
Cooperative Multi-Agent Deep Reinforcement
Learning with Counterfactual Reward

Kun Shao1,2, Yuanheng Zhu1,2, Zhentao Tang1,2, Dongbin Zhao1,2

1State Key Laboratory of Management and Control for Complex Systems,

Institute of Automation, Chinese Academy of Sciences. Beijing, China.
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.

shaokun2014@ia.ac.cn, yuanheng.zhu@ia.ac.cn; tangzhentao2016@ia.ac.cn; dongbin.zhao@ia.ac.cn;

Abstract—In partially observable fully cooperative games,
agents generally tend to maximize global rewards with joint
actions, so it is difficult for each agent to deduce their own contri-
bution. To address this credit assignment problem, we propose a
multi-agent reinforcement learning algorithm with counterfactual
reward mechanism, which is termed as CoRe algorithm. CoRe
computes the global reward difference in condition that the agent
does not take its actual action but takes other actions, while other
agents fix their actual actions. This approach can determine each
agent’s contribution for the global reward. We evaluate CoRe
in a simplified Pig Chase game with a decentralised Deep Q
Network (DQN) framework. The proposed method helps agents
learn end-to-end collaborative behaviors. Compared with other
DQN variants with global reward, CoRe significantly improves
learning efficiency and achieves better results. In addition, CoRe
shows excellent performances in various size game environments.

Index Terms—reinforcement learning, deep reinforcement
learning, cooperative games, counterfactual reward

I. INTRODUCTION

In the last few years, we have witnessed massive progresses

of artificial intelligence (AI) in games with deep reinforcement

learning (DRL) [1]–[3]. These DRL methods achieve impres-

sive performances in various games, including Atari [4], Go

[5] [6], Vizdoom [7]–[9] and StarCraft [10]–[13]. DRL has

proven to be a general and effective method for game AI.

Many complicated decision-making processes in games can

be modeled as multi-agent learning problems [14]–[17]. As a

long-standing field of machine learning research, multi-agent

learning systems have some own characteristics. First of all,

as a result of involving multiple learning agents, the action

space grows exponentially with the number of agents, and

the search space is usually very large. Secondly, multi-agent

system involves multiple learners, and every learner optimizes

the policy under the influence of other agents. How to model

other agents and update own policy properly is also a key

problem [15].

Multi-agent games have several types, including coopera-

tion, competition, and the mix of cooperation and competition.

Here we focus on cooperative multi-agent games. Agents in

cooperative games consider to play with multiple allies, so as

This work was supported in part by the National Key Research and
Development Program of China under Grants 2018AAA0101005 and
2018AAA0102404.

to maximize the global reward. Generally, there are mainly

two kinds of training schemes in collaborative multi-agent

learning system. The first is the team learning, also known as

centralised learning, that uses one learner to output the joint

action of all agents in the team. This method suffers from

the scalablity problem when agents’ number increases. The

second is the concurrent learning, also known as decentralized

learning. This method uses multiple concurrent learners to

update each agent’s policy. Different from team learning,

concurrent learning has one controller for each agent. Through

mapping the joint space to multiple separated subspaces, con-

current learning can reduce the dimension of search space [14].

Decentralized learning helps to deal with the complexity in

multi-agent system, and the limitation of the observability and

communication make the decentralized policy more practical.

The simplest way to solve multi-agent task is supposing

that each agent learns independently, and takes the action

according to its local observation [18]. Independent learning is

a widely in multi-agent games, and has achieved impressive

performances [12] [19]. Independent learning is simple and

direct, but suffers from the instability problem caused by

multiple agents. It has troubles to learn multi-agent collab-

orative behaviors and evaluate each agent’s contribution for

the global reward. Parameter-sharing among multiple agents

can accelerate the learning process in the multi-agent system.

This method only learns one policy network, and applies it

to all agents [20]. Due to different local observations, each

agent can make different actions. Parameter-sharing method

is suitable for homogeneous multi-agent problem.

However, these methods does not directly solve the multi-

agent credit assignment problem. In collaborative tasks, joint

action only produces a global reward. It is difficult to deter-

mine the contribution of each agent. Sometimes we suppose

that each agent can obtain individual reward. However, these

local rewards are difficult to design, and are unable to guar-

antee agents to maximize the global reward in collaborative

scenarios [21]. To train multiple agents in fully cooperative

games, the simplest method is giving each agent the same

global reward or allocating it equally. This method has obvious

disadvantage. It can’t distinguish the contribution of different

agents for the global reward. On the other hand, using the same

reward will aggravate the homogeneity of agents, making each
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agent to learn similar behavior.

In this paper, we present counterfactual reward (CoRe)

mechanism to solve the multi-agent credit assignment problem

in fully cooperative game. Counterfactual reward is obtained

by calculating the global reward difference when the agent’s

action is replaced by other available actions, while fixing

other agents’ actions. We assume that the agent has the same

probability to choose other actions. Experimental results in

a simplified Pig Chase game prove that this is an effective

method to solve multi-agent credit assignment problem. In

addition, we adopt the parameter-sharing method to accelerate

the training process, and help to make collaborative behaviors.

The rest of the paper is organized as follows. In Section

II, we introduce the related work of multi-agent credit assign-

ment. Next section describes the background of Dec-POMDP

and reinforcement learning. Then we present multi-agent deep

reinforcement learning with counterfactual reward. In Section

V, we present the experimental details and results. Finally, we

draw a conclusion of our research.

II. RELATED WORK

To determine each agent’s importance in cooperative multi-

agent games, the Shapley value is a widely used method [22].

It allocates a unique distribution among all agents of the total

surplus. The characteristics of the Shapley value are a set

of desirable attributes. While in cooperative games, we can’t

complete the task and receive the global reward with a subset

of agents. Hence, the Shapley value can’t handle the multi-

agent credit assignment in our setting.

Counterfactual action is also used to tackle exploratory

noise in multi-agent systems. In cooperative games, the global

reward includes plenty of noise due to exploratory actions.

Agents are unable to distinguish the global reward’s ingre-

dient from true environmental dynamics and other agents’

exploratory action. Coordinated Learning without Explorato-

ry Action Noise (CLEAN) rewards are designed to remove

exploratory action noise [23] [24] [25]. At each training

step, agents execute actions by following the greedy policy

without exploration to produce a global reward. After that,

each agent privately computes the global reward in condition

that it executes an exploratory action, and the rest of the agents

follow their greedy policies. CLEAN rewards are defined as

follows:

riclean = r(s,a− ai + aiclean)− r(s,a). (1)

where a is the joint action when all agents follow the greedy

policies, ai is the greedy action executed by agent i, aiclean
is the counterfactual action following ε-greedy, r(s,a) is the

global reward when all agents execute their greedy policies

and r(s,a − ai + aiclean) is a counterfactual reward of agent

i.
The value decomposition network (VDN) [21] aims to learn

an optimal linear value decomposition from the global reward,

by back-propagating the total Q gradient through deep neural

networks that approximate the individual value functions. This

method is specifically motivated by avoiding the spurious

rewards that emerge in purely independent learners. VDN

can help to improve the coordination problem of independent

learning with centralised training and decentralised execution

[26]. Counterfactual multi-agent (COMA) policy gradient uses

a centralised critic to train decentralised actors, and estimates

a counterfactual advantage function for each agent in order

to address the multi-agent credit assignment problem [27].

The centralised critic Q(s,a) estimates Q-values for the joint

action a and the central state s. For each agent, COMA

computes an advantage function with a counterfactual baseline

that marginalises out ai, while keeping the other agents actions

a−i fixed. QMIX lies between independent Q learning and

COMA, but has the ability to represent a much richer class of

action-value functions [28]. Compared to VDN which is not

necessary to extract decentralised policies, QMIX only needs

to ensure that a global argmax performed on Qglobal has the

same result as a set of individual argmax operations performed

on each Qi. QMIX uses a mixing network to combine each

Qi into Qglobal, not as a simple sum as in VDN. QMIX can

represent complex centralised action-value functions with a

factored representation that scales well in the number of agents

and allows decentralised policies to be easily extracted via

linear-time individual argmax operations.

III. DEC-POMDP AND REINFORCEMENT LEARNING

In this section, we will introduce the background of fully

cooperative multi-agent game, and reinforcement learning.

A. Fully Cooperative Multi-Agent Game

A fully cooperative multi-agent game can be described as

a decentralized partially observable Markov decision process

(Dec-POMDP) [29]. s ∈ S denotes the global state. At every

time step, each agent i ∈ I ≡ {1, · · · , n} chooses an action

ai ∈ A, resulted in joint action a ∈ A ≡ An. The environment

receives the joint action and transfers to the next state s′

according to probability P (s′|s,a). Agents receive the global

reward r(s,a) : S × A → R. The global action-state value

function Qπ(st,at) under policy π is

Qπ(st,at) = Est+1:T ,at+1:T
[Rt|st,at]. (2)

Because of Dec-POMDP, each agent can only receive its

local observability o ∈ O, and o(s, i) : S × I → O. We

define the individual action-state value function of agent i as

Qπ(ot, at):

Qπi

(oit, a
i
t) := E[Ri

t|oit, ait], (3)

where Ri
t =

∑T
l=0 γ

lrit+l is the cumulative discount reward

of agent i.

B. Reinforcement Learning

Reinforcement learning considers the paradigm that an a-

gent learns by trial and error, and determines the ideal behavior

from its own experiences with the environment [30]. As a



classical RL algorithm, Q-learning is a widely-used off-policy

method. The update process of Q learning is

δt = rt+1 + γmax
a

Q(st+1, a)−Q(st, at), (4a)

Q(st, at) ← Q(st, at) + αδt, (4b)

where δt is the temporal-difference (TD) error.

Deep Q learning uses a neural network to approximate

action value function, and stores experiences into a replay

buffer [4]. At each training step, DQN samples a minibatch

of experiences to minimize the TD error, so as to update the

network.

L(θ) = E(s,a,r,s′)∈D[(r+γmax
a′

Q̂(s′, a′;θ−)−Q(s, a;θ))2],

(5)

where Q̂ is the target Q function. DQN uses the target network

to stabilize the learning process, and θ− is the parameter of

the target network. Experience replay improves the sample

efficiency, and target network stabilizes the training process.

After that, several variants of DQN have been proposed.

Dueling architecture neural network is suitable for model-

free deep reinforcement learning [31]. It has two different

estimators, the state value function estimator V (s), and the

state-action advantage function estimator A(s, a). For those

actions with similar values, dueling DQN performs better on

policy evaluation. DQN agent randomly samples experiences

from the replay buffer to train model, while it does not take

the importance of different experiences into account. Priority

experience replay (PER) measures the importance according

to the TD error δ of different experiences, and preferentially

samples more important experiences [32]. The sampling prob-

ability for experience j is P (j) =
pα
j∑

k pα
k

, where pj = |δj |+ ε

is the priority. α determines how much prioritization is used,

and ε is a small positive constant. DQN uses the expectation

of action value function to learn the optimal policy, while

categorical DQN depends on the distribution of action value

function [33]. Compared to the expectation of action value

function, the distribution can provide more useful information

for decision-making. For some cases, agents tend to choose

actions with smaller variance, rather than blindly choosing

those with higher mean values. For some MDPs or POMDPs,

similar states may have completely different value functions.

If we only consider the mean values, this part information

will be completely confused. Quantile regression (QR) DQN

performs distributional RL over the Wasserstein metric, and

achieves better performance in some benchmark [34].

IV. MULTI-AGENT RL WITH COUNTERFACTUAL REWARD

Independent and parameter-sharing deep reinforcemen-

t learning methods have made some achievements in multi-

agent tasks, while they are unable to deal with the credit

assignment problem among agents in team games. We follow

the idea behind CLEAN rewards, and put forward multi-agent

reinforcement learning with counterfactual reward to solve this

problem.

A. Counterfactual Reward
The cumulative discounted reward of multi-agent system is

Rt(st,at) =
∑T

l=0 γ
lrt+l(st+l,at+l), where at is the joint

action of all agents, and st is the global state at time step t.
rt(st,at) is the one-step global reward depended on all agents.

Difference reward uses a default action to define each

agent’s counterfactual [35]. We can calculates each agent’s

local reward to get the counterfactual when the agent’s action

is changed. This is an effective method to deal with the

credit assignment problem among multiple agents. Hence, we

propose the counterfactual reward cit(st,at) of agent i.

cit(st,at) = rt(st,at)− Eai,c
t
rt(st,at − ait + ai,ct ) (6)

In collaborative multi-agent reinforcement learning tasks,

when fixing other agents’ actions, the current agent takes other

actions so as to result in the global reward difference. We

assume that the agent has the same probability to choose other

actions, and we need to know the model of the environment

to evaluate reward rt(st,at−ait+ai,ct ).. at−ait+ai,ct denotes

that at time step t, agent i does not take its action, but takes

other actions ai,ct equally. ai,ct ∈ A and ai,ct �= ai.
The partial differential of counterfactual reward with respect

to ai is:

∂

∂ai
cit(st,at) =

∂

∂ai
(rt(st,at)− Eai,c

t
rt(st,at − ait + ai,ct ))

=
∂

∂ai
rt(st,at)− ∂

∂ai
Eai,c

t
rt(st,at − ait + ai,ct )

=
∂

∂ai
rt(st,at)− 0

=
∂

∂ai
rt(st,at)

(7)

With counterfactual reward has high consistency with the

global learning tasks, because maximizing agent’s local reward

will also increase the global reward. Without the consistency,

agents in multi-agent learning systems will tend to be lazy.

High consistency is very important for multi-agent collabo-

ration. In addition, counterfactual reward is sensitive to the

action of each agent. Reward sensitivity means that compared

with other agents’ actions, each agent is more sensitive to its

own action. By contrast, independent DQN and parameter-

sharing DQN that distribute global reward equally to each

agent have lower sensitivity to action. Counterfactual reward

can improve the performance of current multi-agent deep

reinforcement learning algorithms. This reward mechanism is

more sensitive to each agent, and is simpler for the learning

task.

B. Multi-Agent DQN with Counterfactual Reward
Multi-agent deep Q learning with counterfactual reward

bases on the traditional deep Q learning algorithm, but use

different reward mechanisms. This can converge faster in

multi-agent games. The update rule of partially observable Q

learning with counterfactual reward is

Q(oit, a
i
t) ← Q(oit, a

i
t)+α(cit+γmax

ai
Q(oit+1, a

i)−Q(oit, a
i
t)).

(8)



Algorithm 1 Multi-Agent DQN with Counterfactual Reward

1: Initialize experience replay buffer D to capacity N , step

counter T = 0
2: Initialize action-value function Q with random weight θ
3: Initialize target action-value function Q̂ with weight

θ− ← θ
4: Get initial state s
5: repeat
6: for each agent i do
7: receive observation oi, get Q(oi, a;θ)
8: choose ai according to ε-greedy policy

9: end for
10: execute a, get global state s′ and global reward r
11: for each agent i do
12: receive new observation oi

′

13: calculate ci according to equation 1

14: store transition (oi, ai, ci, oi
′
) in D

15: randomly sample minibatch transitions from D

16: y =

{
ci + γmaxai′ Q̂(oi

′
, ai

′
;θ−), else

ci, if s′ is terminal

17: update parameters θ according to equation 9

18: oi = oi
′

19: end for
20: T ← T + 1
21: s = s′

22: if T mod 1000 == 0 then
23: update target network weight θ− ← θ
24: end if
25: until T > Tmax

When we use deep neural network as function approximator,

and use experience replay D and target action-value network

Q̂ introduced in DQN, the loss function of agent i is

Li(θt) = E(oi,ai,ci,oi′ )∈D[(cit + γmax
ai′

Q̂(oi
′
, ai

′
;θ−t )

−Q(oi, ai;θt))
2].

(9)

We define y = ci + γmaxai′ Q̂(oi
′
, ai

′
;θ−) if s′ is not

terminal. Otherwise, y = ci. Algorithm 1 presents the details

of Multi-Agent Deep Q Network with Counterfactual Reward

(CoRe-DQN).

V. EXPERIMENTS

We use a multi-agent game environment to evaluate the

performance of counterfactual reward for multi-agent deep

reinforcement learning algorithms.

A. Experimental Platform

Pig Chase game used in the experiment is shown in Figure

1. Agent 1, agent 2 and the pig are presented with red,

blue and green respectively, with the form of T in the maze

environment. Agents use the simplified first-person perspective

visual images as input, resulting in high-dimensional state

space. The fields behind agents are grey. The roadblocks are

black and walkable areas are white. Agent’s available actions

Fig. 1. Representation of Pig Chase. The top view is the global information.
The bottom views are local observations of agent 1, agent 2 and the pig
respectively.

are move forward, turn left, turn right and catch. At the

beginning, two agents and the pig are located randomly with

no overlap. When two agent catch the pig successfully, the

environment will be reset, and three objects are reset randomly.

When the agent move, it can only move to the front space.

This action does not work if there are obstacles or agents in

this space. The pig in the maze is controlled with built-in game

AI. We assume that the pig is strong, that means the pig will

not be arrested until two agents use the catch action at the

same time. The catch action can only be used when agents

and the pig are in the adjacent position, and the agent should

face the pig. Each agent can only observe two neighbouring

grid spaces. Direction 0, 1, 2, 3 represent the left side, the up

side, the down side, and the right side respectively.

The observation sample is shown in Figure 1. The global

view is on the top, but we don’t use it for partially observable

Markov decision process. The bottom views are the observa-

tions of agent 1, agent 2 and the pig, from left to right. This

sample shows that agent 1 is toward down, agent 2 is toward

right, and the pig is toward down.

Pig Chase is a fully cooperative multi-agent game. Agents

will receive a global reward of +1 if the pig is caught suc-

cessfully. At other time step, agents will receive a punishment

of 0.001, as shown in equation (10). The maximal steps in a

game is 1000, so the game score is in [-1, 1]. We train agents

in maze scenarios with different sizes, such as 11×11, 13×13

and 15×15.

rglobal =

{
+1, catch the prey successfully

−0.001, every time step
(10)

B. Learning Model

CoRe agents learn a action-value function Qθ(o
i
t, a

i) for

each agent. Agents receive state observation oit, and use

deep neural networks as the Q function approximator. The

resolution of the original RGB visual image is 15×15×3
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Fig. 2. The CoRe diagram in Pig Chase. Two agents receive local partially observable visual observations as input, and use deep convolutional neural network
model to output Q values for each available action. The environment receives the joint action, and transits to the next state. Agents receive the global reward,
and calculate individual counterfactual reward. These experiences are stored in a replay buffer, and used to update the Q network which is shared among
agents.

(width: 15, height: 15, RGB channels: 3). The convolutional

neural network in our model refers to the network architecture

of DQN. The network uses a convolutional layer with 32 filters

of size 5×5, followed by a convolutional layer with 64 filters

of size 3×3, followed by a convolutional layer with 64 filters

of size 3×3, followed by a fully connected layer with 512

hidden units. We set stride to 1 in all convolutional layers. All

four hidden layers are followed by a rectifier nonlinearity. At

last, we use a fully connected layer with 4 nodes to output

the Q values of all the available actions. We use PyTorch to

construct the neural network.

The details of the CoRe model for Catch the pig game

are depicted in Figure 2. Two agents receive local first-

person perspective visual observations as input, and use deep

convolutional neural network model to output Q values for

each available action. To balance exploration and exploitation

in reinforcement learning, we use ε-greedy method to select

actions. ε starts at 1, and reduces to 0.001 in the end, as

ε = 0.001 + (1 − 0.001) × e
−step
6000 . The environment receives

each agent’s action, output global reward and move to the

next state. We calculate counterfactual reward for each agent

according to the global reward, and storage experience into the

replay buffer. To update Q network, we sample a minibatch

of experience from the replay buffer in each update.

In the training process, the learning rate is set to 0.0001.

Target network is updated every 1000 steps. The replay buffer

size is 100000, and batch size is 64. In the first 10000 steps,

agents take action randomly. After that, we update the Q

network every step.

C. Comparison on Global Reward and Counterfactual Reward

First of all, we train agents in the 11×11 small game envi-

ronment, and compare the performance of deep reinforcement

learning with global reward and counterfactual reward. We use

four kinds of deep Q learning algorithms to train agents: DQN,

Dueling-DQN, PER-DQN, and QR-DQN.

We average the episode rewards of the last 100 episodes

evey 10000 training steps. Figure 3 show the average rewards

of various DRL agents with global reward independent learn-

ing (Ind), global reward parameter-sharing learning (PS) and

counterfactual reward (CoRe). These rewards and steps are

evaluated after every 10000 training steps within nearest 100

games. The curves of average reward increase fast in the first

200000 steps, and gradually converge after that. The average

steps that agents needed to catch the pig gradually reduced

during training, and eventually drop to a low level.

With different reward mechanism, average rewards and av-

erage steps of different deep reinforcement learning algorithms

are presented in Table I. The result shows that our deep

reinforcement learning agents can eventually learn effective

strategies and catch the pig. Global reward independent DR-

L provides a high-level baseline. Global reward parameter-

sharing learning is superior to independent learning in learning

speed. CoRe has better performances compared with global

reward independent learning and parameter-sharing learning,

especially on learning speeds and final scores.
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Fig. 3. Average rewards of DRL agents with various reward mechanisms in 11x11 game environment during training.
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Fig. 4. Average steps of DRL agents with various reward mechanisms in 11x11 maze environment during training.
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Fig. 5. Experimental results of CoRe agents in 13x13 game environment, including average rewards, and episode steps.
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Fig. 6. Experimental results of CoRe agents in 15x15 game environment, including average rewards, and episode steps.

TABLE I
PERFORMANCE OF DRL AGENTS WITH VARIOUS REWARD MECHANISMS IN 11X11 GAME ENVIRONMENTS.

Algorithms Metrics DQN Dueling-DQN PER-DQN QR-DQN

Global reward Ind
rewards 0.875 0.921 0.935 0.785

steps 126.5 79.4 65.7 191.8

Global reward PS
rewards 0.835 0.855 0.937 0.868

steps 162.2 140.3 82.1 131.7

CoRe
rewards 0.951 0.951 0.960 0.952

steps 49.8 50.1 41.3 48.9

TABLE II
PERFORMANCE COMPARISON OF VARIOUS CORE AGENTS IN 13X13 AND 15X15 GAME SCENARIOS.

Maze size Metrics DQN Dueling-DQN PER-DQN QR-DQN

13x13
rewards 0.919 0.924 0.937 0.939

steps 81 76 63 61

15x15
rewards 0.870 0.869 0.897 0.897

steps 130 131 103 104

D. Comparison on Different Environments

The experimental results in 11×11 game environment show

that CoRe agents can achieve remarkable performance for

multi-agent reinforcement learning. In the following experi-

ments, we will explore whether CoRe can still learn effective

policies in 13×13 and 15×15 maze environments.

Figure 5 shows the average rewards and average win rate

of different CoRe agents in 13×13 game environment during

training. In this scenario, our agents are trained for 500000

steps. CoRe agents can learn effective strategies, and catch

the pig eventually. The curves of average rewards are similar

to those in 11×11 game scenario, with a smooth rising trend.

The curves of average win rate are similar to that of average

rewards, and agents finally reach 100% win rate. The average

steps are about 100 at last.

Figure 6 shows the average rewards and average win rate in

15×15 game environment during training. In this scenario, our

agents are trained for 1000000 steps. Although this scenario is

more difficult, the proposed CoRe agents can still catch the pig

successfully. Compared with the former two scenarios, agents’

performances have more fluctuations in the training process.

Table II presents average rewards, average win rate and

average steps of different CoRe-DQNs in 13×13 and 15×15

game environments. These performance metrics are averaged

in 1000 games. The results show that with maze size being

larger, average rewards are reduced, and agents need more

steps to catch the pig. In 13×13 game scenario, CoRe-

QR-DQN has the best performance. While in 15×15 game

scenario, CoRe-PER-DQN is the best.

VI. CONCLUSION

In this paper, we focus on fully cooperative games, and

propose multi-agent deep reinforcement learning with coun-

terfactual reward to solve the credit assignment problem.

Counterfactual reward fixes other agents’ actions, and cal-

culates the global reward difference when the current agent

executes other actions to reshape each agent’s local reward.

This method can help to measure each agent’s contribution

for the global reward, resulting in collaborative behavior

among multiple agents. In Pig Chase game, CoRe agents have

better performances and learning efficiency compared with

the global reward independent learning and parameter-sharing

multi-agent DRL algorithm.
At present, we need to know the model of the environment

to calculate the counterfactual reward of each agent. In the

future, we will combine the model-based method, and learn

the model of the environment with data-driven method. In

addition, we will extend our method to policy gradient re-

inforcement learning, with centralized critic and decentralized

actor, and generalize to environment with large number of

agents.
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