
Low-Quality Rendering-Driven 6D Object Pose
Estimation from Single RGB Image

Guoyu Zuo*†, Chengwei Zhang*†, Hongxing Liu*†, Daoxiong Gong*†
*Faculty of Information Technology, Beijing University of Technology, Beijing, China

†Beijing Key Laboratory of Computing Intelligence and Intelligent Systems, Beijing, China
zuoguoyu@bjut.edu.cn, ZCW0356@emails.bjut.edu.cn, xingl@emails.bjut.edu.cn, gongdx@bjut.edu.cn

Abstract—The 6D object pose obtained from single RGB
image has broad applications such as robotic manipulation and
virtual reality. Among many existing methods, the deep learning-
based approaches for object pose estimation from single RGB
image are widely used. However, they often require a large
amount of training data, which has great challenges in high
cost of data collection and lack of 3D information. In this paper,
we introduce an object pose estimation architecture that takes a
single RGB image as input and directly outputs rotation angles
and translation vectors. A data generation pipeline that applies
the idea of domain randomization is used to generate millions
of low-quality rendering images. Then the pose estimation is re-
alized by fusing the architecture and the domain randomization
approach to utilize the generated information and low the data
collection cost. We synthesized a big dataset called Pose6DDR
whose images are similar to those in the LineMod dataset.
Experiments demonstrated the effectiveness of the proposed 6D
object pose estimation architecture as compared to the relevant
competing technologies.

I. INTRODUCTION

Image-based 6D object pose estimation plays an increas-
ingly important role in various applications, such as aug-
mented reality, virtual reality, and robotic manipulation. For
example, robust and accurate object pose estimation is crucial
in Amazon Picking Challenge [1], where the robot needs
to pick objects from a warehouse shelf. There are many
challenges, including object detection under severe occlu-
sion, variousness of lighting and appearances, and cluttered
background objects. The traditional methods often establish
the correspondences between the 3D models and their corre-
sponding 2D images of objects. But they are more dependent
on the hand-crafted features that are not robust to the cluttered
backgrounds. The deep learning-based methods train neural
networks to obtain the object pose estimation, which takes
images as input and outputs its corresponding object pose,
while their generalization ability is still a problem.

As is shown in Fig. 1 [7], the deep learning-based methods
can be divided into two types: one-stage and two-stage.
The two-stage approach uses the Perspective-n-Point(PnP)

This work is supported by the National Natural Science Foundation
#61873008, and the Beijing Natural Science Foundation #4182008 and
#4192010.

CNNs

CNNs

One-stage directly

regresses pose

Two-stage with PnP

regresses pose

Fig. 1. The flow charts of the deep learning-based methods. Top: one-stage
method; Bottom: two-stage method.

algorithm to recover the object 6D pose parameters [2],
[3], [4], and the one-stage approach recovers the 6D pose
without the processing of PnP. The two-stage approach de-
tects the locations of 2D keypoints in image space since
the 3D keypoints are known, and then computes the 6D
object pose parameters with the PnP algorithm. The final
effects depend on the detection accuracy of the 2D keypoints.
This approach achieves the state-of-the-art performance due
to the development of the detection methods of keypoints.
However, these methods have difficulty in tackling occluded
and truncated objects, for some keypoints may be unseen.
Although Convolutional neural networks (CNNs) may predict
these unseen keypoints by memorizing similar patterns, the
generalization remains difficult. The one-stage approaches
directly regress the 6D object pose. They locate the center in
the image and predict the distance from the camera as their
estimated 3D translation matrix, and regress the quaternion
as their 3D rotation matrix, but they need post-refinement to
improve their low accuracy.

This paper aims to recover the object pose from a single
RGB image using the one-stage approach. Different from
the aforementioned one-stage approach, the proposed method
regresses the rotation angles and the translation vectors in

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

3D space directly. Compared with the above approaches, this
method has a more simple network structure and easier train-
ing process. Although many approaches have been proposed
to solve the problems such as cluttered scenes and occlusion,
the challenge in the lack of training dataset is ignored. In
other applications such as detection and autonomous driving,
the simulated data are used to extend the training dataset.
Hence, we extend this simulated data technology to 6D pose
estimation, and improve the domain randomization approach
to generate millions of training images for 6D pose estimation.
These simulated data are expected able to improve the 6D
pose estimation accuracy and further improve the robotic
grasping.

There are some benchmark pose estimation datasets, such
as LineMod [5], Occlusion LineMod [6], YCB-Video [16].
The proposed architecture was trained by using the self-built
Pose6DDR dataset and LineMod datasets. Then it was evalu-
ated on the Pose6DDR dataset and the wildly used LineMod
dataset. The experiments demonstrated the effectiveness of
the domain randomization-based dataset and the architecture
to handle 6D object pose estimation.

This work has the following contributions:
• The domain randomization approach is used to generate

the Pose6DDR dataset for 6D pose estimation with
millions of images similar to the LineMod images.

• A 6D object pose estimation architecture is proposed to
directly regress the rotation angles and the translation
vectors of the object.

• The architecture trained on the generated dataset illus-
trates its generalization performance and robustness, and
its test on the LineMod dataset also shows its better
performance.

II. RELATED WORK

In this section, the 6D pose estimation methods and dataset
extending approaches are reviewed briefly. The pose esti-
mation methods mainly consist of template matching, key-
point correspondence and keypoint regression [7]. The dataset
extending approaches include image enhancement, domain
adaptation, and domain randomization.

A. 6D object pose estimation

1) Template-based methods: The template matching
method can perform pose estimation on non-texture objects.
First, the RGB-D images extracted from various directions
of the obtained object model. Then these images are made
into templates to match each position of the actual image.
The matched pose is the estimated pose of the object. Hin-
terstoisser et al. [5] proposed a new image representation
method by extending the image gradient direction for template
matching and using a limited set of templates to represent 3D
objects. By considering the 3D surface normal direction of the
dense point cloud calculation obtained from the dense depth

sensor, the accuracy of the estimated pose can be improved.
Hodan et al. [8] proposed a method for detecting and ac-
curately drawing 3D localization of multiple untextured and
rigid objects in RGB-D images. By matching feature points in
different modalities to verify the candidate object instances,
each detected template associated with the approximate object
poses are used as initial values for further optimization.

2) 2D-3D keypoints correspondence-based methods:
When the model has rich textures, pose estimation can be
performed by the method based on 2D-3D keypoints corre-
spondence, and the model’s 3D keypoints can be matched with
its corresponding 2D keypoints. First, the existing 3D model
is projected from various angles to render multiple images.
Then, the correspondence between the 2D pixels and the 3D
points is established by finding the matches between the 2D
feature points in the observed image and the rendered image.

Lepetit et al. [9] used the PnP algorithm to obtain the 6D
pose of the object by extracting the 2D feature points and the
3D feature points. And [2] presented a survey of 3D rigid
object tracking methods based on monocular models. [11],
[12], [13] used 3D descriptors to find the correspondence
between the part of the 3D point cloud and the target’s
complete object 3D point cloud to obtain a rough pose
estimate. Then it was refined by iterative closest point (ICP)
[14] algorithm.

3) Regression-based methods: The regression-based 6D
object pose estimation method directly recovers the 6D pose
parameters of the target object from the input image. Usually,
the method first detects the target in the image, and then
combines it with the pose estimation [15]. The regression-
based pose estimation has two ways. One is one-stage method,
in which designed convolutional neural network takes one
image as input for training, and solves the pose of the object
by 3D rotation and 3D translation. The other is two-stage
method, which is different from the one-stage method. This
method first regresses the projection of the corresponding 3D
keypoints of the target object in the 2D image and calculates
the 6D object pose through the PnP algorithm. Rad et al.
[26] predicted the 2D projection of their 3D bounding box
corners and obtained a 2D-3D correspondence. Tekin et al.
[10] proposed a deep CNN framework which used YOLOv2
to detect the 2D projection of the 8 bounding box corners in
image space, and then used the PnP algorithm to calculate
the 6D object pose. Yu et al. [16] proposed PoseCNN for the
6D object pose estimation. This method uses hough voting
to determine the center of the object position and predict the
distance from the camera to estimate the 3D translation of the
target. The 3D rotation is calculated by returning the quater-
nion. PoseCNN proposes a new loss function, ShapeMatch-
Loss, which can be applied to pose estimation of rotationally
symmetric objects. And in their work, they proposed a new
dataset: YCB-Video dataset. Do et al. [17] proposed an end-
to-end deep learning framework named Deep-6DPose, which

jointly detects, segments, and recovers 6D poses of object
instances from a single RGB image. Liu et al. [18] proposed
a two-stage CNN architecture that directly outputs the 6D
pose without requiring multiple stages and additional post-
processing.

Hu et al. [19] proposed a segmentation-driven 6D pose
estimation framework in which each visible part of the object
contributes to the local pose prediction in the form of 2D
keypoints positions. The pose candidates are combined into
a set of reliable 2D-to-3D correspondences, and then the 6D
object pose estimation is calculated by the PnP algorithm.
Peng et al. [20] proposed a 6D object pose estimation based
on a pixel-level voting network architecture, in which the local
information of the visible part of the object is used to detect
keypoints for the occluded object. This method can detect
the 6D pose of the target object in the truncated state. It
has become the state-of-the-art method in the pose estimation
area.

B. Extending the dataset

For the problem of lacking training data and high data
acquisition cost, the image data for training can be collected
by simulation, image enhancement, and etc. It is often faster to
fine-tune a controller learned in simulation than to learn from
scratch in the real world [23], [24]. However, the factors such
as lighting conditions and textures in the real environment
are difficult to fully reproduce in the simulation environment.
There is a large gap between simulation and real images,
and it is not ideal to train the model by using simulated
images instead of real images. The method to reduce the
difference between simulation and real image data is to use
a high-fidelity simulation environment to render pictures. For
example, Kanade et al. [21] uses high-simulation synthetic
images for target perspective evaluation, but this method has
poor performance in complex scenes. The high computing
resources and the high quality of the model are required.
The domain randomization approach is such a method to
reduce the difference between simulation and real image
data. Some work has previously explored the idea of using
domain randomization to bridge the reality gap. Tobin et al.
[22] uses the domain randomization approach to generate the
model and images to train the autoregressive model to grasp
the target and demonstrate the effectiveness of the domain
randomization.

III. METHOD

The goal of our paper is to learn a architecture that using
single RGB images synthesized by the proposed domain
randomization approach and outputs the 6D object pose esti-
mation for robotic grasping. The current 6D pose estimation
methods face the problem of small datasets. To improve
the accuracy of pose estimation, we generated a dataset
with millions of images which are similar to the LineMod
images. Compared with the architecture trained only with

the LineMod images, the network structure trained with the
generated images has better generalization ability, because
these images are generated with more scenes.

A. The Pose6DDR dataset

The self-built dataset called Pose6DDR dataset is intro-
duced in the following parts, including the generation of
objects, the label annotation and the randomization factors.

1) object generation: First, eight types of models were
collected for generating the images by Bullet physics engine:
ape, can, cat, driller, duck, eggbox, glue and holepuncher. The
scale of the object is the same as the model in the common
dataset. Then, the domain randomization approach is used to
bridge the gap between the synthesized and the real images.
Next, the distribution of the model was generated by the low-
quality rendering in the synthesized images, in order to match
the distribution of the model in the LineMod dataset. So the
synthesized images are more like the real images, as can be
seen in Fig. 2.

Fig. 2. Image examples. The first row is the object models, the middle row
is the Pose6DDR dataset images and the last row is the common dataset
images.

2) Annotation: The Pose6DDR dataset is used as training
set to train the architecture. Labels of the images are annotated
in the process of generating the dataset. The architecture
obtains the class, the rotation angles of roll, pitch and yaw, and
the translation vectors of the object. The Pose6DDR dataset is
annotated with 16 numbers, which contain class (1), 3 angles
(3*1), rotation matrix (9), and translation matrix (3). The
classification is represented by one-hot encoding. The rotation
angles and translation vectors are computed as in Fig. 3.

In order to set the label information for the data, the
8 corners coordinates of the 3D bounding box need to be
derived. As in Fig. 3, the square ABCD is the top view of the
3D bounding box before rotation, and the square A

′
B
′
C
′
D
′

is the top view of the bounding box rotated by a certain angle
θ and θ=∠B

′
EB, r is the length of the bottom side of the 3D

center

P1

P2
P3

P4

P5

P6

P7

P8

r

h

Fig. 3. The process diagram of label information annotation.

bounding box, and h is the height of the 3D bounding box,
then:

EB =

√
2

2
r (1)

BH = EB ∗ sin θ
2

(2)

BB
′
= 2BH = 2

√
2

2
r ∗ sin θ

2
(3)

∠EBB
′
= ∠BB

′
G =

180− θ
2

− 45 (4)

Let l = BB
′
, γ = ∠CBB

′
= ∠BB

′
G, and the coordinates

of point B be (xB , yB), then the coordinate of point B
′

is
(xB − cos γ ∗ l, yB + sin γ ∗ l). The center point of the target
object coincides with the center of the 3D bounding box. The
position of each point in space can be seen in Fig. 3. Let the
coordinates of the center point of the target object be (x, y, z).
The coordinates of the 8 corners of the 3D bounding box can
be obtained by similar transformations, respectively.

3) randomization factors: The main idea is to generate
Pose6DDR dataset by changing the factors in the image
space with low-quality rendering. Specifically, the approach
randomly generates the texture of workbench and manipulator,
position, illumination, direction, and so on.
• Content Variation: More than 8 objects are placed in a

3D background. To achieve the images similar to the
LineMod dataset, more than eight different types of
object models were used consistent with the model scale
of the LineMod dataset. We generated the data of one
type of object with random directions and positions by
fixing other type of objects in the generated images to
make them more similar to the images in the LineMod
dataset.

• Style Variation: Style variation is obtained by randomly
changing the colors and textures of all the objects. The
texture library with 8 different textures is used to realize
style variation. In addition, light enhancement is applied

to capture varying shadow conditions and temporal varia-
tions. The changes of illumination conditions are realized
by changing the position and orientation of the light
source.

In Fig. 2, the middle row is our generated images, and
the last row is the LineMod images. We can see that the
synthesized data is similar to the LineMod data. The LineMod
has more than 1213*8 images, while our dataset has millions
of images which were generated by using our method in
two whole days. The following experiments validated the
effect of the generated dataset. To some extent, the proposed
Pose6DDR dataset can improve the accuracy of pose estima-
tion and reduce image collection costs.

B. 6D Object Pose Estimation Architecture

1) Pose Representation: There are many challenges to
regress the 6D object pose directly. For example, the category-
based 6D object pose estimation has the limitations such as
lack of 3D model information and need for multi-stage pro-
cessing. However, the current RGB datasets have not enough
RGB images with fully 3D space representation used as the
input of many architectures. To achieve the pose estimation
goal, we first need to represent the pose information. In our
method, the translation matrix is represented by the outputs of
the architecture. The rotation matrix is more complicated than
the translation matrix but it can be resolved by the rotation
angles. For the rotation angles wrap around at 2π radians, the
same angle can be represented by multiple values. To void
the problem, we take the minimum of the obtained values as
the rotation angle. Then the angles and vectors are used to
compute the rotation matrix and the translation matrix. The
rotation matrix of the object is calculated by Eqs. (5)-(7).

Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (5)

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (6)

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (7)

where ϕ, θ, ψ are the roll, pitch and yaw angles of the object.
Then the 3D rotation matrix is represent by R = Rx ·Ry ·Rz .

2) Network Architecture: Fig. 4 depicts the main archi-
tecture, which has two parts: the backbone and the pose
estimation parts. The backbone is used to extract features of
input images and shared to the next part. The pose estimation
part contains two streams, one is the classification stream,
and the other is a pose estimation stream. The classification

fc 8

Class

Fc 6

Pose Stream

Classification Stream

Feature map

ResNet

ResNet

ResNet

Softmax

[
]

t

t

t

Input

CNN Output

ResNet : 3 Residual block with strided conv;

short-cut connection; BN; RELU; MaxPooling ;

ResNet : 7 Residual block with strided conv;

short-cut connection; RELU; BN; AvePooling;

ResNet : 13 Residual block with stried conv;

short-cut connection; RELU; BN; AvePooling;

Fig. 4. The architecture of our method: The first row is the class stream, the second row is the pose estimation stream, and they are connected to a shared part
based on ResNet. The part takes a single RGB image as input. The first shared ResNetI model including three residual blocks with two 3 ∗ 3 convolutions,
stride = 2 extracts the feature map. For the class stream, ResNetII has seven residual blocks with one 1 ∗ 1 convolution, stride = 1 and a fully connected
layer. For the pose stream, ResNetIII have thirteen residual blocks and every block contains two 1 ∗ 1 convolutions, stride = 1. And at the end of the pose
stream followed by a fully connected layer for the six parameters of three angles and three translation numbers.

stream predicts the class of the object. The pose estimation
stream predicts the angles and the translation vectors of the
object in 3D space to compute their rotation and translation
matrices. The ResNet was chosen as the main architecture for
its better effect after comparing with different networks.

3) multi-object loss function: A multi-task loss is defined
to train the classification, the rotation angles, and the transla-
tion vectors. The loss function is represented as follows:

` = α1`cls + α2`pose (8)

where the classification loss `cls is defined as the softmax
loss and `pose is the pose loss; α1, α2 are the scale factors
to control the importance of each loss in the training process.
The pose estimation stream outputs 6 vectors, which present
the angles and the translations. The pose regression loss `pose
is defined as follows:

`pose = ‖r − r̂‖+ β‖t− t̂‖ (9)

where r are the regressed rotation angles and r̂ are the ground
truth of the angles; t are the output of translation vector, and
t̂ are the ground truth of the translation, and β is the scale
factor to control the positions and the translation regression
errors.

C. Training and test
During the training and testing processes. We implemented

the PyTorch-based network architecture with single RGB

image as input. The outputs of the architecture include the
classification and the 6 vectors of the object, which are used
to compute the rotation matrix and the translation matrix. This
design allows the architecture to make full use of 3D spatial
information of images. To be mentioned, α1, α2 and β in Eqs.
(8) and (9) are empirically set to 0.7, 1 and 0.7, respectively.
According to the different effects of the two streams in the
network, the role of `pose improved by setting `pose as 1 to
obtain better performance.

The architecture is trained on a GTX 1080Ti GPU for
more than 200 epochs by using an Adam optimizer with a
momentum of 0.1 and a weight decay of 0.0001. Each mini-
batch has 128 images, and the learning rate of the first 20
epochs sets to 0.0001.

IV. EXPERIMENTS

To evaluate the effectiveness and robustness of our pro-
posed architecture and Pose6DDR dataset, we validate the
architecture with Pose6DDR dataset and LineMod dataset.
The public dataset LineMod is the single object pose dataset.
In LineMod dataset, every RGB image has a ground truth
rotation matrix, translation matrix, and ID. There are 13
objects and 3D models for instance-level 6D object pose
estimation. And each object has almost 1214 images. Different
from LineMod dataset, the Pose6DDR dataset has more than
80000 images.

we use the 5cm5◦ and ADD metrics to evaluate the
performance of our method by calculating the average dis-
tance between the predicted pose and those obtained with
the ground truth. In 5cm5◦ metric, the estimated pose is
accepted if it falls within 5cm translation and 5◦ rotation
error compared with the ground truth. In ADD metric, the
estimated pose is accepted if the average distance between
the estimated pose and the transformed model point clouds
by the ground truth pose is smaller than 10% of the object
diameter. The ADD metric is computed as follows:

s =
1

|M |
∑

x1∈M
min
M
‖(Rx+ t)− (R̂x+ t̂)‖ (10)

where R and t are the ground truth rotation and translation
matrices, and R̂ and t̂ are the predicted rotation and translation
matrices. M is the vertex of the 3D model.

A. Results on the Pose6DDR dataset

We tested the effectiveness of the architecture on the
Pose6DDR dataset, and only the RGB images used for
training and test, in which 2000 synthesized images are used
for test. Besides 5cm5◦, the other metric scales are used to test
the robustness of the architecture by reducing the angle and
the distance. Table I shows the results on Pose6DDR dataset
with different metric scales.

TABLE I
RESULTS OF THE SIMULATED IMAGES WITH DIFFERENT SCALES.

target object 5cm5◦ 3cm5◦ 1cm5◦ 5cm3◦ 5cm1◦

ape 96.9 89.1 64.0 4.1 0
can 98.3 77.6 33.6 98.3 2.9
cat 98.5 93.7 83.9 82.1 0

driller 99.6 97.4 94.5 0 0
duck 93.3 76.4 47.5 48.2 1.2

eggbox 74.8 52.2 25.2 60.0 1.3
glue 96.2 90.2 65.9 15.0 0.2

holepuncher 96.1 78.8 62.8 96.1 0

average 94.2 81.9 59.7 50.5 0.7

The first column is the results of the 5cm5◦ metric. It
can be seen that the accuracy is almost over 95% with the
exception of 74.8% for eggbox and 93.3% for duck. The last
four columns are the results with the stricter metrics of 5cm3◦,
5cm1◦, 3cm5◦, and 1cm5◦, respectively. Because the gener-
ated dataset has a large amount of data and high similarity to
traditional data set images, the network architecture trained on
the dataset can achieve high accuracy rate mentioned in the
table. It can be seen that the angle of the object has a greater
impact on the accuracy results when the metric changes. In
other words, the robustness of the architecture is poor in angle.
However the distance metric is more robust compared with the
direction. It is noted that the driller has results of two zeros,
for the predicted rotation angles are between 3◦ and 5◦. Fig.
5 illustrates the pose estimation results on the synthesized
images.

Fig. 5. Results on four synthesized images. The first row: synthesized images.
The second row: the pose results. The red box is used to mark the target
object.

B. Results on LineMod dataset

To test the effectiveness of our architecture, it is evaluated
with the LineMod dataset and compares it with some other
methods with the 5cm5◦ and ADD metric. In experiments,
there are 200 images of one kind of object used for test. For
our method do not have the postprocessing, we compared it
with the current methods without postprocessing including
Brachmann [25], BB8 [26] and Deep6DPose [17]. These
methods were evaluated with the 5cm5◦ and ADD metrics on
the LineMod dataset without refinement. Table II and Table
III show the pose estimation results with the two metrics.

From the table II: the 5cm5◦ metric, it can be seen that
the average accuracy with these 8 objects of BB8 is 3.3%
higher than Deep6DPose, while the Deep6DPose is 27.5%
higher than Brachmann. The Deep6DPose is more stable
than BB8 and Brachmann. It is noted that the results of our
method with 5cm5◦ is slightly lower than Deep6DPose on
the average and 12.3% higher than Brachmann. Moreover,
in the results of our method, the accuracy of some objects
is higher than Deep6DPose and BB8, such as eggbox with
92.0%. Our results outperform the BB8 with the duck and
eggbox. Relatively, our method has the worst result for the
glue. By experiment, we found that the predicted translation of
glue has a large gap with the ground truth. Compared with the
Deep6DPose, we can also find that the results of our method
are not stable enough. Although on the average, the proposed
method is not higher than all mentioned approaches, it has
outperformed some approaches and achieved highest accuracy
for ape, duck and eggbox. Particularly, the architecture trained
with the LineMod dataset spent more time than Pose6DDR
dataset, and the method trained with the BJIT-dataset has a
higher performance. We will further explore the expressive-
ness of generating data and strive to achieve the ability to
replace the LineMod dataset.

Table III shows the results of the 8 objects with the ADD
metric. We can see that the average accuracy of Deep6DPose
outperforms BB8 by 22.9%. Our method has also outper-
formed with BB8 and Brachmann on the average and slightly

TABLE II
THE POSE ESTIMATION RESULTS WITH THE 5cm5◦ METRIC.

target object ape can cat driller duck eggbox glue holepuncher average

Deep6DPose [17] 57.8 70.1 70.3 72.9 67.1 68.4 64.6 70.4 67.7
Brachmann [25] 34.4 48.4 34.6 54.5 22.0 57.1 23.6 47.3 40.2
BB8 [26]w/Ref. 80.2 76.8 79.9 69.6 53.2 81.3 54.0 73.1 71.0

ours 57.5 63.0 45.0 54.0 56.5 92.5 38.0 47.5 56.8

TABLE III
THE POSE ESTIMATION RESULTS WITH THE ADD METRIC.

target object ape can cat driller duck eggbox glue holepuncher average

Deep6DPose [17] 38.8 86.1 66.2 82.3 32.5 79.4 63.7 56.4 63.2
Brachmann [25] 33.2 62.9 42.7 61.9 30.2 49.9 31.2 52.8 45.6

BB8 [26] 27.9 48.1 45.2 58.6 32.8 40.0 27.0 42.4 40.3
ours 49.5 73.0 51.0 42.0 49.0 79.5 52.5 47.0 55.4

Fig. 6. Visualization of the single object pose estimation. The first row:
LineMod images. The second row: the pose results of eggbox, cat, duck and
glue.

lower than Deep6DPose. The duck in all methods has low
accuracy, but our result with 49.0% is higher than others. On
the whole, our proposed method has competitive accuracy.
Furthermore, the results under the ADD metric are more stable
than others. Fig. 6 shows the results of single object pose
estimation on the LineMod dataset.

V. CONCLUSION

In this paper, we propose a 6D object pose estimation
architecture for recovering 6D pose of the object from a single
RGB image. The 6D architecture can directly output estimated
rotation angles and translation vectors and calculate the 6D
poses. The novelty of the architecture is to use the rotation
angles to represent the rotation space. Besides, the low-quality
rendering technique is use to design the Pose6DDR dataset
with more than millions images in low collection cost. The 6D
architecture can be trained by the simulated dataset and has an
excellent performance to valid the effectiveness of the dataset.
Experiments compared the proposed method with the state-
of-the-art RGB-based 6D object pose estimation methods, and

results show the effectiveness of our method. In the next
work, we will extend the dataset with different approaches and
improve the performance of the network in handling images
in more complicated scenes.

REFERENCES

[1] Correll N , Bekris K E , Berenson D , et al. “Analysis and Observations
from the First Amazon Picking Challenge”. IEEE Transactions on
Automation Science & Engineering, pp. 15(1):172-188, 2016.

[2] Vincent Lepetit and Pascal Fua. “Monocular Model-Based 3D Tracking
of Rigid Objects: A Survey”. Foundations and Trends® in Computer
Graphics and Vision, pp. 1(1):1-89, 2005.

[3] Fred Rothganger, Svetlana Lazebnik, et al. “3D Object Modeling and
Recognition Using Local Affine-Invariant Image Descriptors and Multi-
View Spatial Constraints”. International Journal of Computer Vision,
pp. 66(3):231-259, 2006.

[4] Wagner D , Reitmayr G , Mulloni A , et al. “Pose tracking from natural
features on mobile phones”. In: Proc. Ismar, pp. 125-134, 2008.

[5] Stefan Hinterstoisser, Vincent Lepetit, et al. “Model based training,
detection and pose estimation of texture-less 3D objects in heavily
cluttered scenes”. In Asian conference on computer vision, pp. 548-
562, Springer, 2012.

[6] Eric Brachmann, Alexander Krull, et al. “Learning 6D object pose
estimation using 3D object coordinates”. In European conference on
computer vision, pp. 536-551, Springer, 2014.

[7] Guoguang Du, Kai Wang, et al. “Vision-based Robotic Grasping
from Object Localization, Pose Estimation, Grasp Detection to Motion
Planning: A Review”. arXiv preprint arXiv:1905.06658, 2019.

[8] Tomáš Hodaň, Xenophon Zabulis, “Detection and fine 3D pose esti-
mation of texture-less objects in RGB-D images”. In: Proc. IROS, pp.
4421-4428, 2015.

[9] Vincent Lepetit, Francesc Moreno-Noguer, et al. “Epnp: An accurate
o(n) solution to the pnp problem”. In: Proc. IJCV, pp. 81(2):155-166,
February 2009.

[10] Bugra Tekin, Sudipta N. Sinha, et al. “Real-Time Seamless Single Shot
6D Object Pose Prediction” In: Proc. CVPR, pp.292-301, 2018.

[11] R. B. Rusu, N. Blodow, and M. Beetz. “Fast point feature histograms
(fpfh) for 3d registration”. In: Proc. ICRA, pp. 3212-3217, May 2009.

[12] Andrew E Johnson. “Spin-images: a representation for 3-d surface
matching”, 1997.

[13] Samuele Salti, Federico Tombari, and Luigi Di Stefano. “Shot: Unique
signatures of histograms for surface and texture description”. Computer
Vision and Image Understanding, pp. 125:251-264, 2014.

[14] Paul J. Besl and Neil D. McKay. “A method for registration of
3-d shapes”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 14(2):239-256, February 1992.

[15] Aniruddha V Patil and Pankaj Rabha. “A survey on joint object
detection and pose estimation using monocular vision”. arXiv preprint
arXiv:1811.10216, 2018.

[16] Yu Xiang, Tanner Schmidt, et al. “Posecnn: A convolutional neural
network for 6D object pose estimation in cluttered scenes”. arXiv
preprint arXiv:1711.00199, 2017.

[17] Thanh-Toan Do, Ming Cai, et al. “Deep-6dpose: recovering 6d object
pose from a single rgb image”. arXiv preprint arXiv:1802.10367, 2018.

[18] Fuchang Liu, Pengfei Fang, et al. “Recovering 6D object pose from
rgb indoor image based on two-stage detection network with multi-task
loss”. Neurocomputing, pp.337:15-23, 2019.

[19] Hu Y, Hugonot J, et al. “Segmentation-driven 6D Object Pose Estima-
tion”. In: Proc. CVPR, pp.19-24, 2019.

[20] Peng S, Liu Y, Huang Q, et al. “PVNet: Pixel-wise Voting Network for
6DoF Pose Estimation”. In: Proc. CVPR, 2019.

[21] Movshovitz-Attias Y, Kanade T, et al. “How useful is photo-realistic
rendering for visual learning?”. In: Proc. ECCV, pp. 202-217, 2016.

[22] Tobin J, Biewald L, et al. “Domain Randomization and Generative
Models for Robotic Grasping”. In Proc. IROS, pp. 3482-3489, 2018.

[23] Mark Cutler and Jonathan P How, et al. “Efficient reinforcement
learning for robots using informative simulated priors”. In: Proc. ICRA,
pp. 2605-2612, 2015.

[24] J Zico Kolter and Andrew Y Ng, et al. “Learning omnidirectional path
following using dimensionality reduction”. In Robotics: Science and
Systems, pp. 27-30, 2007.

[25] Eric Brachmann, Frank Michel, et al. “Uncertainty-driven 6D pose
estimation of objects and scenes from a single RGB image”. In: Proc.
CVPR, pp. 3364-3372, 2016.

[26] Mahdi Rad and Vincent Lepetit, et al. “BB8: A scalable, accurate, robust
to partial occlusion method for predicting the 3D poses of challenging
objects without using depth”. In: Proc. ICCV, pp. 3848-3856, 2017.

