
Multi-type Feature Mining and Fusion Model for
Temporal Prediction

Wei Lu
School of Management and Economics

University of Electronic Science and Technology of China
Chengdu, China

luwei@uestc.edu.cn

Yan Hu
School of Management and Economics

University of Electronic Science and Technology of China
Chengdu, China

huyan@std.uestc.edu.cn

Abstract—Mining user behavior features is an essential part of
recommender systems. As user preferences change dynamically,
long-term interest features are very useful for predicting users’
future behavior. Hence, the accuracy of temporal prediction will
be greatly improved, if we can combine user behavior regularities
with the item features. In this paper, we propose a long short-
term memory (LSTM) variant, named Multi-type Feature Mining
and Fusion (MFMF) model, to mine the long-term dynamic user
behavior pattern and the potential relationships between items.
We combine these features with user and item attributes to pre-
dict which items users will click next. Experiments on two real-
world datasets, LastFM dataset and movie dataset, demonstrate
the effectiveness of the proposed approach comparing to both
traditional and state-of-the- art methods.

Index Terms—Sequential data, LSTM, recurrent neural net-
work, temporal prediction, behavior pattern mining

I. INTRODUCTION

Personalized recommendation is critical to many web ap-
plications, such as music streaming, video watching, and e-
commerce sites. The key to an effective recommender system
is in modeling temporal preferences on items based on user
historical activities [1], e.g. clicks. Hence, it is necessary and
challenging to find the intrinsic patterns in the sequences of
users’ past behavior.

Previous studies have pointed out that both users’ short-
term and long-term interests are of great importance for
recommendations [2]. Hence, designed architectures are re-
quired to distinguish and exploit these two types of interests
simultaneously. For various online recommender platforms,
there are three main difficulties to capture the relations of
users’ actions and predict their future behavior. First, user
preferences are diverse and will change over time dynamically.
The long-term features reflect users’ general interest. It is
important to exploit them, as it means that the recommended
items should be influenced by users’ past actions. Second,
the user preference on items is not directly observable and
has to be learned from implicit feedback. Recommendations
based on traditional collaborative filtering of items often fail
to achieve satisfactory results due to the large amount of
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recommended candidates on online platforms [3]. Third, local
sequential interest should also be considered, which means
that the recommended items should depend on most recently
clicked ones. For example, if a user just clicks an episode of
a popular drama, he is very likely to click that series in the
near future, even if he has not shown interest in this type of
video in the past.

To solve the difficulties mentioned above, we consider
fusing the long-term global representations of all users with the
short-term activities of a particular user. Deep neural network
is employed to mine global time-sensitive features in complex
commercial scenarios [4]. We first learn the long-term evolu-
tion of users’ preferences and find the potential connection
between items according to the count of item usages. All
items are mapped into a user interest space by using the
historical click records. Since the number of predicted items
is large, item features are very sparse. A general method
is to embed the high-dimensional sparse space into a low-
dimensional dense space. However, this method only encode
items with one vector and can’t mine the inner connections
between items. Hence, skip-gram model is used for encoding.

Then, we learn the short-term preferences of a single user.
We use the embedded expression of items in the user interest
space as a feature of the item and combine it with other
item attributes that will affect user behavior. Items that are
clicked at the same time for multiple times are mapped
to close positions. In order to capture the potential impact
of different features automatically, we use the Factorization
Machine (FM) framework [5] to capture cross features. In this
way, both user’s long-term interest characteristics and short-
term preferences from the time-sensitive click sequences are
learned simultaneously.

In summary, we make the following contributions:
• We propose a Multi-type Feature Mining and Fusion

(MFMF) Model, which mines the time-sensitive product
adoption data. By fusing multi-type features, the recurrent
nature of usage dynamics is taken into consideration,
which allows recommending personalized items to the
right user at the right time.

• We show that the proposed model is applicable to handle
the potential connection and similarity between items.
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It can find users dynamic long-term interest and learn
the regularities of their preference evolving based on
historical click behavior.

• We conduct extensive experiments on two real-world
datasets to demonstrate the effectiveness of our approach-
es.

The rest of this paper is organized as follows. Firstly, we
give a review on feature mining and embedding. Then, the pro-
posed framework, combining ID embedding, long short-term
memory (LSTM) network and feature fusion is introduced in
detail. Afterwards, the experimental results on two real-world
datasets and conclusions are given.

II. THE PROPOSED METHOD

The Multi-type Feature Mining and Fusion (MFMF) frame-
work contains three parts: ID list embedding, long short-
term interest memory networks, and multi-type feature fusion
networks. The overall structure is shown in Figure 1. We will
introduce each part in detail.

Fig. 1. MFMF network structure. At the embedding layer, items are mapped
to vectors in the user interest space. The LSTM layer extracts the long-term
behavior features of users. The FM layer part fuses user behavior features
with short-term item features and feeds into fully connected layer for click
prediction.

A. ID List Embedding

In order to capture the potential relationship and similarity
between items, we consider adopting the skip-gram model of
Word2Vec [6], commonly used in natural language processing.
Assuming a user has clicked n items, the IDs of the n items
form a sequence (s1, s2, s3, ..., sn) in order of clicks. We put
the historical click sequences of all users into the skip-gram
model for pre-training, and get the item embedding values for
further analysis.

Since words with similar semantics are closer to each
other in an embedded space [6], we use the item embedding
values to represent intrinsic relationships between items. The
distributed semantic representation of words is learned from
the click sequence. The goal of Skip-gram model is to learn
item representations by maximizing the following probability
distribution function P :

P =
∏
st∈s

p(C(st) | st) =
∏
st∈s

∏
st+j∈C(st)

p(st+j | st), (1)

where st represents the ID of the current item and C(st)
represents clicked items in the neighborhood of st. The
function aims to let item st appear with context (neighbor)
items in maximum probability. To calculate the maximum
value of P conveniently, we change our objective to maximize
the logarithm of P as follows:

L =
1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(st+j | st). (2)

The hyper-parameter c is the length of the relevant forward
and backward contexts of the click list, and the probability
p(st+j | st) is calculated as:

p(st+j | st) =
exp(vTstv

′

st+j
)∑|V |

l=1 exp(v
′T
s vst)

, (3)

where vs and v′s represent the input and output vector of the
click list and vst represents the input of st. V is the collection
of all IDs in the dataset.

To improve training speed and the quality of the embedded
item vector, we add some negative samples. The probability
p(st+j | st) can be expressed as:

p(st+j | st) =
∏

z∈{st+j}∪NEG(st+j)

p(z | st), (4)

where NEG(st+j) represents a negative sample subset gen-
erated when computing item st+j . The probability p(z | st) is
calculated as follows:

p(z | st) =
{

σ(vst
T θz), z is a positive sample;

1− σ(vstT θz), z is a negative sample.
(5)

where θz is the frequency of item z in the sequence, and
σ(x) = 1

1+exp(−x) .

Hence, the final objective function is:

arg max L =
1

T

T∑
t=1

z∈{st+j}∪NEG(st+j)∑
−c≤j≤c,j 6=0

log p(z | st). (6)

After training the model, we can obtain a high-quality
distributed vector to represent the IDs which achieves the
distance of similar items that are very close in the low-
dimensional dense space. That is, if two items are clicked
by the same people consecutively many times, the embedding
results will be very similar, indicating that the two items are
similar to each other. So that we can find out the potential
connection between items.

B. Long Short-Term Interest Memory Network

We use long short-term memory (LSTM) networks [7] to
obtain the long-term behavior feature of users. We generate
click sequences from each user’s historical click behavior.
These sequences contain the embedded item id of each click,
as well as other attributes such as item type features and the
time interval between two adjacent clicks. We set a threshold



N for the length of historical clicks sequence. It is assumed
that the current click behavior is only related to the past N
clicks. Thus, a larger value of N indicates a longer term impact
on users’ interests and hobbies.

We put the historical click sequences into the LSTM layer
as it can learn long-term dependency information. The LSTM
neural unit first determines which information should be dis-
carded from the current state. Then the neural unit determines
which new information should be stored into the current state.
Finally, it updates the old state. The output ht at time t is
indicated as follow:

ft = σ(wf

[
ht−1, x

t
emb

]
+ bf ),

it = σ(wi

[
ht−1, x

t
emb

]
+ bi),

C̃t = tanh(wc

[
ft−1, x

t
emb

]
+ bc),

ct = ft ∗ ct−1 + it ∗ C̃t,

ot = σ(wo

[
ht−1, x

t
emb

]
+ bo),

ht = ot ∗ tanh(ct),

(7)

where ht−1 represents the historical information and ct−1 is
the cell state at last time point. xtemb represents the embedded
short-term clicked item. ft,it,C̃t represent the probability of
forgetting, inputting, updating the state of hidden cells in the
last layer respectively. σ(·) and tanh(·) are sigmoid and tanh
activation function. ct is the cell state at times tamp t and
ht is current output. The last output hT (T = N) represents
long-term interest features.

C. Multi-type Feature Fusion Network

For multi-type feature fusion, we choose a factorization-
machine (FM) [5] mechanism for obtaining cross features.
The input features of the FM model are represented as
x =< x′, hT >. It includes item and user attribute features
x′, and users long-term interest feature hT . The output of FM
layer yFM is the summation of an additional unit and inner
product units (Fig. 1), formulated as follows:

yFM = w0+ < w, x > +

d∑
j1=1

d∑
j2=j1+1

< Vi, Vj > xj1 ∗ xj2 ,

(8)
where Vi and Vj are parameter vectors. w is the parameter of
x and d is the feature dimension. w0 ∈ R is a constant offset.

Then, we put all features into the fully connected layer and
get the probability of the user click the given item. The output
of the fully connected layer yconnect and the final ŷi,j output
is calculated as follow:

yconnect =W ∗ yFM +B, (9)

ŷi,j = σ(W ′ ∗ yconnect +B′). (10)

Sigmoid function is the activation function of the last layer.
ŷi,j represents the probability of user i click item j in the next
prediction time slot.

III. EXPERIMENTS

In this part, we experiment on two real-world datasets,
LastFM and Movie dataset. We use the proposed method
MFMF to predict whether a user will click the given songs and
movies at the next timestamp, and compare it with state-of-the-
art methods. We show that MFMF can efficiently model the
recurrent user-item interactions over time, and achieve higher
performances than other temporal models.

A. Data Descriptions

1.LastFM Dataset: This is a music recommendation datasets
for research, which is collected from Last.fm API [8]. This
dataset includes two data tables. One is user historical click
log, containing user, timestamp, artist and song tuples. The
other is the user information table, which contains the gender,
age and nationality information. The dataset includes 992 users
and 108,000 songs. In our experiment, we select 10,000 songs
randomly. There are 939 users who clicked on these songs with
a total of 80,391 times. We take the users’ last click as the
item to predict whether the user clicks or not. All the click
records in the data sets are positive samples. An equal amount
of negative samples is generated randomly. In the experiment,
the dataset is divided into two parts randomly, 85% of the
samples are divided as training sets, and the remaining 15%
are for test sets.

2. Movie Dataset1: This dataset contains the records of
video click log collected from Tencent movie [9]. It includes
1489 users who clicked movies during the 20 days from July
23, 2014, to August 12, 2014. There are a total of 2193 movies
and 19,287 click behavior records. Each click record includes
time, user ID, movie ID, accumulated historical clicks, movie
type, production country/region, director and starring role
information. The data preprocessing of the movie dataset is
the same as the LastFM dataset.

B. Comparison Models

We compare MFMF to the following methods: the classic
model DNN [10], the popular model Wide & Deep Learning
[11] and DeepFM [12], and the recently proposed DIN [13]
and DIEN [14] model.

Since DNN, Wide & Deep Learning, and DeepFM are not
designed for time series, we use the recently clicked items
feature, the user feature, and the candidate item features as
the input feature for item click prediction. The DIN and DIEN
models are sequential recommendation models. We take the
historical click sequences, user characteristics, and candidate
item features as input features. The DeepFM model uses the
FM framework to extract cross features, while other models
do not.

C. Evaluations

We adopt accuracy (ACC), area under curve (AUC) and
F1-score as evaluation metrics to evaluate the performance of
different models. When we predict whether a user clicks the

1https://v.qq.com/movie/



item for the next time, ACC is used to evaluate the accuracy
of models and F1-score is used to balance precision and recall
values. In addition, our can also predict the probability of user
next click item and we take the AUC as an indicator to evaluate
the quality of the model. Each experiment is repeated 10 times
and the average value as the final experimental results.

D. Results and Discussion

The results of the experiment on the two datasets are shown
in Table 1. The item ID features input into LR, Wide & Deep
Learning, and DeepFM models are preprocessed by skip-gram
model.

Table I shows the results of LR, Wide & Deep Learning
and DeepFM model are not very satisfying on the tested
datasets. This could be due to the lack of capabilities for
handling long-term interest features. The implementations of
DIN and DIEN are based on the DeepCTR library. According
to the description of the model in DeepCTR library2, the
item ID features input into DIN and DIEN models havent
been processed by the skip-gram model. They are embedded
according to the general feature processing method. DIEN can
mine user long-term interest features. However, due to the
item sparseness, the results of item embedding cannot well
reflect the characteristics of the item. DIEN cannot perform
well. The DIN model cannot learn the dynamic changes in
users’ preferences. It adopts the attention mechanism to learn
the item that users are interested in according to user historical
behavior data. As shown in Table 1, the accuracy and F1-score
of the DIN model on both datasets are not high. Both DIN
model and DIEN model cannot get the user click peculiarity.

According to the experimental results on LastFM Dataset
and Movie Dataset, the MFMF model proposed in this paper
is superior to the previous models in terms of accuracy, F1-
score and AUC. This indicates that MFMF is more precise in
prediction and can recommend more correct items to the right
user.

E. Hyper-Parameter Study

We performed hyper-parameter experiments on two datasets
to evaluate the influence of different parts of MFMF by
changing the value of one hyper-parameter while keeping the
others fixed. The hyper-parameters in conducting experiments
include: 1) number of LSTM and hidden layers; 2) number of
neurons per layer; 3) dropout rate; 4) user history length.

1) Influence of LSTM and Hidden Layers: Hidden layers
represent the fully connected layer between the output layer
and the FM layer. Figure 2 and 3 shows the models accuracy
when the number of hidden layers or LSTM layers changes
on LastFM dataset and movie dataset. Hidden-1 denotes the
number of the hidden layer is one. LSTM-2 indicates the
number of LSTM layers is two. As shown in Figure 2, the
number of hidden layers has little effect on accuracy. In Figure
3, when the number of hidden layers is small, increasing the
number of hidden layers can improve the performance slightly.

2 https://deepctr-doc.readthedocs.io/en/latest/index.html

(a) LastFM dataset

(b) Movie dataset.

Fig. 2. ACC comparison with different numbers of layers.

With the number of hidden layers increasing, the complexity
of the model increases too so that the accuracy of the model
decreases. From experiments on LastFM dataset, the accuracy
decreases with the number of LSTM layers increasing, when
the LSTM layer just has only one layer, the model has the
highest accuracy. On Movie dataset, when the number of
LSTM layer is one or two, the model has the best performance.

In summary, one LSTM layer or two fully connected layers
are enough to achieve satisfactory accuracy.

2) Influence of Neurons per Layer: To learn more useful
information, the accuracy of the model can be improved by
increasing the number of neurons in each layer. However, too
many neurons will also bring some problems. For example, the
model will be more complex, which are prone to overfit. We
exploit our model on LastFM dataset and compare the ACC
and F1-score value of different models with different numbers
of neurons in each layer. The number of neurons in each layer
ranges from 24 to 29. Figure 3 shows the six different models’
accuracy and F1-score values respectively.

It can be inferred from the results that when the number
of neurons is 24, the accuracy and F1-score of MFMF are
lower. With the number of neurons increasing to 25, our model
still has consistent performances. Hence, it suggests that with
three layers of neural network, selecting more neurons will not
make the model too complicated. In the above experiment, we



TABLE I
EVALUATIONS ON ACC, F1-SCORE AND AUC

LastFM Movie
model ACC F1 AUC ACC F1 AUC
DNN 0.7189(± 0. 0161) 0.7228(± 0. 0155) 0.8947(± 0. 0160) 0.6807(± 0. 0128) 0.6837(± 0. 0081) 0.8612(± 0. 0145)

Wide & Deep 0.6997(± 0. 0180) 0.7042(± 0. 0107) 0.8892(± 0. 0024) 0.6614(± 0. 0101) 0.6599(± 0. 0204) 0.8429(± 0. 0043)
DeepFM 0.7199(± 0. 0231) 0.7160(± 0. 0147) 0.8861(± 0. 1283) 0.6889(± 0. 0115) 0.6789(± 0. 0138) 0.7995(± 0. 0641)

DIN 0. 5513(± 0. 0372) 0. 5863(± 0. 0287) 0.5538(± 0. 0522) 0.5211(± 0. 0108) 0.5765(± 0. 0610) 0.5473(± 0. 0544)
DIEN 0. 5478(± 0. 0233) 0.6089(± 0. 0233) 0.5703(± 0. 0491) 0.5447(± 0. 0327) 0.5948(± 0. 0620) 0.5196(± 0. 0210)

MFMF 0.7441(± 0. 0130) 0.7513(± 0. 0359) 0.9051(± 0. 0105) 0.7124(± 0.1200) 0.7346(± 0. 0207) 0.8777(± 0. 0100)

(a) ACC comparison

(b) F1-score comparison

Fig. 3. ACC and F1-score comparison of number of neurons on LastFM
dataset.

have found that three layers of neuron networks are enough
to enable good performances.

Compared with other models, both ACC and F1-score value
of MFMF model is higher. Only when the number of neurons
per layer is 24, the accuracy of MFMF model is a little lower
than DNN. This is because the number of neurons in MFMF
model is too small to learn enough features.

In summary, the MFMF model is robust and can reach
higher accuracy comparing to other models.

3) Dropout rate.: Dropout technology [15] is used to delete
connections of some neurons. It can reduce the complexity, but
it may also reduce the accuracy because of the loss of some
information. We set the dropout to be 0, 0.1, 0.3, 0.5, 0.7,
and 0.9. The dropout rate value of 0.1 indicates that 10% of
the links are deleted randomly. We use one LSTM layer, two
hidden layers and 64 neurons for each layer. Experimental

(a) AUC comparison

(b) F1-score comparison

Fig. 4. AUC and F1-score comparison of the dropout rate.

results are shown in Figure 4. With the increase of dropout
rate, the AUC and F1-score values of the MFMF model change
little until the dropout rate is up to 0.5. This shows the models
robustness. When the dropout rate is more than 0.5, both
the AUC and the F1-score decrease with the dropout rate
increasing.

4) User History Length.: The user history length indicates
how many records have been used for prediction. User clicks
from a long period ago has few effects on current user click
behavior because their interests have changed. In the Movie
dataset, each individual clicks 12.95 movies on average. And
only 40% of the people watched more than 5 movies. From
the results shown in Figure 5, when the value of user history
length is set to 5, some users long-term interest features have



(a) ACC comparison.

(b) AUC comparison.

Fig. 5. ACC and AUC comparison with different user history lengths.

not been learned. The accuracy of the model increases with
the increasing of user history length. However, since most
people watched only a small number of movies, the accuracy
and AUC value of the model decreases with the increase of
user history length after the value of user history length up
to 10. In the LastFM dataset, people clicked 85.6 songs on
average. About 73.89% of people clicked over 10 songs. The
accuracy of the model first increases with the increase of user
history length, and when user history length up to 15, the
accuracy of the model decreases with the increase of user
history length. The AUC values of the model almost have no
change. Therefore, our model is relatively stable with enough
historical user behavior data.

IV. CONCLUSION

This work introduces a novel recommender system that con-
siders users’ temporally dynamic characteristics globally. We
develop an MFMF framework consisting of: 1) an embedding
layer to learn the potential connection and between items; 2)
an LSTM layer to mine long-term interest features; 3) a fusion
layer to combine user-item attributes. Experiments performed
on two real-world data demonstrate the effectiveness of MFM-
F. The future work will focus on adding a more powerful

high-order attribute interaction layer to strengthen the ability
of feature fusion.
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