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Abstract—The most fascinating aspect of graphs is their ability
to encode the information contained in the inner structural
organization between its constituting elements. Learning from
graphs belong to the so-called Structural Pattern Recognition,
from which Graph Embedding emerged as a successful method
for processing graphs by evaluating their dissimilarity in a
suitable geometric space. In this paper, we investigate the
possibility to perform the embedding into a geometric space by
leveraging to peculiar constituent graph substructures extracted
from training set, namely the maximal cliques, and providing
the performances obtained under three main aspects concerning
classification capabilities, running times and model complexity.
Thanks to a Granular Computing approach, the employed
methodology can be seen as a powerful framework able to
synthesize models suitable to be interpreted by field-experts,
pushing the boundary towards new frontiers in the field of
explainable AI and knowledge discovery also in big data contexts.

Index Terms—Structural Pattern Recognition, Supervised
Learning, Embedding Spaces, Granular Computing, Graph Edit
Distances.

I. INTRODUCTION

The possibility of solving pattern recognition problems in
the graphs domain challenged computer scientists and machine
learning engineers alike for more than two decades. That is
because graphs are able to encode both topological infor-
mation (namely, relationship between entities) and semantic
information (whether nodes and/or edges are equipped with
suitable attributes). In turn, this high level of abstraction and
customization made graphs suitable mathematical objects for
modelling several real-world systems in various application
fields such as biology [1]–[3], social networks [4], [5], com-
puter vision and image analysis [6], [7]. The drawback when
dealing with graph-based pattern recognition relies on the
computational complexity required in order to measure the
(dis)similarity between two graphs, which exponentially grows
with respect to the input size [8]. This inevitably results in an
heavy computational burden when it comes to perform pattern
recognition in the graphs domain, especially when also node
and/or edge attributes must be taken into account.

In the literature, common strategies include feature engi-
neering, where numerical features are manually extracted from
the input patterns and concatenated in a vector form (despite
its simplicity, this procedure requires either a deep knowledge
on the modelled system in order to list such features or an

expensive and time consuming trial-and-error search); kernel
methods [9], [10], where semi-positive definite kernel func-
tions are used to measure similarity between input data via
reproducing kernel Hilbert spaces (see e.g. [11]–[14]); using
ad-hoc dissimilarity measures (e.g., edit distances [15]–[17])
in the input space in order to directly solve the pattern recog-
nition problem without moving towards Euclidean spaces;
or by means of (explicit) embedding techniques. Embedding
techniques have the same target of feature engineering-based
ones: that is, move the pattern recognition problem from
the structured input domain towards the Euclidean space in
which classification is performed. Nonetheless, an automatic
synthesis of the embedding space is a delicate issue that
must fill the informative and semantic gap between the two
domains [16]. Alongside neural approaches such as [18]–
[22], an efficient strategy for solving this task relies on
Granular Computing (GrC) [23], [24]. GrC is an information
processing paradigm suitable for complex data mining, which
are often characterized by different levels of representation.
The main objective of a GrC approach is to represent together
(group) entities that are indistinguishable at a given level of
abstraction [25]: in the technical literature, these groups are
known as information granules. However, finding a suitable set
of meaningful and recurrent information granules is a task that
is both problem- and data-dependent, therefore they are hardly
known a-priori and designing an intelligent system in order
to automatically synthesize the set of information granules is
of paramount importance. In the current literature, the GrC
paradigm has been successfully employed in order to design
effective advanced pattern recognition systems dealing in both
graphs and sequences domains (see e.g. [16], [17], [26]–[28]
and references therein). A common strategy relies on extrac-
tion of substructures from structured data (e.g., paths from
graphs, k-mers or n-grams from text corpora) and then use a
clustering procedure in order to automatically discover groups
of similar/frequent pivotal data aggregates, hence prospective
information granules. These approaches have the major draw-
back of a non-negligible time and space complexity, especially
when big datasets have to be analyzed: for example, the
number of paths in an n-vertex graph goes like O(n!) in the
worst-case, whereas the prospective number of k-mers in a
sequence whose elements are drawn from a finite alphabet
of size m goes like mk. These plain back-of-the-envelope
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calculations remark the unfeasibility of exhaustive extractions
for automatic synthesis of information granules.

In order to overcome these problems and make GrC-based
pattern recognition systems appealing towards big datasets,
previous works such as [16] and [17] focused on finding
lightweight procedures based on random walks, showing that
the vast majority of the information is still preserved whilst
featuring remarkably lower running times and memory usage
with respect to an exhaustive enumeration of the paths [29].
Random walks trace back to the beginning of the 20th century
[30] and have been widely studied since, especially in the
context of Markov chains. A random walk on a graph is a
particular case of Markov chain, where the transition matrix
(namely, the probability of ’jumping’ from one node to an-
other) is given by D−1A, where D and A are the degree and
the adjacency matrix of the graph, respectively. Random walks
have been further used in graph theory and network analysis:
for example, random walk kernels have been proposed in
order to measure similarity between graphs [13] and Twitter
(amongst others) uses random walks for its recommender
system [31], [32].

In this paper, we pose our attention to another peculiar sub-
structure that can be drawn from a graph: the clique. Cliques
originate in social sciences indicating groups of individuals
who interact with one another and share similar interests [33],
[34]. The seminal work [35] has brought widespread use of
the term ’clique’ in graph theory and network analysis, where
the authors used complete subgraphs to model (social) cliques
in social networks. In fact, this is the current definition of
a (graph) clique: a subset of vertices forms a clique if the
induced subgraph is complete (i.e., every two distinct vertices
in the clique are adjacent). The same does not hold in other
type of subgraphs such as graphlets (induced subgraphs) and
motifs (partial subgraphs). Theoretically speaking, the number
of maximal cliques (i.e., cliques that cannot be made any
larger) goes like O(3n/3) in the worst-case scenario [36] for
an n-vertex graph: this result suggests that the number of
prospective information granules is way lower with respect
to the paths case. Furthermore, despite being a well-known
NP complete problem, finding the maximal cliques in a graph
can be pursued in exponential time, for example thanks to the
Bron-Kerbosch algorithm [37]. In order to address whether
cliques can be interpreted as meaningful information granules
for synthesizing an embedding space for graph classification
purposes we consider GRALG, a GrC-based classification
system suitable for dealing in the graphs domain. GRALG
has been originally proposed in [29] and later applied in the
context of image classification [38], [39]: in these works, it
has been equipped with an exhaustive subgraphs extractor
which, however, turned out to be unfeasible for large datasets.
As previously introduced, in [16] and [17] we solved this
problem by equipping GRALG with a random walk-based
extractor which operates in an unsupervised (the former) and
class-aware (the latter) fashion. In this work, as instead, we
investigate the possibility of using cliques instead of walks and
paths for the very same purpose of automatically synthesizing

a set of possibly meaningful information granules for building
an embedding space for graph classification.

The remainder of this paper is structured as follows: in
Section II we introduce GRALG, the GrC-based graph clas-
sification system at the basis of this work; in Section III the
training and testing phases are described; in Section IV we
introduce the datasets used for analysis, along with the five
classifiers used for comparison and the proper computational
results; finally, Section V concludes the paper.

II. GRALG

In the context of Graph Embedding, GRALG (GRanular
computing Approach for Labelled Graphs) [29] is proposed
as a classification system for labeled graphs by deploying
a GrC approach, which has been shown to be helpful to
unravel complex system described by structured data [26].
The main idea behind GRALG is to let emerge, from an
initial set of graphs, an alphabet of symbols A = {si, . . . , sn}
composed by relevant substructures (i.e., recurrent, meaning-
ful), by exploring different levels of granulation deploying
an unsupervised method. These symbols will serve as pivotal
entities for performing the embedding from the graphs domain
into a geometric space via the so-called symbolic histograms.

When moving from a structured domain into geometric
spaces, an undoubted revenue comes from the possibility
to take advantage of the latter’s well-defined mathematical
properties. Indeed, geometric spaces are often endowed with a
straightforward distance function, e.g. the Euclidean distance,
that has a key role in Pattern Recognition systems. On the other
hand, the operations involved for performing the graph embed-
ding rely on a dissimilarity measure (Graph Edit Distance–
GED) defined directly in the graphs domain.

Graph Edit Distance: Generally speaking, a GED eval-
uates the dissimilarity between two graph, say G1 and G2,
as the minimum cost path needed to transform G1 into G2

by applying a sequence of atomic operations (defined as
substitution, insertion and deletion) on both nodes and edges.
Formally, the distance function d : G ×G → R can be seen as
the following minimization problem:

d(G1, G2) = min
(e1,...,ek)∈O(G1,G2)

∑k

i=1
c (ei) (1)

where O(G1, G2) is the set of all possible series of operations
that turn G1 into G2. An exact solution of Eq. (1) is practically
unfeasible due to the combinatorial computational complexity
involved [40]. For this reason, a node Best Match First (nBMF)
[41] strategy is employed. Formally, let G1 = (V1, E1,Lv,Le)
and G2 = (V2, E2,Lv,Le) be two labeled graphs where Lv
and Le are the sets of attributes on nodes and edges. Let also
dπv
v : Lv×Lv → R and dπe

e : Le×Le → R be the dissimilarity
measures needed to compare nodes and edges according to Lv
and Le where, for the sake of generalization, dπv

v and dπe
e

could be possibly parametric, with parameters sets πv and
πe. The nBMF evaluates the atomic operation costs csubedge,
cinsedge, c

del
edge, c

sub
node, c

ins
node, c

del
node using the following greedy

procedure:



1) find pair of node matches (i.e., most similar) between
G1 and G2 according to dπv

v : any match accounts for a
node substitution

2) node substitutions and deletions are determined by the
order discrepancy between the two graphs

3) for each pair of nodes from step 1, assess whether an
edge exist in G1 and G2: if so, this accounts as an edge
substitution; otherwise this accounts as a node deletion
or substitution.

The importance of each operation can be quantified by means
of suitable weights, respectively wsubnode, w

sub
edge, w

ins
node, w

ins
edge,

wdelnode, w
del
edge bounded in [0, 1]. Finally, the dissimilarities

between nodes and edges, dV(V1,V2) and dE(E1, E2), read
as:

dV(V1,V2) = wsubnode · csubnode + winsnode · cinsnode + wdelnode · cdelnode

dE(E1, E2) = wsubedge · csubedge + winsedge · cinsedge + wdeledge · cdeledge
(2)

In order to overcome skewness due to G1 and G2 (possibly)
having different sizes, a normalization step is performed by
taking into account their respective orders:

d′V(V1,V2) =
dV(V1,V2)

max(o1, o2)

d′E(E1, E2) =
dE(E1, E2)

1
2 (min(o1, o2) · (min(o1, o2)− 1))

(3)

with o1 = |V1| and o2 = |V2|. The normalization factors
for both nodes and edges are defined by considering that
the nBMF heuristic computes at most min (o1, o2) matches
between nodes in G1 and G2, and that the edit operations on
edges are induced from those performed on nodes.The overall
distance between the two graphs is then given by

d(G1, G2) =
1

2
(d′V(V1,V2) + d′E(E1, E2)) (4)

The remainder of this Section aims at defining individually
the blocks needed to perform the graph embedding: in Section
II-A–II-B, we give a detailed description of the process needed
to synthesize the alphabet starting from the maximal cliques
extracted from a given graphs set. Next, in Section II-C,
we describe the building block for embedding graphs into
a geometric space, with Section II-D addressing the final
classification block.

A. Extractor

This block is in charge to extract atomic substructures
belonging to a given graph by following a class-aware strategy
as described and tested in [17]. Additionally, a stochastic sub-
sampling method allows to fix the total number of subgraphs
to extract with a user-defined parameter in order to address
the computational and memory footprint issues [16], typical
of exhaustive procedures [29].

In details, let S ⊂ G be a set of graphs with ground-truth
class labels L = 1 . . . N , this procedure aims at building class-
stratified subgraphs sets SLg starting from graphs in S, taking
into account the frequency of the L-th class in the dataset. Let

also W be the user-defined cardinality of
⋃N
L=1 S

L
g , then the

class-aware extraction can be summarized as follows:
1) Evaluate the absolute frequency fL for each class L =

1 . . . N , such that
∑N
L=1 fL = |S|

2) According to W , set the number of subgraphs to be
extracted for each class as NL = fL

|S| ·W
3) For each label L, extract NL subgraphs from graphs

belonging to S having label L and populate the set SLg .
The subgraphs extraction may occur by employing different
strategies that take into account distinct peculiarities of the
desired substructures. That is, in step 3 various algorithms can
be deployed depending on the subgraph’s properties intended.
For example, in [16], we considered subgraphs emerged by
traversing graphs using the well-known Breadth First Search
(BFS) and Depth First Search (DFS) algorithms: given a root
node, BFS explores all of the neighbor nodes at the present
depth prior to moving on to the nodes at the next depth level,
whereas DFS acts in an opposite manner by exploring the node
branch as far as possible before being backtracking and expand
other nodes. In this work, we test the possibility of a clique
extractor based on the Bron-Kerbosch algorithm. For sake of
clarity, the aforementioned extractor is described separately:

Maximal cliques Extractor based on Bron-Kerbosch:
This Extractor aims at enumerating all maximal cliques of
a given graph G ∈ S. For this purpose, the well-known Bron-
Kerbosch algorithm has been employed, which uses a recursive
backtracking strategy that looks for all maximal cliques. In
order to describe the method, let R, P , and X , be three
disjoint vertices sets. In each recursion step, R stands for the
set containing a possible maximal clique, P makes note of
not yet visited vertices, whereas X keeps track for the already
visited nodes in earlier steps that serves for avoiding a clique
is repeated in the backtracking mechanism. In every call to the
main function, the procedure checks whether R is maximal by
looking at the set P ∪ X . Since this set is made up by the
vertices which are adjacent to R (a potential maximal cliques),
P ∪ X 6= ∅ proves that R is not maximal. In practice, the
method works by calling recursively the main procedure for
all v ∈ P for the clique R∪{v} and restricting P and X to the
neighborhood Γ (v). When a cliques R is signed as maximal,
the algorithm backtracks by swapping the vertex v from P
to X guaranteeing that a clique is not enumerated multiple
times. A detailed description for the procedure can be found
in Algorithm 1.

The designed Extractor takes as input a graph G for which
is required to enumerate the maximal cliques. Then, when
the Bron-Kerbosch algorithm finds a maximal clique in G, a
subgraph g = {Vg, Eg} with the vertices Vg ≡ R is created
in order to save the corresponding clique subgraph. The set C
contains all maximal cliques found in G.

B. Granulator

This block defines the operations needed to synthesize an
alphabet of symbols A = {s1, . . . , sn}, i.e. information gran-
ules. Thus, starting from a set of subgraphs, the alphabet A is
intended to collect only relevant and meaningful substructures



Algorithm 1 Maximal Cliques Extractor
procedure CLIQUES EXTRACTOR(Graph G = {V, E})

P : initialize with vertices V
R = {}
X = {}
g: maximal clique subgraph with Vg vertices
C: initially empty set of maximal cliques
procedure BRON-KERBOSCH(P ,R,X)

if P ∪X = ∅ then
Set Vg = R
Append g in C
return R as maximal clique

for v ∈ P do
BRON-KERBOSCH

(
P ∩ Γ (v) , ...

R ∪ {v}, X ∩ Γ (v)
)

P = P r {v}
X = X ∪ {v}

end
return C cliques container

end

for the problem at hand. In our approach, we used to synthesize
symbols by means of clusters emerged by performing a Basic
Sequential Algorithmic Scheme (BSAS) clustering algorithm
[16], [17]. A major BSAS benefit relies on the number of
clusters being not defined a-priori. Indeed, BSAS only relies
on two parameters, θ and Q, defining the inclusion threshold
for a pattern to belong to a cluster and the maximum number of
allowed clusters. The latter parameter Q aims at bounding the
maximum number of clusters since, for small θ, the number
of clusters might explode. The parameter θ enables to explore
the problem at different level of granularity: by varying the
threshold, the granulator orchestrates a clustering ensemble,
hence generates different partitions where clusters emerge at
different levels of resolution, depending on the considered θ
value. Then, in all partitions, each cluster C is evaluated with
a cluster quality index F (C) defined as:

F (C) = η · Φ(C) + (1− η) ·Θ(C) (5)

where the two terms Φ(C) and Θ(C) are defined as

Φ(C) =
1

|C| − 1

∑
i
d(g?, gi) (6)

Θ(C) = 1− |C|/|Sg| (7)

where, in turn, the representative of cluster C is denoted with
g? and gi is the ith pattern in the cluster. Specifically, g?

is defined as the medoid of the cluster, i.e. the pattern that
minimizes the pairwise sum of distances between all patterns
in the cluster. As shown in Eq. (5), the quality index of each
cluster accounts both its compactness (Eq. (6)) and cardinality
(Eq. (7)) with a trade-off parameter η ∈ [0, 1]. Eventually,
the method retains only well-compact and populated clus-
ters by discarding clusters whose quality index is below
a threshold τF . According to the class-aware strategy, the

clustering ensemble acts on each SLg set separately, enabling
the synthesis of class-related symbols properly organized in
different alphabets AL. As all alphabets AL are ready, they
will be merged together A =

⋃N
L=1AL.

C. Embedder

Starting from the alphabet A = {s1 . . . sn} synthesized
during the granulation phase, the Embedder has the role to
map graphs towards a geometric Euclidean space. In other
words, it aims at building a function φ : G → D where
D ⊆ Rn is a suitable n-dimensional space. The function φ
is designed according to the symbolic histograms approach:
symbols in A serve as pivotal structures for building a vector
h, i.e. the symbolic histogram. Formally, let G ∈ G be the
graph to be embedded and let Gexp an appropriate expansion
of G in subgraphs, i.e. the set of subgraphs forming G. The
symbolic histogram h is built as follows:

h = φA (Gexp) = [occ(s1, Gexp), . . . , occ(sn, Gexp)] (8)

In plain words, the function occ : A × G → N counts the
occurrences of a given symbol sj where j = 1 . . . n within
the subgraphs in Gexp. According to a suitable dissimilarity
measure (i.e., GED), a symbol-to-subgraph match is scored
if their dissimilarity is below a symbol-dependent threshold
τj = Φ (Cj)·ε, where ε ≥ 1 is user-defined parameter defining
a tolerance margin in the subgraphs dissimilarity.

In the above discussion, the method used to construct Gexp
is of utmost importance. Indeed, if this set is build according
to an exhaustive extraction, the system is likely to lead to a
memory issues due to the combinatorial complexity needed
to enumerate all the subgraphs of a given graph. It is worth
noting that since the number of matches grows according to
the cardinality of the symbols and the number of substructures
in Gexp, is also fairly possible to run into time issues. In this
work, we choose to build the aforementioned set following the
same method employed in the extractor described in Section
II-A: given a new graph G, it is decomposed in the set of its
maximal cliques according to the Bron-Kerbosch algorithm.
If, on one hand, the theoretical number of cliques goes like
O(3n/3) in the worst-case, in practice a subset of vertices
of G has to satisfy strong requirements to be eligible as a
clique, notably it has to be a fully connected subgraph that can
be no more expanded in a larger clique. This highly restricts
the cardinality of the set Gexp with respect to an exhaustive
enumeration of all subgraphs.

D. Classifier

The final block aims at evaluating the whole system through
a suitable classifier. To this end, we employed a simple K-NN
decision rule working on the embedding space D described
previously in Section II-C: a new incoming pattern hi is as-
signed to the most frequent label among its K nearest patterns.
The performance of the classification system is defined as the
ratio of correctly classified patterns.



III. ALPHABET OPTIMIZATION AND FEATURES
SELECTION

In Section II, we gave a detailed description of the atomic
procedures that made up the algorithm itself. In this Section,
we provide the explanation of the system as whole, showing
the methods for optimizing the crucial parameters for each
block separately and a features selection optimization for
selecting only relevant symbols for the problem at hand. For
sake of description, let S be a graph dataset (with graphs
possibly labeled on nodes and/or edges) and let Str, Svs and
Sts be training, validation and test set drawn from S.

In the first step, the Extractor finds all the maximal cliques
for each graphs in Str. Thus, following the class-aware strat-
egy, N class-specific subgraph sets SLg,tr are created using the
parameter W according to Section II-A. Consequently, the
Granulator takes as input SLg,tr and synthesize N different
alphabet sets AL. In the next phase, these sets will be merged
in the set A =

⋃N
L=1AL, feeding the Embedder block. Thus,

for each Gtri ∈ Str and Gvsi ∈ Svs, the related vectors htri ∈ D
and hvsi ∈ D are built in the embedding space D ⊆ Rn. It
is worth noting that each graph in Str and Svs needs to be
expanded by collecting all its maximal cliques, as discussed
in Section II-C. Finally, the K-NN decision rule evaluates the
performances on the embedding space D in classifying the
vectors hvs, where htr serves as training set.

A. Alphabet Optimization

The procedures described in Section II rely on many pa-
rameters which are problem- and data-dependent and hardly
known a-priori. Notably, these parameters are responsible for
the synthesis of an optimal set of symbols A∗. A genetic
algorithm is considered for automatic tuning of the aforemen-
tioned parameters, hence the genetic code can be summerized
as follows:

[Q τF η W Π] (9)

where
• Q ∈ [1, 500] is the BSAS parameter that sets the

maximum number of allowed clusters
• τF ∈ [0, 1] defines the threshold for promoting a cluster

representative to a symbol
• η ∈ [0, 1] weights compactness and cardinality in Eq. (5)
• W = {wsubnode, w

sub
edge, w

ins
node, w

ins
edge, w

del
node, w

del
edge} are the

insertion, deletion and substitution weights for both nodes
and edges involved in the GED dissimilarity measure

• Π = {πv , πe} are the parameters for the nodes/edges
dissimilarity measures dπv

v and dπe
e , if applicable.

The genetic algorithm is equipped with elitism, mutation and
crossover operators that allow to move candidate solutions (in-
dividuals) from one generation to the next, with the accuracy
achieved by the K-NN in classifying the validation set hvs
serving as the objective function, to be maximized. At the end
of the optimization, together with the optimized alphabet A∗,
we also retain the parameters related to the GED, namely W∗
and Π∗.

B. Feature Selection

The optimized alphabetA? obtained in the previous Section,
may show a large cardinality and is likely to contain unneces-
sary symbols. For this reason, we designed a feature selection
phase based on a genetic algorithm whose goal is to retain
only significant and essential symbols. Recalling that htr ∈ D
with D ⊆ Rn, we filter relevant symbols by multiplying
component-wise each vector in htr with a projection mask
m ∈ {0, 1}|A?|. Consequently, a reduced embedding space
D ⊆ Rm with m = |{i : mi = 1}| ≤ n is spanned by the
projected vectors htr. Accordingly, the validation set hvs is
projected as well using the same mask m and, finally, the clas-
sification system evaluates the accuracy ω on classifying hvs.
In order to drive the evolution in finding the best projection
mask, the individuals’ fitness function J , to be maximized, is
defined as a convex linear combination between the accuracy
ω and the cost of the mask µ = |{i : mi = 1}|/|m|:

J = α · ω + (1− α) · (1− µ) (10)

where α ∈ [0, 1] is a trade-off parameter that weights the
relevance between ω and µ. At the end of the optimization, the
best individual’s mask m? is retained and used to generate the
reduced embedding space D? ⊆ Rm and the reduced alphabet
A? with cardinality |A?| = m.

C. Model Evaluation

The final stage of the algorithm is the evaluation of the
synthesized model on the test set. Thus, for all graphs G ∈ Sts,
the expansion in the set of maximal cliques occurs and conse-
quently, these graphs are embedded in the geometric space D?
by the embedder block using the optimize parametersW?, Π?

and A?. At this point, vectors in hts are available for being
classified by the K-NN decision rule: the accuracy on the test
set serves as the performance measure for the whole GRALG
classification system.

IV. EXPERIMENTS

A. Datasets Description

In our experiments, we tested the classification system on
five different datasets taken from the IAM repository [42]:
Letter: three datasets of hand-written letters with growing

level of distortion: low (L), medium (M), high (H).
Node dissimilarity measure is set as a Euclidean distance,
whereas edges are matched with a delta distance since
they are unlabelled.

GREC: this dataset contains graphs that represent architec-
tural and electronic drawings symbols. A custom dis-
similarity measure is employed for matching vertices,
since they are labeled with a complex data structure, as
well as the edge dissimilarity measure. Furthermore, both
dissimilarity measures rely on five parameters bounded in
[0, 1] that define the set Π described in Section III-A

AIDS: each pattern represents molecule that shows or not
activities against HIV. Nodes are atoms whereas edges
are the related covalent bonds. Dissimilarity measure on
nodes is a non parametric custom distance function.
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Fig. 1. Results for cliques extractor. Blue, red and yellow bars correspond to sampling rates W = 40%, 60%, 80%, respectively. Purple bars refer to maximal
cliques enumeration. Whiskers indicate the standard deviation.

Further properties of the datasets and formal formulation of
nodes and vertices dissimilarities can be found in [17].

B. Computational Results Against Walk-Based Extractors

In a first test campaign, we show the GRALG performances
by using two different extractors: the proposed procedure
described in Section II-A based on maximal cliques is com-
pared against the results obtained when a Breadth First Search
algorithm is employed for the subgraphs extraction [16]. In
both cases, we follow a Class-Aware granulator strategy [17]
together with a stochastic sampling strategy in order to reduce
the cardinality of the training set for the granulation stage. As
consequence, the W parameter in charge to fix the cardinality
of
⋃N
L=1 SLg,tr is chosen as follows:

• for cliques, we let W = 40%, 60%, 80% of the number
of maximal cliques enumerated using Bron-Kerbosch

• for paths, we let W = 10%, 30%, 50% of the number of
subgraphs extracted exhaustively [29]

where the total numbers of paths and cliques are shown in
Table I. It is worth remarking that when a BFS strategy
is employed, an additional parameter o is needed, which
defines the maximum order for the subgraphs to be extracted.

Conversely, when the extractor is based on maximal cliques,
this parameter is unnecessary since the Bron-Kerbosch pro-
cedure returns a complete clique decomposition where the
order of the cliques is strictly topology-related rather than
user-defined. For the sake of completeness, we considered the
performances achieved without subsampling strategy with both
Bron-Kerbosch and the exhaustive extraction procedures [29].

TABLE I
EXHAUSTIVE NUMBER OF SUBGRAPHS EXTRACTED FROM Str .

Subgraph Type Letter-L Letter-M Letter-H GREC AIDS

Path (o = 5) 8193 8582 21165 27119 35208
Clique 2377 2398 2493 3321 3961

Remaining parameters are chosen as follows:

• K = 5 (number of neighbours for K-NN)
• 20 individuals per population (both genetic algorithms)
• 20 generations (first genetic algorithm – alphabet opti-

mization)
• 100 generations (second genetic algorithm – feature se-

lection)
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Fig. 2. Results for BFS extractor. Blue, red and yellow bars correspond to sampling rates W = 10%, 30%, 50%, respectively. Purple bars refers to the
exhaustive extraction. Whiskers indicate the standard deviation.

• α = 0.99 in the fitness function for the second genetic
algorithm (very minor weight to sparsity)

• ε = 1.1 as tolerance value for the symbolic histograms
evaluation.

The software has been developed in C++ using the SPARE1

and Boost Graph2 libraries. Tests have been performed on a
Linux Ubuntu 19.10 machine, equipped with a 4-core Intel
i7-3770K @3.50GHz and 32GB of RAM.

In Fig. 1 and Fig. 2, we compare the extractors based
on maximal cliques and BFS paths and their exhaustive
counterparts, by taking into account four different aspects:
• accuracy on the test set (Fig. 1a and Fig. 2a)
• wall-clock time (Fig. 1b and 2b)
• number of symbols in the optimized alphabet A? (Section

III-A) (Fig. 1c and Fig. 2c)
• selected features after the second optimization phase

(Section III-B) (Fig. 1d and Fig. 2d).
Results are averaged on 10 runs in order to account the
randomness of the synthesis procedure. In Fig. 1a, AIDS and
Letter-L show comparable levels of accuracy with respect to

1https://sourceforge.net/projects/libspare/
2http://www.boost.org/

the BFS extractor in Fig. 2a., whereas in case of GREC, better
results can be observed, proving that cliques are significant
substructures for these problems. Conversely, when the clique
extractor acts on Letter-M and Letter-H, the accuracy is
strongly worsen if compared to the BFS strategy, suggesting
that paths are better than cliques when it comes to identify
useful symbols for these problems. In fact, medium/high level
of distortion (i.e., adding or removing vertices) in handwritten
letters might destroy useful cliques to characterize letters (e.g.,
the triangle in ’A’). A major improvement achieved by the
clique extractor can be spotted by observing results in Fig.
1c: in all configurations (i.e., regardless of the subsampling
percentage from the set of all maximal cliques), the number
of symbols is significantly reduced when compared to Fig.
2c. Indeed, when the subsampling occurs, all datasets show
a reduced number of symbols necessary to build the alphabet
for the embedding phase. Considering that every symbol in the
alphabet must be matched with all subgraphs that compose a
graph to be embedded (see Section II-C), a straightforward
revenue can be observed as running times are considered:
by matching Fig. 1b with Fig. 2b, the clique-based extractor
outperforms the BFS strategy for each subsample size W ,

https://sourceforge.net/projects/libspare/
http://www.boost.org/


TABLE II
COMPARISON AGAINST CURRENT APPROACHES IN TERMS OF ACCURACY. ASTERISKS INDICATE THAT RESULTS REFERS TO CROSS-VALIDATION RATHER

THAN A SEPARATE TEST SET.

Technique AIDS GREC Letter L Letter M Letter H Reference

Bipartite Graph Matching + K-NN - 86.3 91.1 77.6 61.6 [43]
Lipschitz Embedding + SVM 98.3 96.8 99.3 95.9 92.5 [44]
Graph Edit Distance + K-NN 97.3 95.5 99.6 94 90 [42]

Hypergraph Embedding + SVM 99.3 - - - - [28]
INDVAL Embedding + SVM 98.5 - - - - [27]

Graph of Words + K-NN - 97.5 98.8 - - [45]
Graph of Words + kPCA + K-NN - 97.1 97.6 - - [45]
Graph of Words + ICA + K-NN - 58.9 82.8 - - [45]

ODD ST+ kernel* 82.06 - - - - [14]
ODD STTANH

+ kernel* 82.54 - - - - [14]
CGMM + linear SVM* 84.16 - - - - [18]

GRALG (exhaustive path extraction) 99.44 92.23 98.05 84.83 76.13 [16], also in Fig. 2a
GRALG (class-aware clique extraction) 99.53 93.31–94.47 97.72–97.77 63.75–69.07 67.87–71.25 This work, also in Fig. 1a

GRALG (class-aware random walk extraction) 98.99–99.06 87.38–87.61 98.16–98.31 89.53–90.64 82.82–83.72 [17], also in Fig. 2a
GRALG (random walk extraction) 99.09–99.16 83.08–84.04 96.36–96.58 85.28–87.89 72.93–73.78 [16], [17]

showing an heavy reduction on the wall clock time even
when all the maximal cliques are employed for the granulation
phase. Besides the time improvements, another remarkable
result achieved thanks to the low-cardinality alphabet is the
interpretability of the trained model. Indeed, starting from a
reduced set of symbols in the alphabet for the training stage,
the following feature selection phase (Fig. 1d) further shrinks
the alphabet cardinality, leading to a more explainable learning
system. Notable is the case of AIDS where, after the feature
selection phase, by solely using a single symbol (clique), about
99.5% of the test set is correctly recognized. This peculiar
aspect certainly deserves further investigation. Nonetheless,
the variance of the alphabet sizes is quite high both as cliques
and paths are concerned: we expect to be able to reduce the
variance by a proper tweaking of the fitness function of the
first genetic algorithm (e.g., by adding a penalty term towards
large alphabets).

C. Computational Results Against State of the Art Techniques

In a second test campaign, the comparison involves GRALG
and current approaches in graph classification, with Table
II summarizing the results. The comparison is restricted to
the five datasets considered in this work, with a dash (-)
indicating that a given dataset has not been tested in the
literature on the corresponding model. Competitors span a
variety of approaches for graph classification (see Section I),
including classifiers working on the top of GEDs [42], [43],
kernel methods [14] and several embedding techniques [44],
[45], including GrC-based [27], [28] and neural [18] ones. As
regards subsampling-based GRALG variants, in Table II are
reported the performances obtained at different subsampling
rates in the form of min-max range. Clearly, GRALG is able to
reach state-of-the-art performances on three over five datasets
(AIDS, GREC, Letter-L), outperforming ODD and CGMM. On
the other hand, performance decays can be observed on Letter-
M and Letter-H, with GRALG scoring -5% in the former
case and -9% in the latter case against Lipschitz Embedding
(the overall most performing technique). Nonetheless, GRALG

is one of the very few amongst the considered techniques
(alongside [27], [28]) able to return an interpretable model.

V. CONCLUSIONS

In this paper, we proposed a classification system based on
the GrC paradigm for labelled graphs by considering a specific
subgraphs type, namely cliques, for building the alphabet upon
which the entire model relies on. Symbols emerged after the
granulation phase serve as pivotal structures for building the
symbolic histograms representation, whereby the classification
of the pattern can be achieved in a suitable (geometric)
embedding space. The latter, is finally optimized thanks to
two different meta-heuristic algorithms (genetic optimization)
which are in charge to tune relevant parameters and selecting
significant symbols for the final model. With this approach,
we aim to understand whether a peculiar subgraph (i.e.,
clique), can play a relevant role in the synthesis of meaningful
information granules and whether these granules can still be
efficient in terms of recognition capabilities. Our investigations
took place on five datasets, relying on different real problems,
by considering accuracy, running times and number of symbols
required for building the model as performance indices. In a
first test campaign, we compared these performances against
the same system equipped with an extractor based on paths
emerged with a BFS strategy. Our tests show that, for three out
of five considered datasets, cliques emerged as fundamental
structure for the problem addressed. Nonetheless, since cliques
are very exclusionary kind of structures, the complexity of the
underlying model is strongly limited, affecting both running
times and the interpretability thereof. A second test campaign
compares GRALG against current approaches in the literature,
with GRALG showing remarkable performances on three out
of five datasets. Overall, these results propose the methodology
behind GRALG as an effective framework for knowledge
discovery in big data contexts, where the explanability of the
classification model is of utmost relevance. Future research
can investigate the possibility of mining social networks with
the proposed clique-based embedding.
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