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Abstract—Over the last years, robotics has increased its in-
terest in learning human-like behaviors and activities. One of
the most common actions searched, as well as one of the most
fun to replicate, is the ability to play sports. This has been
made possible with the steady increase of automated learning,
encouraged by the tremendous developments in computational
power and improved reinforcement learning (RL) algorithms.

This paper implements a beginner Robot player for precision
ball sports like boccia and bocce. A new simulated environment
(PrecisionBall) is created, and a seven degree-of-freedom (DoF)
robotic arm, is able to learn from scratch how to win the game
and throw different types of balls towards the goal (the jack),
using deep reinforcement learning. The environment is compliant
with OpenAI Gym, using the MuJoCo realistic physics engine for
a realistic simulation. A brief comparison of the convergence of
different RL algorithms is performed. Several ball weights and
various types of materials correspondent to bocce and boccia are
tested, as well as different friction coefficients. Results show that
the robot achieves a maximum success rate of 92.7% and mean
of 75.7% for the best case. While learning to play these sports
with the DDPG+HER algorithm, the robotic agent acquired some
relevant skills that allowed it to win.

I. INTRODUCTION

Over the last decades, the field of robotics has been evolving
substantially. The scientific and technical challenges that were
once only focused on industrial assembly lines now are also
shifting towards interaction with humans, pursuing human-
like behaviors and activities. In order to get robots to obtain
these types of skills, typically, many hours of hard coding
are involved. The coding becomes even more complex in
regards to dynamic and elaborated environments that require
reprogramming the robotic system every time a goal changes.

Due to this complexity, methods for learning behaviors
automatically and generalize knowledge are more and more
used in robotics. This is the case of RL methods that revealed
an immense potential in a wide range of different robotics
tasks. RL allows robots to autonomously determine the best
behavior through experimental interactions with their environ-
ment and getting rewards from those interactions, rather than
giving the solution to the problem by explicitly programming
it [1]. Given that RL enables robots to learn from their
own experience, it is a highly utilized method in non-static
environments identical to pursuing human-like activities.

One of the examples of dynamic and complex environments,
when it comes to human activities, is the world of sports

(a) Bocce (b) Boccia

Fig. 1. Precision Ball Sports

and physical games. There has been an increasing interest
in robotics competitions and performance in these types of
challenges. Not only robot-against-robot team competitions,
but also teams with both robots and humans, or even robot
single players, are gradually more used in all types of sports.
To give robots the ability to play a specific game, it involves
several captivating research fields: from the obvious robotics
area to computer vision, mechanical and electrical engineering,
and, obviously, artificial intelligence. This makes robot sports
appealing not only for researchers in these fields but also for
the players and even people in search of entertainment [2]. In
sum, robotic sports promote intelligent robotics by engaging
several different types of communities.

In this work, we show that deep reinforcement learning
allows a realistic simulated robotic arm to play a single-
player version of Precision Ball Sports like bocce or its
adapted version for players with severe physical disabilities,
boccia (Fig. 1 (a) and (b), respectively). The robot has a
predefined goal: throwing balls as close to the jack (target ball)
as possible. Typically each player has four balls of a given
color to play, the player with the smaller sum of distances to
the jack, wins. In these sports, balls have different weights
and materials, and the playing surfaces have unique physical
characteristics. Our insight is that with a deep reinforcement
learning algorithm, the robot will be able to effectively play a
precision ball sport, with ball and surface variants.

For this, we propose a strategy divided into three different
goals: 1) reaching the balls to throw; 2) being able to throw
them close to the jack, with the target within the robots’ reach;
and 3) to throw the balls to wherever position the jack is. For
these goals, different models are created using three different
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policy gradient (PG) RL algorithms, suitable for continuous
spaces. OpenAI Baselines [3] is used, and the algorithms tested
to see which has the best performance. All models are trained
in a modified simulated robotics environment from OpenAI
Gym [4]. The best algorithm is then used to analyze the effect
of different ball/court characteristics. Our work presents a new
RL environment with a simulated robotic arm for a single-
player version of bocce or boccia. In this, we use PG RL
algorithms to teach the robot essential plays of precision ball
sports. These types of methods are used for their immense
success in the aforementioned robotic sports applications. In
resume, our contributions are the following:

1) State-of-art contribution with Precision ball sports en-
vironment compatible with OpenAI Gym, providing a
more complex and realistic scenario for RL benchmarks.

2) The physical characteristics of the environment’s objects
(friction and weight) are tested. Their impact on the
model’s convergence and the success rate is evaluated.

3) Empirical demonstration that a robot is able to learn
essential plays of precision ball sports correctly.

The paper is structured as follows: first in Section II, a
brief explanation of RL, specifically PG methods tested in our
implementation, is delivered. In Section III, the related work
with robotic sports and games is presented. In Section IV,
the proposed approach is explained. Section V describes
the results collected from the simulated experiments, also
providing a discussion of those results. Finally, in Section VI,
the conclusions, and future work are provided.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) is a machine learning (ML)
technique that allows an agent to learn optimal actions under
different conditions, to maximize a reward signal. The agent
performs this by interacting with its environment. When
performing the chosen actions, the environment responds by
bringing the agent to new states, where it tries to map different
states into corresponding optimal actions by a trial and error
learning scheme. RL is typically modeled by a Markov Deci-
sion Process (MDP), defined by the tuple < S,A, T,R, γ >.
S is the state-space (set of continuous states), A the action
space (set of continuous actions), T is the transition function,
R the reward function, and γ the discount rate (γ ∈ [0; 1]) [5].

At each timestep, the environment’s state s ∈ S is received
by the agent, where he chooses the action a to be performed
based on π(st), the applied policy : a = π(st) = µ(s|θµ) :
S×A. The policy is a mapping of states to actions, a guideline
on what is the optimal action to take in a certain state, and θµ
are its parameters (for instance the weights in a neural network,
or coefficients of a complex polynomial). After executing the
action a reward r = R(s, a) : S×A→ R is received, and the
new state of the environment s′ ∈ S is sampled, in agreement
with the transition function T : s′ = T (s, a) : S × A → S.
The final objective of RL is to discover a policy π(st) that
maximizes the discounted sum of future rewards (expected

return) presented in Eq.1, where (st, at) are the pair state and
action, at timestep t.

J(θµ) = E(st,at)

∑
t

γtR(st, at) (1)

B. Policy Gradient Methods

Given the objective described above, by finding the policy
parameters θµ that maximize J(θµ), the problem is solved. To
help find these parameters, ML literature often uses gradient
ascent/descent. This is where policy gradient (PG) methods
come in. PG methods aim to directly learn the policy and its
parameters by using gradients to find the best θµ. So, by updat-
ing θµ in the direction of ∇θµJ(θµ) these methods maximize
the expected return J(θµ) (Eq 1). In robotic applications, the
space is typically continuous, and therefore an infinite number
of states exists. Given this, value-based approaches become
unbearable in computational costs, justifying the extensive use
of PG methods instead [6]. PG methods have been applied
to a wide range of robotic tasks, and have many benefits for
robotics. These benefits can be: incorporating previous domain
knowledge, choosing a policy representation significant for a
specific job, as well as often needing fewer parameters in the
learning process when compared to value-based methods.

Furthermore, there is no need for extensive and in-depth
knowledge of the problem or robot kinematics since PG
algorithms can be applied without any predefined models
(model-free). As in any other RL algorithm, PG methods
have two classes of approaches used for optimization: on-
policy or off-policy. Off-policy methods, during training, use
a behavior policy (i.e., the one used for action selection)
different from the optimal policy it tries to estimate (the
one being optimized). On the other hand, on-policy chooses
actions using a policy derived from the current estimate of
the optimal one, optimizing the same policy that is used to
make decisions during exploration [7]. This classification will
be utilized to define the algorithms used in our tests, described
in the following subsections.

C. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is one of the most
recent and promising methods in RL, proposed by Schul-
man et al. [8]. It is a simplification and improvement from
Trust-Region Policy Optimization (TRPO), being an on-policy
method. As other PG methods, it uses stochastic gradient
ascent over several epochs to perform each policy update. It
is as stable and reliable as trust-region methods (like TRPO)
but is much simpler to implement, requiring only a few lines
of code. It can be used for environments with either discrete
or continuous action spaces, and it is straightforward to im-
plement. It is considered one of the best performers in several
complex robotic scenarios, like in humanoid applications. It is
known for the objective it optimizes, which can be translated
by the equation presented in Eq. 2:

L(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât]

where rt(θ) = [
πθ(at, st)

πθold(at, st)
]

(2)



Ât is the advantage function estimator at timestep t. The clip
function clips the probability ratio rt(θ) in the interval given
by its parallel implementation alternates between sampling
data from multiple identical sources and performing several
epochs of stochastic gradient ascent on the sampled data,
optimizing the objective function.

D. Deep Deterministic Policy Gradient Algorithm

One example of a widely used PG algorithm is Deep
Deterministic Policy Gradient (DDPG) [9]. DDPG is an actor-
critic off-policy algorithm, being an extension of Deep Q-
Networks (DQN) [10] to the continuous action space. It can
learn deterministic policies that are configured as deep neural
networks. DDPG has two neural networks implemented: a
target policy network (actor) a = µ(s|θµ), and an action-
value approximator network (critic) Qµ(s, a|θQ). θQ are the
parameters of the critic’s network. The critic has the task of
evaluating the current policy by estimating the expected return
of state s when the actor takes action a. The actor maps states
and deterministic actions.

First, experiences are originated using a noisy version of
the current policy, a = µ(s|θµ) + N . The algorithm uses
experience replay to save the previous transitions in the form
of a tuple < s, a, r, s′ >, where s is the current state, a the
corresponding action, r the reward, and s′ the following state.
The tuples are then added to a replay buffer D. After this,
the algorithm learns in parallel the actor and critic networks,
using samples of transitions from D for training. The critic
network minimizes the loss function presented in Eq. 3.

L(θQµ) = Es,a,r,s′∼D[(Q
µ(s, a|θQµ)− y)2] (3)

In Eq. 3 y is the target value, equal to y = r +
γQµ(s′, µ(s′)|θQµ). Conversely, the actor network is updated
according to the policy gradient ∇θµJ(θµ) (Eq 4) as a means
to perform actions that maximize the expected return.
∇θµJ(θµ) = Es∼D[∇aQµ(s, a|θQµ)|a=µ(s)∇θµµ(a|θµ)] (4)

E. Hindsight Experience Replay

Hindsight Experience Replay (HER) [11] is one of the most
recently introduced off-policy, PG methods. The main concept
is to imitate the human skill of learning from failures. So, even
if the goal was not achieved, it uses the knowledge from all the
episodes and learns from what he accomplished. Essentially,
HER views the state achieved by the agent as a pseudo-goal,
facilitating the learning process. With HER, learning policies
with off-policy methods and sparse rewards is possible [12].

In this method, experience replay is also used. Nevertheless,
additionally to storing the transition tuples of an episode
where the original goal g was achieved (< sg, a, r, sg >,),
the transitions where a pseudo-goal g′ was reached are also
stored (< sg′ , a, r, s

′
g′ >). Without HER, any sampling from

the experience replay buffer D that did not accomplish the
predefined goal, g, is not rewarded. When using HER, the goal
g is substituted by the achieved goal g′ in that episode, where
g′ is sampled randomly from the attained states. Any sampling
from D can be then explored for off-policy RL algorithms like
DDPG. This algorithm ultimately allows to simplify learning

by making the agent first learn from more straightforward
goals, and then achieve the predefined one when g′ → g.

III. RELATED WORK

Most of the fundamental tasks in sports and games are easily
carried out by humans due to their perspicacity and agility, but
can become very challenging when to be carried out by robots.
For robots, even the most simple of movements like grasping
a ball can be very complex to reproduce. Recently, RL has
been utilized to solve these kinds of tasks in the robotics
field, showing incredible results in a lot of those applications.
For instance, in [6], a PG method to effectively play T-Ball
(baseball-like sport), using a robotic arm, is proposed. In their
approach, the state is given by the robot’s joint velocities
and angles, and the actions are the joint accelerations. First,
they used supervised learning to teach the robot by imitation,
not achieving the goal of hitting the ball. Nevertheless, when
applying a Natural Actor-Critic RL method, the performance
is improved, accurately hitting the ball after 200 to 300 trials.

Another sport is approached in [13], where a humanoid
robot is successful at throwing darts, both in the physical and
simulated worlds. Kober et al. introduce a new RL algorithm
based on reward-weighted regression, but with kernels: Cost-
regularized Kernel Regression (CrKR). The algorithm can
converge after 1000 throws. Tetherball is also solved with
RL. In [14], Daniel et al. propose a hierarchical policy search
method based on relative entropy. With this method, several
solutions were obtained at once, selecting the best primitive’s
policies that specify the robot’s actions. In [15], a simulated
2D basketball task is solved. In this task, a hand needs to pick
up the ball and throw it to the hoop. The training is performed
using DDPG with HER, and their novel technique: Filtered-
HER with Instructional-Based Strategy (IBS). Although the
results are promising, the environment is 2D.

In [16], Kober et al. present an approach for a simulated
robot to perform a Ball-in-a-Cup. Imitation learning is used
for the initialization of the motor primitives and a novel RL
algorithm - Policy learning by Weighting Exploration with
the Returns (PoWER) - for their improvement. The authors
utilize a simulated SARCOS arm that successfully performs
the game. The PoWER algorithm is also used as a comparative
method in [17]. In this work, Kormushev et al. propose an
approach that allows a 53-DOF humanoid robot (iCub) to learn
to shoot an arrow to a target’s center. Their method is based
on a local regression algorithm with chained vector regression
named ARCHER. To effectively converge, ARCHER only
needed ten rollouts, showing significant improvements in terms
of convergence speed when compared to PoWER.

One of the most popular games solved with RL in robotics
is table tennis. In [13] Kober et al. use their CrKR algorithm to
successfully learn how to hit the ball in the air, outperforming
other PG algorithms, in a simulated and real robot. Mulling
et al. provide other solutions, where a robot can learn basic
table tennis, playing against a human in simulated and real
environments. They propose an algorithm named Mixture of
Motor Primitives (MoMP), allowing them to obtain a task



policy composed of weighted movement primitives [18]. Also,
in [19], Peters et al. introduce a new RL algorithm named
Relative Entropy Policy Search (REPS). In this algorithm, the
highest expected reward is obtained while limiting information
loss. REPS is validated in a simulation environment of a
robotic table tennis game, where it is proven effective in
selecting the fitted motor primitives.

The sport with more developments and interest in robotics is
soccer. RoboCup is considered the greatest robotic competition
worldwide [20]. With competitions as large as RoboCup, it is
even more challenging to use RL methods to teach robots how
to play. For instance, in [21] RL with Decision Trees is used
to make a NAO humanoid robot learn how to score goals
in penalty kicks (in simulation and real-world). This method
allowed to limit the number of trials needed for learning, being
the first example of RL successfully applied in a NAO robot.
In [22], PPO is effectively used to solve natural running and
dribbling, also by a simulated NAO.

IV. IMPLEMENTATION

To get a robot to learn how to play a precision ball sport it is
essential to have a well-defined environment and robotic agent.
For the learning process, a new RL environment was created
from the adaptation of OpenAI Gym robotics environments.
OpenAI Gym [4] is a toolkit developed in 2016 for creating,
evaluating, and comparing RL algorithms. The choice of using
OpenAI Gym derives from its establishment as a provider of
RL benchmarks. Where for supervised learning methods, the
benchmarks are large datasets (like CIFAR-10 or ImageNet),
for RL, the corresponding would be an immense variety and
vast collection of environments. Given this, by adapting and
creating a new environment for boccia and bocce, we are
contributing to those benchmarks. Besides this, OpenAI Gym
allows for a widely used environment standardization and
formalization, simplifying their use, set-up, and testing.

The Fetch environments were the ones adapted for our
solution. These environments utilize the physics engine Mu-
JoCo [23] for a realistic and swift simulation. Their leading
agent is a 7-DoF Fetch robotic arm1 with a two-fingered
gripper, and allows four different types of tasks. The first
task is reaching (FetchReach): where the goal is to achieve
a particular position. This task is the easiest. The second
one is pushing (FetchPush), where the mission is to move a
block to a target location by pushing it, not allowing grasping.
Then we have sliding (FetchSlide), where the goal is to get
a puck, located in a table, to slide into a target position
on that same table. Finally, we have the pick-and-place task
(FetchPickAndPlace), where the objective is to grasp a block,
then move it to a goal location [24].

So, for our implementation, a general environment called
PrecisionBall was created by modifying the FetchSlide Ope-
nAI example. The PrecisionBall environment (Fig. 2) contains
red balls for the robot to learn to throw, a white ball - jack
or palino - as the target, blue balls to simulate the opponent,

1https://fetchrobotics.com/robotics-platforms/

Fig. 2. PrecisionBall Simulation Environment

and a flat table as the court. Depending on the precision ball
sport being played, balls can have slightly different shapes
and weights. The red/blue and white balls can be of two
different types. In the game of bocce, hard plastic composite
with 920 ± 10 grams and 0.11 meters of diameter are used
for the red/blue balls. For the palino, no weight is defined,
rules only state a 0.05 meters diameter. On the other hand, in
boccia, both the red/blue and white balls are made of leather
with 275± 12 grams and 0.135 meters of diameter.

The court can also be made of different materials. For
instance, boccia fields can be polished concrete, wood, or
natural/synthetic rubber, while for bocce, compacted clay-like
materials are used (sand, or topping clay). This implicates
different levels of ease in rolling over the surface, entailing dis-
tinct levels of friction. These court characteristics were trans-
lated into our environment by different friction coefficients
and different material types. All these properties, both for the
court and balls, were edited to the defined standards using the
MuJoCo physics engines. For the general environment, the
following features were set as default: red/blue balls with 920
grams and 0.11 meters of diameter; jack with 0.11 meters and
275 grams; wood field with a friction coefficient of 0.1.

OpenAI’s Fetch tasks were also chosen for their goal-
oriented environments. In our case, the objective mission is to
place the player’s (robot) red balls as close to the white one as
possible. So, our desired goal is a distance of approximately
zero from the red balls to the white one. This desired zero
distance would lead to very sparse rewards if fixed, given this,
a fixed tolerance of 0.05 meters was defined. With this type of
environment, a goal-aware observation space is needed, i.e.,
a space not only with current environment observations but
also with the desired goal, as well as the achieved goal (the
distance actually produced by the red ball). In the ideal case,
the achieved goal would converge fast to the desired goal.

Therefore our observation space is formed by a dic-
tionary composed by three different keys: achieved goal,
desired goal and observations. The achieved goal is given
by the euclidean distance between the current gripper position
and the goal position (the white ball). The desired goal is an
optimal euclidean distance of 0 ± 0.05 meters, as mentioned
above. Finally, the observations key is composed of thirteen
variables: the absolute position, positional (Cartesian) velocity
in the world frame and the rotational velocity of the gripper,
the absolute and relative red and blue ball position, rotation in



Euler angles, positional and rotational velocities. The relative
positions are in relation to the current position of the gripper,
and all retrieved in x, y, z form from the MuJoCo simulator.

With the observation space defined, another essential aspect
to specify is the action space. Since our goal is only to
hit the red ball, the gripper movement is not considered for
our application, and its position is fixed. The action space is
composed of three dimensions, where each specifies the x, y,
and z in the next timestep of the gripper’s desired relative
position. To move the gripper to the desired location, MuJoCo
constraints are used [11]. Actions are applied for 0.05 seconds
(equivalent to 25 succeeding simulator steps). The robot is
only able to perform one action to each red ball.

Another aspect of most importance is reward modeling. In
this environment, rewards are sparse and binary and com-
pensate the agent for attaining the desired distance between
the initial and target positions. In our approach, the reward
is dependent on d, where d is the distance between the red
ball and jack. If |d| is smaller than the defined threshold of
0.05 meters, then the reward is zero. If not, the reward is -
1. The module is applied so the agent gets rewarded when d
is between -0.05 and 0.05. A penalty of -50 is also given in
the reward if the robot applies more than one action to the
same red ball. Given this, the agent will try to maximize its
reward. With these aspects specified, the initial and termination
conditions of the simulation were defined. At the beginning of
each episode, the following conditions are assured:
• The location of jack and opponent’s ball is generated

randomly on the sports field. This random generation was
used to simulate the initial white ball throwing, as well
as replicating the effect of other player’s moves that can
lead to different goal positions.

• Red balls initial positions are random but in the robot’s
reach, so the robot can learn to reach and throw it.

• The robot is always initiated in the same position, with
the same joint angles at each episode.

This randomization changes all ball’s positions, every episode,
so the robotic agent will be able to generalize the learned
abilities. The Fetch robot will learn where to hit the red ball
correctly, and the amount of force that it needs to apply to win
the game. The strategy learned to apply a particular force to a
ball is affected by the physical parameters of the environment
mentioned before, like ball weight and field friction. At each
episode, the termination conditions are evaluated to test if the
simulator needs to reset the agent and initialize a new episode.
The conditions are the following:
• Any ball outside bounds: all ball’s x and y positions are

tested against court’s limits to assure they are still in play.
• Timeout: the predefined maximum duration of an episode.

By testing, four seconds were defined (2000 timesteps).
• Goal achieved: distance from a red ball to the jack is

0± 0.05 meters for more than 50 timesteps.

V. EXPERIMENTS AND RESULTS

As previously introduced, the game was divided in three
stages that entail different goals. In Stage 1, the goal is only

to reach the ball with the color allocated to the robot (red).
Stage 2 has the objective of throwing the red ball as close as
possible to a white target ball (jack) that is within the robot’s
reach. And finally, Stage 3 is where the final version of the
game is played, having as goal to throw a red ball close to
the jack to obtain a near-zero distance between the two. The
environment created (PrecisionBall presented in Fig 2) was
used with its default settings defined in Section IV.

Since our environment was created using OpenAI Gym, the
OpenAI Baselines tool [3] was utilized to simplify testing
with some of the most used model-free PG RL algorithms
(referenced in Section II): PPO, DDPG, and DDPG+HER.
The algorithms’ hyperparameters used were the ones provided
by OpenAI as the best for training a Fetch 7-DoF robotic
arm [11], [25], [8]. To better evaluate the suitability of each
algorithm at each stage, all methods were tested in the three
phases. For all stages, the training process was performed on a
single machine with 12 CPU cores, for 80 epochs, equivalent
to 250k training steps. Each core uses two parallel rollouts
(train and test) and MPI for synchronization [24]. The use
of MPI not only speeds up the training process but also
provides better results by increasing the original defined batch
size of 256 (it increases linearly with the number of cores:
batch size = n cores× 256), providing more experience.

Three different random seeds were used for training every
algorithm, and their mean reward computed. The evolution of
these mean rewards in each MPI worker, over the training
steps, for each algorithm and stage, are presented in Fig. 3.
The colored lines shown represent MPI workers from a total of
12 (number of CPU cores). As one can see, only DDPG+HER
was able to converge in all three stages successfully. PPO is
not capable of learning at any stage. This is possibly due to
this method not relying on a replay buffer, and since the goal
ball position is randomly generated every episode, it rarely
achieves the goal state. Also, with our environment having
binary and sparse rewards it hampers the learning process,
being stuck at nearly -50 for stages 1 and 3 (left Fig. 3(a) and
Fig. 3(c), respectively), and -30 for stage 2 (Fig. 3(b) left).

On the other hand, DDPG starts to increase reward after
250k eps for the first stage, but does not converge. In stages 2
and 3, it performs poorly, getting stuck at minimum rewards
(-30 and -50), in the same manner of PPO. DDPG, as every
algorithm in RL, is not very prone to learn from sparse rewards
in complex environments, so without HER, it does not achieve
convergence [25]. Finally, with the DDPG+HER algorithm,
convergence is attained in all stages of the game, producing
mean stable rewards of -10 for stage 1, -14 for stage 2, and
-44 for the final stage. With this algorithm it is very clear that
reaching the red ball is by far the most straightforward task to
learn. When the goal is to achieve a zero distance from the red
ball to the jack (second and third stages), the reward signal
is not as stable or as high. After this evaluation was done,
DDPG+HER was the algorithm used for our final model.

With the final model chosen, the train and test success rates
were calculated for all stages, only using DDPG+HER. In
Figures 4 to 6, the training success rates for stages 1, 2, and



((a)) Stage 1 (reach red ball)

((b)) Stage 2 (throw red ball with jack within reach)

((c)) Stage 3 (throw red ball with jack anywhere)

Fig. 3. Reward signal Smoothed (w=100) per training step for PPO (left), DDPG (center) and DDPG+HER(right)

3 are shown. In Figures 7 to 9, the test success rates are
shown for the same stages. The train results display worse
performance since, in the training algorithm, random actions
are selected with a 30% probability, and noise is added to
those actions, aiding the agent to explore, but preventing it
from reaching better success rates. On the other hand, in the
test rollout worker, both the probability and noise are set to
zero, allowing the agent to achieve much higher success rates
since random actions do not impair it.

For stage 1 (Fig. 4 and 5 left), it is once again clear that the
task is rather simple since a mean train and test success rates
of 0.7 and 1, respectively, are constant and obtained right from
the beginning. For stage 2 (Fig. 4 and 5 center), the success
rate evolves along with the episodes, achieving 0.8 for training
and 1 for testing. Finally, for stage 3, the rates once again prove
the complexity of this final task. Values no higher than 0.2 are
reached for the train success rate (Fig. 4 right) and 0.84 for

TABLE I
EFFECTS OF DIFFERENT PHYSICAL ENVIRONMENT CHARACTERISTICS ON

THE RL ROBOTIC AGENT

Ball weight
(grams)

Friction
Coefficient

Max Success
Rate

Mean Success
Rate

Convergence
(no of eps)

275 0.1 89.2% 69.7% 833
275 0.4 92.7% 75.7% 1100
275 0.7 92.5% 72.4% 1300
275 1 66.0% 53.4% 1460
920 0.1 84.2% 69.4% 1200
920 0.4 78.3% 66.6% 1553
920 0.7 70.8% 54.3% 1670
920 1 64.2% 52.6% 1580

the test (Fig. 5 right). This final stage is also more unstable,
showing variances of 0.2 max and 0.02 min for the test success
rates, even after converging. All the above-mentioned results
were provided with the PrecisonBall environment with default
physical properties explained in Section IV.

As previously referred, boccia and bocce have various



Fig. 4. Train Success Rate for Stage 1 (left), Stage 2 (center) and Final Stage (right)

Fig. 5. Test Success Rate for Stage 1 (left), Stage 2 (center) and Final Stage (right)

ball and court weights and materials, translated into dif-
ferent weights and frictions. Given this, the effects on the
DDPG+HER model of different possible ball weights and
tangential friction coefficients were evaluated. All the possible
combinations between two ball weights (275g as in boccia and
920g as in bocce) and four different friction field coefficients
(0.1, 0.4, 0.7, and 1) were tested. The results are presented
in Table I, with the maximum and mean success rates, and
the number of episodes needed for converging, for each
combination. The mean and max success rates were calculated
only for timesteps after the model’s convergence. The last
coefficient of 1 was used simply to test the effects of high
friction on the agent since no precision ball court is made of
a material with stated resistance higher than 0.7.

As intuition would tell us, the heavier the red ball, the harder
for the robot to learn in the same amount of episodes, since it
needs to apply more force in order to throw it to the jack. For
the coefficients of 0.1, 0.4, and 0.7, the environment with the
920g ball took more time to converge than for the lighter ball,
needing a mean of 400 more episodes to converge. For the
friction coefficient of 1, the number for convergence is only
120 episodes bigger. This is explained by the magnitude of the
coefficient that holds back the movement of the sliding ball,
no matter its weight. Also, the success rates for the lighter ball
are, in general, better than for the heavier one, except for the
largest coefficient, where the difference is almost insignificant
(less than 2%). For heavier balls and higher frictions, the mean
success rate is smaller due to a higher instability, besides not

achieving as high max rate values.

When comparing the max and mean success rates, their
values decrease with the increase of the friction coefficients
due to difficulty in moving heavier balls, as expected (max
success decreases from 88% to 64.2%, and mean from 69.2%
to 52.6%). Interestingly, for the 250g balls, mean and max
rates increase slightly with friction’s rise. For 0.1, 0.4, and 0.7
coefficients, max success rates go from 90% to almost 93%,
and the mean from 70% to nearly 75%. This is possibly due
to higher friction coefficients slowing down the lighter ball’s
movement, and therefore allowing it to stop closer to the jack.
Otherwise, any force the robot applied to the 250g ball would
lead it to surpass the jack, due to small field friction. With
this analysis, it is clear that our robotic agent achieves good
results overall, but is a better player of boccia than of bocce
(mean and max success rates higher around 75% and 90% for
boccia and around 65% and 80% for bocce).

The behaviour of the already trained agent was analyzed
for the final stage with a modified reward. R=0 if the robot
achieves a distance d not only smaller than the threshold, but
also equal to or smaller than d from the opponent’s balls. R=-
1 otherwise. In this analysis, relevant behaviours were shown.
Not only it was able to reach the jack most of the times,
as it choose to reach it from certain sides, according to the
observation of the opponent’s balls position. For instance, with
the jack with both blue balls by its side, the agent choose to
throw the red ball in between the two blue ones, so it could
achieve a smaller d when compared to the one reached by the



opponent. Besides this, the robot also learned to hit the jack
in order to increase its distance to the opponent, but due to
limitations in the movement dynamics (sometimes when hit it
did not cause substantial movement), it was not a converged
behaviour from our agent.

VI. CONCLUSIONS

In this work, a deep reinforcement learning algorithm is
used to solve a robotic task in a simulated environment of
precision ball sports like boccia or bocce. A new setting for
this task was created, adapting an existent environment from
OpenAI Gym. The approach was divided into three stages:
reaching the red ball; throw it to the jack when within the
robots reach; and finally throw it to hit the jack anywhere.

The performance of three different RL algorithms (PPO,
DDPG and DDPG+HER) over 250k timesteps was compared
for each stage, where DDPG+HER revealed the best results.
The success rate for DDPG+HER in its training and testing
phases was then evaluated, also for each stage. The first stage
achieved a success rate of 100% in less than 20 episodes, while
the second stage took 500 episodes to reach the same rate.
The final stage only achieved a max success rate of 84.2% in
600 test episodes. However, the approach is not very stable in
this last stage where the sport is played, which is not directly
disabling for the robot player but can result in more failures
and defeats than other opponents.

The effects on the approach’s convergence and success rate
for different physical characteristics inherent to bocce and
boccia, were evaluated for the final stage. For this evaluation,
the materials, ball weights, and tangential friction coefficient
were altered for each kind of field/ball. The smaller the friction
and weight, the easier it was for the agent to learn, converging
faster and having higher success rates. Maximum success rates
of 92.7% were achieved for boccia, and 84.2% for bocce. Our
approach shows promising results, where the robot was able
to learn relevant skills and develop strategies that allow it to
win. We feel that our empirical demonstration illustrates the
possibility for one more robotic competition, or even for a
simulated training partner.

As future work, we intend to refine this work by allowing
increasing the realism of the presented simulator. First, the
movement dynamics from the balls and jack will be improved.
Then, to simulate real measures from vision systems or lasers
in the robot, an error will be added to the distance values
retrieved from the simulator. Also, the final result of the
four plays can be set as the goal. This approach could bring
impressive results, like allow the robotic agent to learn and
converge to more complex strategies, such as how to win
by damaging the plays of the adversary. Other improvements
encompass testing RL algorithms’ performance with dense
rewards, a more thorough search for algorithms parameters,
and more training episodes.
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