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Abstract—Internet traffic detection and classification has been
thoroughly studied in the last decade, but this is still a hot
topic as regards the Internet of Things (IoT), a communication
paradigm that is going to involve different aspects of our daily
life. As a consequence, researchers started applying traditional
methods for traffic classification also to the traffic flows coming
and addressed to smart devices. In this paper, we created a large
integrated dataset of IoT traffic flows, coming from four different
network scenarios, in order to have a benchmark for future
research. Moreover, we used this dataset to test the effectiveness
of a deep learning network model, made of different hidden
layers, and we compare its outcomes with the ones obtained
through traditional machine learning approaches, demonstrating
the superiority of our deep learning architecture in both a binary
and multinomial classification.

Index Terms—Internet of Things, Anomaly Detection, In-
trusion Detection Systems, Artificial Neural Networks, Deep
Learning

I. INTRODUCTION

Nowadays, IoT smart devices are spreading in all aspects of
our society, including industry, healthcare, homes, automotive,
sport, P2P networks [1], entertainment, and many others [2].
However, this engagement raises serious issues since a lot
of network traffic as well as many different traffic classes
flow over IoT networks, e.g., those generated from industrial
machineries, driverless cars, health sensors, smart homes and
other critical devices. As such, the requirements of various
IoT applications demand for more security and protection that,
in turn, involve accurate classification of network traffic to
early detect attacks and enact proper countermeasures. Indeed,
given the broad utilization of IoT devices, malicious manip-
ulations could cause deep implications on the security and
the strength of the entire Internet. The cyberattack launched
by the Mirai malware [3] represents a clear example of the
severity caused by instrumenting zombified IoT devices (bots)
to launch a larger DDoS attack, and testifies the necessity of
secure authentication mechanisms [4], together with proper
traffic classification techniques. Therefore, the need for early
detection of IoT malicious traffic is a current hot topic, but the
methods in the literature, even those based on artificial neural
networks, i) do not reach yet the maximum possible accuracy,
ii) are based on local ad hoc traffic datasets from one single
network scenario, and iii) sometimes do not consider actual
IoT traffic at all.

The main contributions of this paper are the following:
• the analysis of recent IoT datasets publicly available;

• the creation of a large dataset of IoT traffic, encompass-
ing different types of IoT attacks, and the computation
of a large set of features, to foster new analyses and
researches;

• the design and implementation of a deep neural network
classifier, capable to achieve very high accuracy, more
than all similar contributions in the recent literature, over
a dataset made of traffic from different networks.

The structure of the paper is the following: in Sec. II
background about Internet traffic classification and deep neural
networks is provided. In Sec. III related work about deep
learning for IoT attack classification is described, while in
Sec. IV both the considered feature model and neural network
model are described in detail. Sec. V presents the integrated
dataset and the experimental settings, while Sec. VI shows
the obtained results as well as a comparison with traditional
machine learning approaches. Finally, Sec. VII highlights
some possible threats to the validity, while Sec. VIII seals
up the paper with some conclusions.

II. BACKGROUND

A. Traffic Classification

For traffic classification and anomaly detection, usually bi-
directional network flows are considered. These are composed
of a series of ordered packets, exchanged between two terminal
points, and are uniquely identified through the following quin-
tuple: source IP address, destination IP address, source port,
destination port, transport protocol. Source and destination
ports and addresses may be pairwise interchangeable and
identify the two single main unidirectional sub-flows (from
source to destination and vice versa) a flow is made of.

Internet traffic can be captured by using standard network
sniffers like tcpdump1 and Wireshark2, or network emulators
[5]. They permit one to get traffic traces, composed of various
packets belonging to different sessions or flows, flowing inside
private or public networks.

Historically, the main traffic classification methods can
be roughly divided into three categories [6]: Session-based,
Content-based and Statistical approaches. The usage of well-
known ports belongs to the first category, while the exhaustive
packet payload analysis is a proponent of the second category.
In this paper, we focus on the third category, which exploits

1http://www.tcpdump.org/
2http://www.wireshark.org/
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concepts of statistics, information theory as well as artificial
intelligence, and usually does not require any application-level
protocol information.

As concerns the inherent nature of statistical traffic classi-
fication approaches, they usually perform their tasks at two
different levels:

• at a fine-grained level, to detect the particular application
protocol that generated a certain flow [7];

• at a coarse-grained level, to identify a larger group of
protocols (e.g., bulk transfer, mailing, web browsing,
etc.), and not a specific protocol.

Whatever the considered granularity, all statistical classifica-
tion algorithms usually consider transfer-based, time-based
and protocol-based features of the packets to characterize
a flow [8]. However, the description of flows in terms of
numerical features may be carried out at different levels of
abstraction [9]. As a matter of fact, there exist i) methods
that consider packets as well as their inherent and simplest
properties (e.g., size, inter-arrival time, the relative position in
the flow, etc.); and ii) methods relying on aggregated statistical
features of a flow or sub-flow (e.g., maximum, minimum,
mean and standard deviation of the total volume in bytes, the
overall duration, etc.).

In this paper, we focus on the second approach, i.e., the
one that regards aggregated statistical features of the flows
(and their two main sub-flows). As concerns the granularity of
the classification, we will address both a binary classification
(distinguishing normal traffic from abnormal one) and a more
fine-grained multiclassification (identifying normal traffic and
different types of malicious flows).

B. Deep Learning algorithms

Deep Learning (DL) regards a particular branch of machine
learning, encompassing techniques that allow the simulation of
information processing typical of biological nervous systems
[10]. A DL architecture is made of a set of related layers,
wherein each layer obtains different inputs from another layer
and reorganize the information in a hierarchical fashion, useful
to perform feature learning and pattern classification. DL
algorithms are usually considered more suitable than other
machine learning techniques in contexts featuring a high level
of complexity (i.e., several attributes and a great number of
data).

The training of a neural network has main two phases:
• the feed-forward phase, wherein the activation of the

nodes of the network is performed from the input layer,
usually containing a number of nodes equal to the number
of the considered features, to the output one, usually
containing a number of nodes equal to the number of
classes, in classification problems. Except for the nodes in
the input layer, all subsequent nodes, in the intermediate
layers, represent neurons which activate their output
according to a proper and ad-hoc activation function (e.g.,
ReLu) [11].

• the back-propagation phase, which allows one to improve
the overall network performance by assigning to the con-

nection between the nodes proper and updated weights, as
well as bias values if necessary, with the aim of increasing
the overall performance of the whole neural network.

III. RELATED WORK

In this section, we summarize some contributions, recently
published and surveyed [12], [13], regarding anomaly detec-
tion in IoT scenarios with artificial intelligence techniques.

Lopez-Martin et al. [14] proposed an unsupervised anomaly
Network Intrusion Detection System (NIDS) for IoT envi-
ronments, based on a Conditional Variational AutoEncoder
(CVAE). Their method is unique due to its ability to carry
out feature reconstruction, i.e., it can retrieve missing features
from incomplete training datasets. The used dataset was a
refined version of the NSL-KDD3 one with 116 features and
5 possible labels. They proved experimentally that their work
is less complex compared to other unsupervised NIDS, with
better classification metrics (accuracy, precision, recall and
F-measure) than well-known algorithms like random forest,
linear SVM, multinomial logistic regression and multi-layer
perception, both for binary and multiclassification problems.

Thing [15] analyzed wireless network threats and proposed
an anomaly NIDS to detect and classify attacks in IEEE
802.11 networks, based on Stacked Auto-Encoder (SAE), a
neural network built by stacking multiple layers of sparse
auto-encoders with both two and three hidden layers. The
author experienced different activation functions for the hidden
neurons. To test his strategy, he used the AWID CLS R
dataset generated from a lab-emulated Small Office - Home
Office (SOHO) infrastructure. He achieved an overall general
accuracy of 98.6688% in a 4-class classification (legitimate
traffic, flooding attacks, injection attacks and impersonation
attacks), but with only a 2-layer neural network.

Diro and Chilamkurti [16] applied Fog Computing princi-
ples in IoT environments to detect intrusions. In particular,
they equipped edge layer devices with intelligent detection
capabilities to improve efficiency and reduce the data trans-
ported to the Cloud. The authors proposed a deep learning
approach to detect known and unseen intrusion attacks, but
without specifying clearly the number of used layers. The
distributed parallel deep learning approach gets better results
in accuracy than centralized deep learning NIDS and also
than shallow machine learning algorithms, but the employed
machine learning algorithms are not specified. Diro et al.
used the aforementioned NSL-KDD dataset, with some mod-
ifications, thus considering 123 features. They performed 4-
class detection and achieved 98.27% of overall accuracy,
96.5% detection rate, as well as 2.57% of false alarms rate
using the deep learning model, while the shallow machine
learning classifiers achieved an accuracy of 96.75%, 93.66% of
detection rate and 4.97% of false alarms rate. They also noted
an increase in the overall detection accuracy while increasing
the number of fog nodes from around 96% to over 99%.

3https://www.unb.ca/cic/datasets/nsl.html



Moustafa et al. [17] proposed an Adaboost ensemble method
for intrusion detection, based on decision tree, Naive Bayes
and Artificial Neural Network, to mitigate particularly botnet
attacks against DNS, HTTP and MQTT protocols utilized in
IoT networks. A set of 36 features, some typical of a single
protocol, are extracted from two datasets, namely UNSW-
NB15 and NIMS. Then, a feature selection step is performed
to extract the most important ones. This step enables the
reduction of the computational cost of the overall system.
The ensemble achieved an overall accuracy, for the binary
classification, between 98.54% and 98.97% for UNSW-NB15
dataset and between 98.29% and 98.36% for the NIMS dataset,
while the performance of the artificial neural network by itself,
whose number of layers is not specified, does not pass 96.27%.

In the contribution in [18] the authors used an intelligent
system to maximize the recognition rate of network attacks
by embedding the temporal behavior of the attacks into a Tap
Delay Neural Network (TDNN) structure, a particular type
of recurrent neural network. It has only 2 layers and a Tap
Line or Tap Delay Line (TDL), which consists of a group
of taps that orders the temporal inputs. The system has been
compared with SNORT and with the MIT DARPA Intrusion
Detection Evaluation system over the old DARPA 1998 dataset
with a claimed 100% recognition rate for both port scan and
host sweep attacks. No clues are given about the considered
features.

Vinayakumar et al. [19] proposed a highly scalable and
hybrid Dense Neural Network framework called scale-hybrid-
IDS-AlertNet (SHIA IDS), which can be used in real-time
to effectively monitor network traffic and host-level events to
proactively alert possible cyber-attacks. The authors consid-
ered both a multiclassification, trying to detect each different
attack, and a binary classification by combining all attacks
together and labeling them as “abnormal” traffic. They tested
their model in different public datasets such as CICIDS-
2017, NSL-KDD, KYOTO, WSN-DS, KDDCup-99, UNSW-
NB15. They evaluated deep learning architectures of up to 5
hidden layers performing also experiments with a reduced set
of features and some comparisons with traditional machine
learning algorithms. They achieved a best overall accuracy
over all classes, in the mutliclassification experiments, of
87.3% on the CICIDS-2017 dataset and of 93.57% on the
UNSW-NB15 dataset.

Finally, the recent work in [20] considered two datasets,
namely ISCX-IDS-2012 and CIC-IDS-2017, to evaluate the
performance of a proposed Hybrid Neural Network method.
Like the contribution in [19], they tested their model in two
scenarios, namely multiclassification and binary classification,
and they considered different types of features of a traffic
flow (sequential, statistical and environmental). The achieved
overall accuracy in the binary classification is 99.57% on the
CIC-IDS-2017 dataset and 99.58% on the ISCX-IDS-2012
dataset, while the values are 99.35% and 99.61%, respectively,
in the multiclassification scenario.

IV. APPROACH

In this section, we first describe the proposed feature model
and then we describe the used deep learning neural network.

A. Feature model

Similarly to the anomaly detection on traditional Internet
traffic, also in case of IoT traffic we consider bi-directional
network flows composed of a series of ordered packets,
exchanged between two terminal points. The set of features
considers all the aspects that characterize a flow as well as its
two main sub-flows, one for each direction of the communica-
tion (forward, Fwd, or backward, Bwd). As a consequence a
flow Fi, identified through the 5-tuple described in Sec. II, can
be considered as a series of features (fj , j = 1...n) mirroring
an instance as follows:

Fi = {f1, f2, f3, ...fn} i = 1...M (1)

where n is the number of features per flow, and M the number
of considered flows.

Specifically, we extracted from the considered traffic flows
a set of 70 statistical features, as summarized in Table I: these
features have been already successfully adopted within the
traffic classification schemes discussed in [9], [21]. Table I
lists, for each feature, a brief description, as well as the unit
of measurement (UoM) of the feature itself (where µs and B
stand for micro-seconds and bytes, respectively). The features
encompass mainly size- and time-related characteristics, as
well as their maximum, minimum, average and standard
deviation values, but they also comprise information about
the flags, the number of packets with certain characteristics
or further sub-flows inside the two main sub-flows.

In order to make a flow a full instance, we had to label
each flow according to the type of traffic, adding the so called
class as the (n + 1)th feature. In this paper we considered
both a binary classification, where the flows were label only as
BENIGN or ATTACK, and a multinomial classification, where
we considered the particular type of attack. In particular, we
considered the following attacks:

• DOS: a Denial of Service attack, performed also in a
distributed fashion.

• MIRAI: an attack launched by a Mirai bot.
• MITM: a Man-in-the-Middle attack.
• SCANNING: comprising both OS scanning and service

scanning attacks.

B. Deep learning model

The considered deep learning architecture was inspired by
the work in [22], its main components are presented in Figure
1, and they are described in the following:

• one Input layer: the entry point of the network, en-
compassing a number of nodes equal to the number of
considered features (70 as described in Subsec. IV-A);

• a Batch Normalization layer: useful to improve the train-
ing of the neural network, since it increases the speed of
training and permits one to adopt higher learning rates as



TABLE I
THE LIST OF THE 70 CONSIDERED FEATURES USED TO CHARACTERIZE A FLOW.

Feature Description UoM
Flow duration Duration of the flow in microseconds µ s

Total Fwd Packet Total packets in the forward direction pck
Total Bwd packets Total packets in the backward direction pck

Total Length of Fwd Packet Total size of packets in forward direction B
Total Length of Bwd Packet Total size of packets in backward direction B

Fwd Packet Length Min Minimum size of packets in forward direction B
Fwd Packet Length Max Maximum size of packets in forward direction B
Fwd Packet Length Mean Mean size of packets in forward direction B
Fwd Packet Length Std Standard deviation size of packets in forward direction B
Bwd Packet Length Min Minimum size of packets in backward direction B
Bwd Packet Length Max Maximum size of packets in backward direction B
Bwd Packet Length Mean Mean size of packets in backward direction B
Bwd Packet Length Std Standard deviation size of packets in backward direction B

Flow Byte Rate Number of flow bytes per second B/s
Flow Packets Rate Number of flow packets per second pck/s

Flow IAT Mean Mean time between two packets sent in the flow µ s
Flow IAT Std Standard deviation time between two packets sent in the flow µ s
Flow IAT Max Maximum time between two packets sent in the flow µ s
Flow IAT Min Minimum time between two packets sent in the flow µ s
Fwd IAT Min Minimum time between two packets sent in the forward direction µ s
Fwd IAT Max Maximum time between two packets sent in the forward direction µ s
Fwd IAT Mean Mean time between two packets sent in the forward direction µ s
Fwd IAT Std Standard deviation time between two packets sent in the forward direction µ s

Fwd IAT Total Sum of all IATs in the forward direction µ s
Bwd IAT Min Minimum time between two packets sent in the backward direction µ s
Bwd IAT Max Maximum time between two packets sent in the backward direction µ s
Bwd IAT Mean Mean time between two packets sent in the backward direction µ s
Bwd IAT Std Standard deviation time between two packets sent in the backward direction µ s

Bwd IAT Total Sum of all IATs in the backward direction µ s
Fwd PSH flag Number of times the PSH flag was set in packets traveling in the forward direction (0 for UDP) -
Bwd PSH Flag Number of times the PSH flag was set in packets traveling in the backward direction (0 for UDP) -
Fwd URG Flag Number of times the URG flag was set in packets traveling in the forward direction (0 for UDP) -
Bwd URG Flag Number of times the URG flag was set in packets traveling in the backward direction (0 for UDP) -

Fwd Header Length Total bytes used for headers in the forward direction B
Bwd Header Length Total bytes used for headers in the backward direction B

Fwd Packet Rate Number of forward packets per second pck/s
Bwd Packets Rate Number of backward packets per second pck/s
Min Packet Length Minimum length of a packet in the whole flow B
Max Packet Length Maximum length of a packet in the whole flow B
Packet Length Mean Mean length of a packet in the whole flow B
Packet Length Std Standard deviation length of a packet in the whole flow B

Packet Length Variance Variance length of a packet in the whole flow B
FIN Flag Count Number of packets with FIN pck
SYN Flag Count Number of packets with SYN pck
RST Flag Count Number of packets with RST pck
PSH Flag Count Number of packets with PUSH pck
ACK Flag Count Number of packets with ACK pck
URG Flag Count Number of packets with URG pck
CWR Flag Count Number of packets with CWE pck
ECE Flag Count Number of packets with ECE pck
Down/Up Ratio Download and upload ratio -

Average Packet Size Average size of packets in the whole flow B
Avg Fwd Segment Size Average size of a segment observed in the forward direction B
Avg Bwd Segment Size Average size of a segment observed in the backward direction B
Subflow Fwd Packets Average number of packets in a sub flow in the forward direction pck
Subflow Fwd Bytes Average number of bytes in a sub flow in the forward direction B

Subflow Bwd Packets Average number of packets in a sub flow in the backward direction pck
Subflow Bwd Bytes Average number of bytes in a sub flow in the backward direction B

Init Win bytes forward Total number of bytes sent in initial window in the forward direction B
Init Win bytes backward Total number of bytes sent in initial window in the backward direction B

Act data pkt forward Count of packets with at least 1 byte of TCP data payload in the forward direction pck
min seg size forward Minimum segment size observed in the forward direction B

Active Min Minimum time a flow was active before becoming idle µ s
Active Mean Mean time a flow was active before becoming idle µ s
Active Max Maximum time a flow was active before becoming idle µ s
Active Std Standard deviation time a flow was active before becoming idle µ s
Idle Min Minimum time a flow was idle before becoming active µ s

Idle Mean Mean time a flow was idle before becoming active µ s
Idle Max Maximum time a flow was idle before becoming active µ s
Idle Std Standard deviation time a flow was idle before becoming active µ s



Fig. 1. The used neural network model for both the binary (gray) and multi-
(orange) classification.

well as to saturate possible nonlinearities. This usually
results into a higher accuracy on both validation and test,
thanks to a stable gradient propagation within the network
itself [23].

• a variable number of Hidden layers: they are made of
artificial perceptrons and output a weighted sum of their
inputs, passed through a ReLu activation function. We
made experiments with a different number of hidden lay-
ers to evaluate the differences in the overall performance.

• a Dropout layer: we considered this layer tightly coupled
with the aforementioned one and immediately following
it. As a matter of fact, in the above mentioned experi-
ments, we replicated different times the pair hidden layer-
dropout layer. The dropout layer helps to prevent over-
fitting by means of a regularization technique that turns
off randomly several neurons in a layer according to a
probability p drawn from a Bernoulli distribution. We
considered the same probability for each node of the
coupled hidden layer and we set its value to 0.2.

• one Output layer: this layer produces the final classifica-
tion outcome and is composed of a number of nodes equal
to the number of classes. In Figure 1, we show 2 different
output layers, since they refer to the binary classification
and multi-classification problem, respectively. However,
when we ran our experiments we considered for each
problem only one of the two depicted output layers at
a time, which are a dense layer using a softmax as
activation function.

V. EXPERIMENT DESCRIPTION

In this section, we present the application of the deep
neural network architecture, described in Section IV, to a large
IoT dataset we constructed by merging together traffic traces
coming from different sources.
First of all, we describe the four datasets we used as well as
the statistical characteristics of the whole merged large dataset,
secondly, we detail the parameters we used as well as the

considered metrics, and finally, we report the evaluation results
together with a brief discussion.

A. Dataset

The literature review, reported in Sec. III, shows that the
studies about IoT attacks and traffic classification mainly
employ ad hoc built datasets to evaluate particular and specific
attacks or traffic flows. Some of the limits of these datasets
are that they are i) small, so not apt for being used with deep
learning techniques, ii) with a few attacks or with difficulties
in separate clearly attacks from benign traffic, iii) not directly
comparable and scarcely usable to evaluate and compare
different approaches, and iv) usually coming from the same
network scenario, where flows exhibit the same easy to learn
pattern across the considered features.

Stemming from these considerations, we decided to build a
large and integrated dataset by merging together four different
IoT datasets, with different dimensions and different types
of attacks and of traffic, in order to validate the proposed
deep neural network model. The integration procedure is
composed of the following steps: i) datasets selection, ii)
datasets transformation; iii) datasets cleaning, and iv) datasets
merging.

The selection of the datasets regarded finding out in the
Web useful and recent datasets, built in the last few years
and containing a sufficient number of instances regarding both
benign and malicious IoT traffic.

The transformation step concerned the creation of proper
CSV files, with more features than the 70 ones described in
Sec. IV-A, from raw .pcap files, as well as the consistent
labeling of the flow instances by exploiting the information
each single dataset was endowed with. These tasks have been
performed by using the CICFLOWMETER tool4 [24], which
is a Java network traffic flow generator allowing for flexibility
in terms of choosing the features to compute and a control of
the duration of the flow timeout.

The cleaning step regarded the removal of instances contain-
ing inconsistent values such as NaN, Infinity, and the like, and
it has been performed using a proper Python script. This step
involved also the reduction of the initial available features, in
order to remove non-computable features or constant features
throughout all the instances. This step led to have the surviving
70 features described in Sec. IV-A.

Finally, the merging step, carried out through a Python script
as well, provided the integration of the considered datasets into
a unique large dataset, whose statistics, together with the ones
of the 4 datasets it is composed of, are summarized in Table
II.

Dataset D15 has been released on September 2019 and
built considering two typical smart home devices, i.e., SKT
NUGU (NU 100) and EZVIZ Wi-Fi Camera (C2C Mini O
Plus 1080P), as well as some laptops and some smartphones,
connected to the same wireless network. All attacks except

4https://github.com/ahlashkari/CICFlowMeter
5https://ieee-dataport.org/open-access/iot-network-intrusion-dataset



TABLE II
STATISTICS OF THE CONSIDERED DATASETS.

Dataset ID No. instances Benign DoS MITM Mirai Scanning
D1 26246 496 3273 378 18623 3476
D2 794767 - - - - 794767
D3 437322 437322 - - - -
D4 546720 - - - 546720 -

Whole 1805053 437817 3273 378 565343 798243

Mirai Botnet category contain packets captured while sim-
ulating attacks using tools such as Nmap. In the case of
Mirai Botnet attack, the packets were generated on a laptop
and then manipulated to make it appear as if they originated
from the IoT device. For dataset D26, created by designing
a realistic network environment in the Cyber Range Lab of
UNSW of Canberra, we considered only 5% of the entire
dataset and only scanning attacks in order to make the whole
merged dataset unbalanced and test our DL architecture in
these conditions. For dataset D37, whose data were collected
for IEEE TMC 2018 [25], we only considered benign traffic,
in order to increase the number of instances of this type
of traffic up to the order of magnitude of scanning attacks
and, at the same time, to vary the network scenario from
which traffic traces are captured. Indeed, these traces contain
traffic from a great variety of IoT devices, such as Amazon
Echo, Netatmo Welcome, TP-Link Day Night Cloud camera,
Samsung SmartCam, etc.

Finally, dataset D48 contains mainly IoT malware traffic of
type “Mirai” captured at the Stratosphere IPS laboratory at
the Czech Technical University in 2018 and 2019, and we
exploited it partly to achieve an order of magnitude of Mirai
instances, in the whole dataset, equal to the one of benign
traffic and scanning attacks.

The integrated whole dataset comprises a total of 1805053
flow instances, 437817 of normal traffic and 1367236 of
abnormal traffic (attacks). The figures of the four considered
attacks (DoS, Mirai, MITM and Scanning) are detailed in
Table II. As one can see, the instances for DoS and MITM
are quite small compared to the other types of traffic, and
this was done purposely to test the robustness of the proposed
DL model against unbalanced data, as it will be described in
Section VI.

B. Evaluation Settings

The assessment has been performed on the aforementioned
integrated dataset in order to identify i) benign and malicious
traffic, and ii) normal traffic as well as 4 different attacks.
The evaluation is performed using both the deep learning
architecture described in Subsec. IV-B and by using some
traditional machine learning algorithm, namely Hoeffding Tree
(HT), useful for the classification of streaming data from IoT
devices, and Naive Bayes (NB), with the aim to demonstrate
that, for the considered IoT attack scenario, a machine learning

6https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-
NB15-Datasets/bot iot.php

7https://iotanalytics.unsw.edu.au/iottraces.html
8https://www.stratosphereips.org/datasets-iot

approach is overcome by simple deep neural networks with
several hidden layers. The considered deep neural network
architecture has been implemented using the Python program-
ming language, in particular Tensorflow 2.1.09, an open source
software library for high-performance numerical computation,
and Keras 2.3.110, a Python-based high-level neural networks
API, cable to run on top of TensorFlow and to simplify
the creation of an artificial neural network. The deep neural
network model, described in Section IV-B, was trained by
using categorical cross-entropy [26] as a loss function, and
stochastic gradient descent (SGD), with learning rate equal to
0.1, momentum equal to 0.09, decay of 1e−6 for optimizing
the loss function. Moreover, SGD has been integrated with
Nesterov accelerated gradient (NAG) correction to avoid ex-
cessive changes in the parameter space [27]. The metrics that
we used to evaluate the classification results have been the
following: Precision, Recall, Accuracy and F-measure. As a
matter of fact, the considered datasets is somehow unbalanced
with respect to certain attack classes as it has been described
in Subsec. V-A, so only the overall accuracy would have not
been a significant parameter. Precision has been evaluated as
the proportion of samples that truly belong to a given attack
(or normal flow) among all those which were assigned to it. It
is computed as the ratio of the number of relevant detected
samples (true positive) to the sum of irrelevant detected
samples (false positives) and relevant detected samples (true
positives):

Precision =
true positives

true positives+ false positives
. (2)

On the other hand, the recall has been evaluated as the
proportion of samples assigned to a given attack (or normal
flow), among all the samples that truly belong to the attack
(or normal traffic) itself. It is computed as the ratio of the
number of relevant detected samples (true positive) to the total
number of relevant samples (the sum of true positives and false
negatives):

Recall =
true positives

true positives+ false negatives
. (3)

The F-measure, or F-score, is the weighted harmonic mean
of precision and recall, and is computed according to the
following formula:

F − score = 2
PR

P +R
, (4)

where P and R are precision and recall, respectively. While
precision and recall can be computed both per class and
on average, the accuracy is an overall metric and has been
computed as the ratio of the sum of true positives and true
negatives to the total number of samples:

Accuracy =
tp+ tn

tp+ fn+ tn+ fp
, (5)

9https://www.tensorlow.org/
10https://keras.io/



Fig. 2. Accuracy and loss trends for the binary classification and DL7.

where tp means true positives, tn means true negatives, fn
means false negatives, and fp means false positives.

The experiments have been run on an Intel Core i7 7th gen
machine, equipped with 1 GPU and 16GB of RAM.

VI. RESULTS

In this section we present some of the obtained results,
as regards both the training phase of the considered DL
model as well as the test phase and the comparison with
traditional machine learning algorithms. All the results have
been obtained considering a 5-fold cross validation process.

Deep learning networks are usually trained for several
epochs, a hyper-parameter defining the number of times the
learning algorithm will present the entire training dataset to
the network under training. To make the network reaching
its best performance during the test phase, it is important to
set the number of epochs to a value corresponding to the
point when the network accuracy vs the numbers of epochs is
not increasing anymore. The loss function is usually inversely
proportional to the accuracy and when the accuracy increases,
the network is learning and the loss trend is decreasing. In a
symmetric way to what said about the accuracy, the network
does not learn anymore when the loss function reaches a
constant trend.

Figure 2 shows the trends of accuracy and loss versus an
increasing number of epochs for the considered DL model with
a hidden number of layers equal to 7 (DL7), the configuration
reaching the best performance in terms of accuracy. As one
can see, after about 50 epochs both the accuracy and the loss
trends stabilize. Similarly, Figure 3 presents how accuracy and
loss vary during the epochs when considering the multinomial

TABLE III
CLASSIFICATION RESULTS ON THE TEST SET.

Binary classification Multiclassification
Alg. Acc. P R F Acc. P R F
HT 0.9930 0.993 0.993 0.993 0.9736 0.974 0.974 0.974
NB 0.8723 0.877 0.872 0.859 0.6702 0.879 0.670 0.748

DL4 0.9968 0.9935 0.9935 0.935 0.9942 0.9875 0.9854 0.9864
DL5 0.9969 0.9936 0.9936 0.9936 0.9943 0.9884 0.9864 0.9874
DL6 0.9970 0.9938 0.9938 0.9938 0.9973 0.9886 0.9867 0.9877
DL7 0.9975 0.9937 0.9937 0.9937 0.9937 0.9874 0.9854 0.9864

classification and the training of the proposed DL model with
6 hidden layers (DL6), the configuration achieving the top
accuracy in this type of classification. As one can see, the trend
is less smooth than in the case of the binary classification, and
this is possibly due to the major difficulty in separating more
classes, but the number of epochs when the trend stabilizes is
more or less the same.

As concerns the test phase, we report in Table III the
values of overall accuracy, precision, recall and F-measure
for both some traditional machine learning techniques and the
proposed DL model. As stated in Subsec. V-B, we considered
as machine learning techniques HT and NB and their Weka11

implementation, while for the proposed DL model we report
the results for different hidden layers, from 4 to 7. As one can
see, the best accuracy is reached with a DL architecture made
of 7 layers for the binary classification, while it is achieved by
a DL architecture made of 6 layers for the multiclassification.
In general, the DL approach outperforms the two considered
traditional machine learning techniques and can reach the best
results compared to the related works surveyed in Sec. III. As

11https://www.cs.waikato.ac.nz/ml/weka/

Fig. 3. Accuracy and loss trends for the multiclassification and DL6.



concerns the introduced unbalance in the dataset, we can see
that for the binary classification the effect is negligible, given
that the averaged precision, recall and F-measure are always
greater than 0.99, while it becomes somewhat relevant in the
multiclassification, even if the considered metrics are always
better than those of traditional ML techniques.

VII. THREATS TO VALIDITY

As concerns the construct validity threats, some inaccuracies
and omissions can be due to the reliability of the captured
traffic traces and of the tools used to extract or compute the
features. In order to limit this threat, we have considered four
different datasets, from four different network scenarios, as
well as a very renown and used tool like CICFLOWMETER.

Moreover, regarding the internal validity, if the adopted
datasets are not correctly labeled or are obtained with a non-
rigorous process, we could have classification errors. This
risk is strongly mitigated because the used datasets are well
documented and referenced in papers already published in
reputable venues.

Finally, threats to external validity may involve the gen-
eralization of the discussed findings. We have evaluated our
approach on a great number of flows from four existing
datasets having different sizes and characteristics. However,
in the future, it is possible to integrate more datasets with
many more IoT flows.

VIII. CONCLUSIONS

In this paper, we have analyzed a large dataset of IoT benign
and malicious flows which we built by integrating four differ-
ent recent datasets. The analysis has been carried out using
both traditional machine learning algorithms and a proper DL
architecture that resulted to achieve very good results and to
outperform traditional machine learning techniques, in terms
of overall accuracy, precision, recall and F-measure, for both
a binary and multi-classification.

In future work, we will focus on integrating much more
datasets and instances to apply the proposed DL model with
much more layers, and on techniques of feature selection to
verify whether all the considered features are useful or not
for the classification tasks we considered. A further future im-
provement may also regard the consideration of different types
of neural networks, such as LSTM, and different architectures
of the neural network itself.
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