., areas far away may also be relevant) and sparse.
And it’s insufficient to measure the spatial correlation using
only the distance measurement. In this paper, a sparsity and
diversity driven correlation network is proposed to tackle these
issues. Firstly, Multiple sparse correlation graphs are carefully
generated to encode sparsity and diversity. Then a newly designed
hybrid graph filtering module (HGFM) leverages them to learn a
more expressive node representation. Finally, the HGFM-based
recurrent filtering module (RFM) is introduced to handle the
spatial-temporal correlation. Extensive experiments conducted on
real-world datasets demonstrate the competitiveness of our model
while showing the significance of sparsity and diversity.

Index Terms—Traffic Demand Forecasting, Graph Convolu-
tional Network, Recurrent Neural Network, Graph Filtering

I. INTRODUCTION

Traffic demand prediction plays an important role in modern
intelligent transportation systems. For example, accurate pre-
diction result can help on-line ride-hailing systems like DiDi
and Uber to pre-allocate vehicles to alleviate the imbalance
between supply and demand. Besides, the prediction result
can give guide information for transportation departments to
manage and control the traffic more efficiently and meanwhile
avoid congestion. Traditional time series prediction methods
like autoregressive integrated moving average (ARIMA) and
Kalman filtering have been widely applied to traffic prediction
problems [1]-[5]. However, they did not pay attention to the
spatial dependency between locations. Deep learning is also
widely used in traffic forecasting due to its powerful non-linear
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Fig. 1. modeling spatial dependency more efficiently by directly aggregating
demands from highly correlated regions (left), rather than aggregating de-
mands from a local adjacent area which contains many low correlated regions
(right)

modeling capability. From a spatial perspective, [6]-[8] trans-
formed city-wide traffic to a heatmap image and employed
the convolutional neural network (CNN) to model the spatial
dependency. As to the temporal perspective, [9], [10] leveraged
recurrent neural networks to capture the temporal dependency.
Besides, [11] further proposed a method to jointly model both
spatial and temporal dependencies by integrating CNN and
long short-term memory [12].

However, These methods only consider single kind of spa-
tial correlation (i.e., spatial closeness) which assumes adjacent
regions are more correlated than remote ones. In fact, the
traffic demand of one region is also influenced by far apart
regions. As an example shown in Fig 1, assuming traffic flow
of residence area “X” (marked by black) is caused by office
areas “A”, “B”, “C” and “D” (marked by red) because of daily
commuting to work. It’s obvious that one single convolution
filter is not enough to model the spatial correlation, instead,
we need to stack multiple convolution layers to make all the
related regions be included in the receptive field. Besides,
those adjacent but not correlated regions included in the
receptive filed would certainly make it harder to learn the
ground truth relationship.

To overcome these disadvantages, we propose the sparsity
and diversity driven correlation network that models the spa-
tial correlation more carefully and meanwhile captures the
temporal correlation. Specifically, The network models spatial
dependency by applying a hybrid graph filtering module on



diverse sparse graphs. It uses HGFM-enhanced recurrent cell
to capture temporal dependency and employs the Encoder-
Forecaster architecture to learn the sequence mapping func-
tion. Our contribution can be summarized as follow:

o« We propose a neighborhood selection method named
symmetric top-k to generate a sparse graph based on
the original complete correlation matrix. This method can
delete lots of weak connections while keeping the node
degree non-uniform, which is essential to distinguish hot
and cold regions.

e We propose a hybrid graph filtering module (HGFM)
to filter a graph signal via multiple filters generated
from different graphs and aggregate the filtered signals
appropriately. It can capture diverse spatial correlation
efficiently.

« Based on HGFM, we propose a recurrent filtering module
(RFM) that can model diverse spatial correlation and
temporal correlation simultaneously. Then we combine
RFM with Encoder-Forecaster architecture [13] to make
final predictions.

e We evaluate our model on three real-world datasets.
The proposed model shows its strong competitiveness
by achieving the lower prediction error compared with
two advanced deep learning methods. Besides, extensive
experiments on several variants of SDCN reveals the
effect of sparsity and diversity in terms of prediction
accuracy.

II. RELATED WORK

Although there are various traffic demand forecasting prob-
lems (e.g., taxi demand forecast, traffic flow forecast, and
arrival time forecast), most of them are similar: predicting a
traffic-related value of a location at a certain moment, which
is a typical spatial-temporal prediction problem.

Gated recurrent units such as LSTM [12] and GRU [14]
are very efficient on sequence modeling and have been suc-
cessfully applied to short term traffic flow prediction [15]. But
they cannot capture spatial dependencies. CNN [16] achieves
great success in computer vision and is good at extracting
spatial features. But it is helpless in modeling temporal corre-
lation. However, our RFM can model the spatial and temporal
correlation simultaneously.

Many studies try to leverage the advantages of both CNN
and RNN. ConvLSTM [13] achieves the goal of spatial-
temporal modeling by extending the LSTM to have a convolu-
tional structure in state transitions, and it has been successfully
applied to transportation problems [17]. ST-ResNet [8] uses
deep residual networks [18] to capture spatial dependency
and utilizes prior knowledge to describe temporal correlations.
DMVST [11] builds a multi-view network with a spatial
view, a temporal view, and a semantic view. it explicitly
combines CNN and LSTM to predict taxi demand. However,
these studies rely on CNN to learn spatial dependency and
may neglect far apart regions with similar demand patterns.
Besides, they do not explicitly model irregular spatial correla-
tions between pairwise regions. Our model can encode diverse

spatial correlations into graphs and efficiently integrate them
into the network via sparsification and hybrid filtering.

Emerging graph convolution neural networks like ChebNet
[19], GCN [20], and GraphSAGE [21] have made big progress
on graph representation learning but only learn from a single
graph. MGCNN [22] succeed in using multiple correlation
graphs and GCN to predict bike flows but did not explicitly
exploit the sparsity of spatial correlation. Benefiting from the
tunability of filtering character and the separation of filtering
and non-linear mapping, HGFM is more flexible and powerful
than these works. Moreover, the introduction of sparsity brings
great benefits in terms of computational effectiveness and
prediction accuracy.

In summary, our work emphasizes more on the exploitation
of sparsity and diversity and finally produces a more elaborate
and flexible spatial-temporal prediction model.

III. APPROACH

In this chapter, we first formalize the problem of demand
prediction and then propose the sparsity and diversity driven
correlation network. As shown in Fig. 2, the framework is
hierarchically organized from micro to macro and gradually
obtains the ability of spatial correlation modeling from HGFM
of the bottom level, the ability of spatial-temporal correlation
modeling from RFM of the middle level, and the ability of
demand prediction from the forecaster of the top level.

A. Problem formalization

We follow previous researches [8], [11] to divide the city
into multiple non-overlapped rectangle regions and use v € V
to denote one of them. Although more sophisticated partition
schemas like hexagonal partitioning or partitioning by road
network [23] can also be employed, it is not the focus of
our work, and our method is still suitable. The time axis is
split into fixed time periods (e.g., 30 minutes) and indexed by
t € N. Since traffic services are varied, in this paper, we only
focus on traffic forecasting problems that just care about the
origin and destination region (e.g., bike rending, taxi calling).
Similar to prior work [8], we use inflow and outflow to describe
the traffic demand. The “inflow” here represents the demands
for entering a region, and the “outflow” represents the demands
for leaving that region. For example, these two kinds of traffic
flow can be calculated by counting all the taxi requests going
to or departing from a region respectively. We describe the
traffic demand of region v during specific period ¢ as a tuple
of inflow and outflow d,, = (di,d2%). Then the demand
map of the whole city during period t can be denoted as a
tuple of inflow set and outflow set:

Xy = (X[, X7) = ({dyslv € V1 {d7 v € V) e RV

Thus, we define traffic demand forecasting as a problem of
learning a function f : R"™*2*IVI — R2*IVI which maps the
historical m demand maps to the demand map of next period:

f(Xt—m+17 Xt—m+2a ..

~
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Fig. 2. The architecture of SDCN. (a). The framework contains an encoder and a forecaster each consists of multiple stacked recurrent filtering modules
(RFM). (b). An RFM could employ a variety of gate mechanisms like GRU [14] (denoted by REM-GRU) or LSTM [12] (denoted by RFM-LSTM). REFM
can capture the spatial and temporal correlation simultaneously. But in detail, its capability of spatial correlation modeling comes from the underlying hybrid
graph filtering modules (HGFM). (c). An HGFM applies multiple graph filters generated with diverse pre-designed sparse spatial correlation graphs (e.g., Gp
is a filter generated with demand interaction graph) to the input to adaptively learn spatial-sensitive feature representations.

where YV is the prediction result of ground truth Y. The
proposed model SDCN is an efficient implementation of
prediction function f and capable to capture the complex
spatial-temporal mapping relationship between demand maps.

B. Spatial correlation modeling

In this section, we show how to encode diverse correlations
among regions into sparse graphs and how to leverage them
in a neural network to learn spatial-sensitive feature represen-
tations. Our approach is three-fold: 1) designing correlation
graphs based on prior knowledge. 2) sparsifying original
complete correlation graphs. 3) utilizing correlation graphs via
graph filtering to learn new representations of demand maps.
The first two steps belong to the preprocessing stage and the
final one belongs to the training stage.

1) Diverse correlation measurements: Inspired by [22], we
measure the spatial correlation from three perspectives: 1)
spatial closeness 2) demand interaction 3) demand series cor-
relation. These correlation measurements are not constrained
in these three types, it is easy to incorporate new types of
measurements.

Spatial closeness: As stated in the first law of geogra-
phy: “near things are more related than distant things” [24].
Demand patterns are more correlated to a certain extent for
spatially close regions. Thus we define the spatial closeness
as the inverse of distance:

Ay = dist(vi,v;) 7t

where A denotes the correlation matrix of spatial closeness,
v; and v; represents the i-th and the j-th region of the city
respectively. dist is a function measures the euclidean distance
between two regions’ geometric centers.

Demand interaction: Demand interaction refers to the
volume of visits between any two regions. Since the outflow
of one region would certainly comprise as a part of another
regions’ inflow, the more frequent the interaction is, the larger

the correlation is. Thus it is defined as the number of orders
between two regions including inflow and outflow:

Bij = |04;] + 10jil,

where B denotes the correlation matrix of demand interaction,
O;; denotes the set of orders whose origin and destination are
v; and vj, respectively.

Demand series correlation: There are many areas in a
modern city that play the same or similar urban functions (e.g.,
different residential areas and office areas) to meet the needs of
people of different places. Although they may be far apart and
have little interaction, they do have similar demand patterns.
In order to mine these regions with similar demand patterns,
we employ the Pearson correlation coefficient [25] to quantify
the sequence correlation:

r(x,y) = Y (@ = T)(y: — 7)

Vi (@ =122 (i — 9)?
where r(x,y) calculates the Pearson correlation coefficient
between sequence x € R™ and y € R™. z and ¥ is the mean
of x and y respectively. Then the demand sequence correlation
between two regions is defined as the Pearson coefficient of
the averaged traffic demand:

d¥% + Qv d?’j + d”j
Ci e n out ’ n out ,
(Bt fgt)

where C' denotes the correlation matrix of demand correlation,
d;? and d;, is the inflow and outflow sequence of region
v; respectively. For simplicity, here we just use the average
of inflow and outflow sequence to calculate the correlation
coefficient. However, the choices of demand series are flexible
and abundant in real applications (e.g., daily 24h demand
series, weekly demand series).

2) The sparsification of correlation graphs: The spatial cor-
relation of traffic demand is usually sparse in reality, i.e., the
traffic demand of a region is only related to a limited number
of regions. This opinion is very natural from the perspective
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Fig. 3. Kernel density estimation of three correlation graphs’ adjacency
matrix. We use the dataset “DiDiCD 32x32 T30 introduced in IV-A for
analysis. The matrix values have been normalized beforehand.

of urban planning and supported by real-world observations.
As shown in Fig. 3, the density of edge weight concentrates
more on small values. It indicates that the correlation between
most of the regions is very low and the highly related regions
only make up a minority.

Thus, the original correlation graph contains a lot of useless
(at least less valuable) information and is too dense to use
(O(n?) complexity). To tackle this issue, we propose a node
selection method named symmetric top-k (STOPK) to generate
a sparse correlation graph by choosing a certain number of
highly correlated regions as neighbor nodes. The operation of
STOPK can be described as the following equations:

A = VA g ek

b 07.] ¢ICZ
A=A+ AT

As _ D;I/QASD;I/Q

where /C; denotes the index set of the largest k elements in
the i-th row of A. First, we keep the largest k& elements in
each row of the adjacency matrix and let the others be zero.
Then we add the matrix with its transpose to get a symmetric
matrix Ag. Finally, we normalize A using its degree matrix
D,. The necessity of the symmetry is reflected in two aspects:
(1) make the degrees of nodes different to distinguish hot/cold
regions, (2) make the graph un-directed to be compatible with
HGFM. We apply this sparsification trick on all the correlation
graphs introduced in Section III-B1.

3) Correlation-aware feature extraction: In order to lever-
age the spatial correlation prior encoded by sparse correlation
graphs, we propose the hybrid graph filtering module (HGFM)
to learn correlation-sensitive region features which will be
used by our recurrent filtering module (RFM). As shown in
Fig. 2, HGFM is comprised of multiple parameterized graph
filters and alternative multiple (at least one) fully connected
layers. the filters are used to apply the influence of spatial
correlation to a demand map and the FC layers are employed
to enhance the non-linear learning capability.

Graph filtering is based on spectral graph theory [26],
it extends the concept of spectral signal filtering to signals
defined on graphs, and the filtering process fully utilized the
underlying graph’s structural information. The spectral of an
undirected graph represented by adjacency matrix A is defined
by the eigendecomposition of its symmetric graph laplacian:

Ly=D"%(D—A)D"? = PAD,

where D = diag([>27_; Avj,-- -, 25—y Anj]) is the de-
gree matrix of A, ® is the orthogonal matrix consists of
eigenvectors, and A is the diagonal Eigen matrix composed
of eigenvalues. Then the eigenvalues and eigenvectors are
defined as the frequency and corresponding Fourier basis of
the graph. Following [27], we further define a linear spectral
graph convolutional filter G by applying a filtering function
to the symmetric graph laplacian:

G =p(Ls) = op(A)@ ",

where p(A) = diag(p(Aa),p(A2),...,p(Ay)) is called the
frequency response function, it totally decides the filtering
character (e.g., low-pass, high-pass, etc.) by amplifying or
restraining some of the spectral components. For example,
a power function is a high-pass filter that restrains the low-
frequency components and amplifies the high-frequency ones.
its filtering degree depends on the exponent k and the filter
degrades to a pass-through filter if k£ equals 1. Tab I shows
more detail about three alternative filter types. Benefiting
from the build-up of graph spectral space, the graph filtering
(i.e., graph convolution) operation is simplified as the matrix
multiplication of spectral filter and input signal: X = GX,
where filter G € R™*™ is based on a graph with n nodes and
signal X € R™*™ has m features on each node.

Based on the above definitions, we design our hybrid graph
filtering as the sum of parameterized graph filtering based on
multiple sparse correlation graphs:

A
X = ZGz®92X7

i=1

where A denotes the set of correlation matrices, ® is the
element-wise product and G; is the graph filter corresponds
to the i-th correlation matrix. Different from [20] and [27],
we parameterized the filters with a new weight matrix ©; to
make it learnable and more task-oriented. The character of
the filter would be more adaptive to the task instead of being
constrained to pre-designed frequency response functions and
correlation measurements. This gives the model a chance to
update or revise the prior knowledge by back-propagation
which largely improves flexibility. It seems that the complexity
of © seems to be O(n?), however, G; and ©; are both
sparse due to the sparsity of A, so we can implement these
computations efficiently using sparse tensor multiplication.

After graph filtering, we apply non-linear mappings to the
filtered signal to get a new graph representation. It is meant
to apply a multi-layer perceptron to the filtered graph signal
X, thus we get the final output Z of the HGFM:

Z =MLP(X,W)

where M LP is an L-layer feedforward network with any
activation functions, and W = {W|l € [1, L]} is the set of
the weight matrices of all layers in which [ denotes the index
of a layer.



TABLE I
ALTERNATIVE GRAPH FILTERS.

Filter name  Character  Filter formula
mm [27] low-pass  p(A) = (1 —\)F G =Wk
ar [27]  low-pass p(A\) = (1+ kX)L G = (I + kL) !
pow high-pass p(\) =k, G =LF

Notes: rnm, ar and pow indicate renormalization, auto regressive
filter and the abbreviation of power filter, respectively.

TABLE I
SHARING MODES OF GRAPH FILTER WEIGHT ©

Share mode  Description

all  all the REMs share the same ©
none every RFM has it’s own ©
e-f  encoder and forecaster each have one ©
layer-wise ~ RFMs at the same layer share one ©

C. Spatial-Temporal correlation modeling

Recurrent neural networks like LSTM [12] and GRU [14]
achieve a big success in sequence modeling problems, but
they can not process multi-dimensional inputs (e.g., graph
signals) and leverage their structural information. To tackle
these issues, we propose the recurrent filtering module (RFM)
by extending recurrent units using HGFM to make them
spatial-sensitive in the state transition process. Picking GRU
as an example, we replace the matrix multiplication of original
GRU with HGFM in both the input-to-state and state-to-state
transition process while extending the input and hidden state
to be 2-dimensional. Thus we get the transition functions of
RFM-GRU:

Ry =0 (9(X:,©,W,) + g(Hi—1,0,W,) + by)

U = 0 (9(Xt,0,Wy) + g(Hi—1,0,W,) +bu)

H, = tanh (g(X;,0,W,) + R; © g(Hi—1,0,W,))
Hi=(01-U)0H +U; ®H

where ¢(-) is a function that represents HGFM. Note that the
graph filter weight parameter © is shared among all gates
by default while VW of each gate differs. Since the parameter
amount of © accounts for a large proportion in RFM, we
provide four alternative weight sharing schemas in Tab. II to
make a balance between model capacity and efficiency. Fig.
2(b) shows the inner structure of an RFM-GRU unit.

So far, we have obtained RFM with the ability to capture
spatial-temporal correlation. To get the final prediction result,
we employ the encoder-forecaster framework [13] and stack
multiple RFMs as an encoder and a forecaster, as shown in
Fig. 2(a). The encoder extracts context information from the
historical demand map sequence and the forecaster uses it to
make predictions.

D. Loss and metrics

To avoid the training being dominated by regions with high
demand magnitude, we follow [11] to use a combined loss

of absolute error and relative error. For each sample, the
prediction loss is defined as:

2 |V

QMZZ[% i+ (0 )]

where g > Yij is the i-th row and j-th column of predicted demand
map Y € R?*IVI and ~ is a hyper-parameter controlling the
importance of relative error and absolute error. Following prior
studies [8] [11] , we use the root mean square error (RMSE)
and mean average percentage error (MAPE) to evaluate the
prediction performance:

LYY

2 V|
RMSE = 2N\V| ZZZ yw _yw )
MAPE = Z 22: |ZV|: |y” o ‘
2NIVI ~ oy

where yij is an element of the k-th demand map in a batch.

IV. EXPERIMENT AND DISCUSSION
A. Datasets

We evaluate our model on a real-world traffic demand data
archive!. It contains 6.1 million taxi orders from 2016/11/01
to 2016/11/30 in the city Chengdu of China. We generate three
sub-datasets with following settings:

1) DiDiCD 32x32 T30: The city is divided into 32x32
grids of 500m x500m each. A period is 30 minutes long.
2) DiDiCD 32x32 T60: The city division is the same as the
previous one while the length of a period is 60 minutes.
3) DiDiCD 16x16 T30: The city is divided into 16x16
grids of 1km x 1km each. A period is 30 minutes long.

For the sake of consistency and clarity, we follow prior
work [11] to employ a fixed 9:1 dataset split proportion. To
all datasets, the first 27 days are used for training and the rest
3 days are used for testing. Furthermore, the last 3 days of the
training set are split as the validation set to do early-stop. The
final input samples and labels are generated via the sliding
window approach.

B. Model settings

We compare SDCN with two representative deep learning
models applied to handle spatial-temporal data: ConvLSTM
[13] and ST-ResNet [8]. The hyper-parameters of models are
denoted as follow:

1) ConvLSTM S(4-2) 3x3: “S” refers to the structure.
“S(4-2)” means the encoder and forecaster are both
comprised of two ConvLSTM layers where the first and
second layer has 4 and 2 filters respectively. “3x3”
indicates the kernel size.

2) ST-ResNet c8.pl.t1 R4 3x3: “c8.pl.t]” means the
number of input frames in the closeness component,
period component, and trend component is 8, 1, and 1,

Ithanks https://gaia.didichuxing.com for providing dataset



TABLE III
PERFORMANCE OF DIFFERENT MODELS

Model DiDICD 32x32_T30 DIDICD 32x32_T60 DiDICD 16x16_T30

*n_param RMSE MAPE *n_param RMSE MAPE *n_param RMSE MAPE

ConvLSTM 5(4-2) 3x3 03x10k 32151 05404 - 5.8033 0.645 - 69928  0.6018

ConvLSTM S(8-4-2) 3x3 1x10k 29817 05176 - 52187 06824 - 64029 0.6086
ST-ResNet c8.p1.t1 R4 3x3 90.9x 10k  2.8665  0.4631 - 58266  0.5553 B 61697 BT

ST-ResNet c8.p1.t1 R8 3x3 1795x10k 30701 0.4309 - 55607  0.5307 - 318133 0.8343

SDCN R(LSTM) F(e-fpower-1) 5(4-2) 86x10k 2901 0429 | 85x10k 61356 06089 | 21x10k 65011  0.5033

SDCN R(LSTM) F(e-f.power-1) S(8-4-2) | 8.7x10k = 2824 04286 | 86x10k [JEECHIEEEIE 22x10k 65193  0.4939

SDCN R(GRU) F(none:power-1) S(4-2) | 25.7x10k 30523 04694 | 256x10k 55104 05641 | 63x10k 65083  0.5085

SDCN R(GRU) F(none:power-1) 5(8-4-2) | 25.7 x 10k IR 256x 10k 58031 06143 | 64x10k  6.2479 [JEEE

The first place of prediction performance is dyed by black and the second place is dyed by grey.
*parameters who are never been used and updated (because of sparse tensor multiplication) are ignored in counting, these “invalid”
parameters do not consume any computing power and only require little additional storage space.

respectively. “R4” means the number of residual blocks
is 4, and the kernel size is 3x3.

3) SDCN R(LSTM) F(e-f:power-1) S(8-4-2): “R” refers
to the recurrent structure. “F” refers to the graph filter.
“e-f” indicates the sharing mode of graph filter, as
explained in Tab. II . “power-1” indicates the name and
filter degree of used graph filter, as shown in I. “S(8-4-
2)” has a similar meaning as explained in item 1.

All models are implemented with Keras [28], optimized
with Adam [29], validated on the same dataset split proportion.
The batch size is 32 for both training and testing. Besides,
we fix the global random seed to 123 in all experiments to
eliminate the difference of multiple runs. Some traffic flow
prediction applications may model the weekday data and the
weekend data separately in order to achieve higher accuracy
by exchanging a bit of computation efficiency. But in fact, the
difference between weekday and weekends is not obvious in
our datasets (the urban level weekend and weekday demand
series are both bimodal distribution and quite similar). Besides,
it is only a secondary factor in model comparison, so we just
treat them equally in our experiments.

C. Prediction performance

Tab. IIT shows the performance of SDCN and the baseline
models. We observe that variants of SDCN win first place on
RMSE in all datasets and win first place on MAPE in 2 of 3
datasets, with relatively small model size. Although ST-ResNet
achieves the lowest RMSE in dataset “DiDiCD 16x16_T30”,
RFM-GRU achieves the secondary lowest RMSE and the
lowest MAPE. More specifically, taking the results on dataset
“DiDiCD 32 x 32_T60” as an example, our model gets a
3.3% RMSE decrease and a 9.5% MAPE decrease compared
with the second-ranked model. In fact, the importance of
every region is not the same, some demand-heavy regions like
super malls and transportation hubs have a significant lip in
demand magnitude compared to others. RMSE would like to
be dominated by these hot regions but MAPE wouldn’t. based
on this observation, we can see that our model minimizes
prediction errors for both hot regions and cold regions.
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Fig. 4. Texture and sharpness comparison between prediction images gener-
ated by ConvLSTM and SDCN. Benefiting from the introduction of sparsity
and diversity, our RFM-LSTM generates more clear images than ConvLSTM
and achieves lower error dealing with isolated demand-heavy regions.

To validate the effectiveness of HGFM, we compare SDCN-
LSTM with ConvLSTM (they have the same recurrent gate
structure and both adopt Encoder-Forecaster framework). Fig.
4 visualizes prediction results of two samples from dataset
“DIDICD 32x32 T30”. The period of two images is 8:30am-
9:00am and 5:00pm-5:30pm respectively. We pick three image
blocks as a comparison control group to show their differences
in detail. Taking a macro view scope, both SDCN(LSTM)
and ConvLSTM perform well, the prediction images are very
similar to the ground truth. But when we pay more attention
to the image texture and sharpness, it can be found that SDCN
generates more clear prediction images than ConvLSTM. As
shown in Fig. 4, image blocks marked by red rectangles gen-



erated by SDCN(LSTM) is much brighter than ones generated
by ConvLSTM. This indicates that HGFM is more effective
than convolution for capturing the sparse spatial correlation.
From the perspective of global average prediction error, The
RMSE of these two samples gets 1.6%(from 2.588 to 2.546)
and 4.2%(from 4.481 to 4.294) decreased respectively by using
SDCN. From the perspective of an individual region’s predic-
tion error, SDCN makes fewer mistakes facing hot regions,
which is a meaningful character in commercial applications.

D. Effect of Sparsity

DIDICD 32X32 T30 DIDICD 16X16 T30

90 =dense graph 2693
8.08 =sparse graph (k=8)
4

= dense graph

250 2418 msparse graph (k=8)
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Fig. 5. The significance of sparsity and diversity on improving prediction
performance

To investigate the impact of sparsity and diversity on predic-
tion performance, we compare the performance of SDCN on
dense graphs (i.e., all nodes are connected) and sparse graphs
respectively. The experiment is conducted on two datasets
and the evaluated model is “SDCN R(LSTM) F(none:power-
1) S(4-2)”. As shown in Fig. 5, the sparse graphs always
perform better than dense graphs, which strongly shows the
effectiveness of sparsity. Besides, we can observe that the
interact graph is more efficient than the closeness graph
and demand correlation graph while the combination of all
graphs achieves the lowest prediction error, which indicates
the importance of diversity.

interact-variant ——all-varant
—s—pearson-variant o

—o—close-variant

8 16 24 a8 80 8 16 24 a8 80
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Fig. 6. Impact of sparse level on prediction performance. “close-variant”
means only the k of closeness graph is changing while other graphs’ k is
fixed to 8

But how sparse should the spatial graphs be or how to tune
the sparsity level? From the left subfigure in Fig. 6, we can
observe that although the changing magnitude of the curves
between prediction error and sparsity level is different for
different graphs. As the sparsity decreases, the prediction error
always decreases at first and then increases. This indicates
that there exists an optimal sparsity level setting for combined
graphs to best approximate the spatial correlation when tuning

the sparsity level of different graphs separately. Besides, it
is shown in the right subfigure of Fig. 6 that decreasing the
sparsity level of all graphs simultaneously will significantly
increase the prediction error, for the non-zero elements of the
combined graph increases much faster than a single graph.
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Fig. 7. The performance of different node selection methods on different
variants of SDCN. Note that all the variants of SDCN here use a “rnm” filter
with strength 1. in the case of asymmetric adjacency matrix, we can treat
the filter as a simple normalized adjacency matrix, the multiplication of such
adjacency matrix and an input signal is just calculating the linear combination
of the value of one-hop neighbors.

To evaluate the impact of different sparsity level tuning
method, we conducted additional experiments by using a
special type of SDCN that is compatible with asymmetric ad-
jacency matrix (i.e., directed graph). Specifically, we evaluate
three methods: 1) threshold-based selection, 2) top-k selection
and 3) STOPK selection, and the corresponding three variants
on the SDCN, each of which only uses a single type of
correlation graph. As shown in Fig. 7, we can obtain that:
The performance of STOPK slightly outperforms the top-k
selection method in all cases and is better than that of the
threshold-based selection method in the Pearson graph case.
However, in the interaction graph case, the performance of
STOPK is worse than that of the threshold-based selection
method. The main reason is the different setting of hyper-
parameters (i.e., k or the threshold value). It is worth noting
that the hyper-parameter dominates the graph’s sparsity. That
is, in the interaction graph case, the sparsity of STopK(k=8)
is too large, resulting in the loss of some key information.
Hence, from the perspective of sparsity control and model
compatibility, the STOPK is the first choice when we need to
generate a sparse graph.

E. Effect of diversity

Fig. 5 also reveals the following features about the diversity:

o The prediction performance with fused graph is always
superior to the single graph due to the advantage of
diversity. The reason is that different graphs measure the
correlation between regions from different perspectives,
diverse graphs can represent the ground truth correlation
more completely (see Fig. 8).

e An appropriate sparsity ensures the performance of a
single graph. The better the performance of a single graph
is, the better the performance of the fused graphs is.
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Fig. 8. Ensemble diversity to estimate ground truth relationship

The divergence of graphs also significantly affects the
model performance. The reason is that each graph en-
codes the spatial correlation from a different perspective,
so even if the performance of some graphs is not good
enough, the integration of these different graphs still im-
proves the overall performance. For example, the Pearson
graph performs worse than both the closeness graph and
interact graph, but removing the Pearson graph would
decrease the prediction performance.

As a summary, the fusion should pursue the goal of “good
enough but different”, which implies that only when the graph
and the model can fully express the “good divergence” can we
obtain satisfactory prediction results.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose the sparsity and diversity driven
correlation network for traffic demand prediction. We use
STOPK to construct diverse sparse graphs and then employ
RFM with Encoder-Forecaster to model the spatial and tem-
poral correlation simultaneously. Experiments on real-world
datasets validate the effectiveness of our approach. In the
future, we plan to investigate more kinds of spatial correlations
and explore better methods to control sparsity.
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