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Abstract—Recent breakthroughs on deep learning and com-
puter vision have encouraged the use of multimodal human
activity recognition aiming at applications in human-robot-
interaction. The wide availability of videos at online platforms
has made this modality one of the most promising for this task,
whereas some researchers have tried to enhance the video data
with wearable sensors attached to human subjects. However,
temporal information on both video and inertial sensors are
still under investigation. Most of the current work focusing on
daily activities do not present comparative studies considering
different temporal approaches. In this paper, we are proposing
a new model build upon a Two-Stream ConvNet for action
recognition, enhanced with Long Short-Term Memory (LSTM)
and a Temporal Convolution Networks (TCN) to investigate
the temporal information on videos and inertial sensors. A
feature-level fusion approach prior to temporal modelling is also
proposed and evaluated. Experiments have been conducted on the
egocentric multimodal dataset and on the UTD-MHAD. LSTM
and TCN showed competitive results, with the TCN performing
slightly better for most applications. The feature-level fusion
approach also performed well on the UTD-MHAD with some
overfitting on the egocentric multimodal dataset. Overall the
proposed model presented promising results on both datasets
compatible with the state-of-the-art, providing insights on the
use of deep learning for human-robot-interaction applications.

Index Terms—Deep learning, CNN, LSTM, TCN, RNN, human
activity recognition, human-robot-interaction.

I. INTRODUCTION

Current development on different research fields have risen
interest on applications of social robots as interactive tools to
assist humans, usually elderly people or people with special
needs. In real-world scenarios, roboticists may rely on human
activity recognition [1]. This consists in processing sensing
data from smartphones and wearable devices to identify se-
mantically understandable interactions amongst the user, the
environment and the robot. These technologies are important
for the development of automated solutions for human-robot
interaction applications that are still mostly based on Wizard
of Oz approaches [2].
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Here we address this challenge by proposing a deep learning
model for human activity recognition from videos and inertial
sensors. Inertial data may be made available from smartphones
or wearable devices such as smartwatches. In situations in
which social robots are present, video data may also be ob-
tained from the robot’s camera(s). Regardless of the modality,
deep learning techniques have shown promising results on
activity recognition, although feature-based approaches are
still competitive in some cases [3]. Most advances on video
classification were built on the Two-Stream ConvNet [4],
whereas satisfactory results on inertial data have been provided
by the combination of Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) [5]. Some other at-
tempts dealing with multimodal data, focused on fusing inertial
data with depth images [6].

In our investigation we have used two datasets for daily ac-
tivities: the egocentric dataset presented by Song et al. [1] and
the University of Texas at Dallas Multimodal Human Activity
Recognition Dataset (UTD-MHAD) [7]. Our proposed model
relied on RGB videos and inertial data, experimenting different
possibilities for modelling the temporal dependencies on both
modalities. In this regard, first, we are proposing to add Tem-
poral Convolutional Networks (TCN) [8], which consists on an
feasible alternative to Recurrent Neural Networks (RNN) on
sequence modelling. Second, a feature-level fusion approach
is considered as an alternative to the late fusion generally used
when dealing with video temporal streams.

II. HUMAN ACTIVITY RECOGNITION

Human activity recognition comprises of a wide research
field, involving different input modalities and classification
of activities on distinct levels of abstraction. In the case of
videos, this modality may rely not only on structured data
built on controlled environments, but also on unconstrained
videos obtained from the Internet [9]. The same has not
been true for raw sensors such as inertial measurement units
(IMU), which may aggregate, for instance, 3D accelerometer,
gyroscope and magnetometer [10]. For those, datasets are typ-
ically designed and recorded under controlled environments.
In this work, we address a multimodal approach, in which data
from inertial sensors has been applied to enhance video-based
activity recognition. Even though, single-modality approaches



also influenced our research, providing guidelines on several
developments on our proposed methods.

The UCFI101 dataset [11] is probably the most relevant
benchmark for video classification available. It is composed by
101 categories distributed into human-object interaction, body
movements, human-human interaction, musical instruments
playing and sports. More recently, large-scale datasets have
been deployed and the most relevant one is the Kinetics
dataset [12]. Since its volume of data may take several ter-
abytes, it is not always feasible to work directly with datasets
of such scale. As we discuss thoroughly on Section III, a
Convolutional Neural Network (CNN) trained from scratch on
data derived from the UCF-101 dataset has been adopted as a
building block for most of our proposed architectures.

A detailed literature review regarding methods for video
classification was presented by Herath er al. [13]. Most deep
learning approaches may be belong into two categories: mul-
tiple stream networks or spatio-temporal networks. The most
influential multiple stream network is the Two-Stream Con-
vNet proposed by Simonyan et al. [14]. It was composed by
a spatial CNN trained to classify RGB frames and a temporal
CNN trained on stacks of dense optical flows from sequential
frames. This approach have evolved and an important advance
was the Temporal Segment Network [15]. Spatio-temporal
networks are characterised by combinations between CNN
and LSTM, such as the Long-term Recurrent Convolutional
Networks (LRCN) [16], or 3D ConvNets (C3D), as presented
by Tran et al. [17]. Our approach is composed of multiple
streams. However, the video temporal streams were built with
similar basic principles as the LRCN.

For inertial sensors, a dataset often used in studies centred
on wearable devices is the PAMAP2 [18]. The OPPORTU-
NITY [10] dataset is also relevant, as it provides a large
set of sensors not only wearable, but also placed on objects
or distributed around an environment. The neural networks
architectures used to classify those datasets are almost always
based on combinations between CNN and LSTM. A system-
atical analysis of deep learning techniques for inertial data,
experimented in datasets such as the both mentioned, was
performed on Hammerla ef al. [19], in which regular deep
neural networks (DNN) were compared to CNNs and three
LSTM-based architectures. In Rueda and Fink [20], features
extracted from CNNs were on the basis of three architectures:
a regular CNN, a variation called DeepConvLSTM, in which
LSTM layers would replace fully-connected layers, and the
CNN-IMU, composed of parallel convolutional blocks whose
outputs were concatenated and fed to fully-connected layers.
The InnoHAR architecture [21] consists of a stack of Inception
modules followed by two recurrent layers based on Gated
Recurrent Units (GRU), and led to improved results on both
PAMAP2 and OPPORTUNITY datasets. A detailed overview
of the literature regarding smartphone sensors was provided
on the recent work of Sousa Lima et al. [22], in which
different datasets and algorithms, including deep networks,
were broadly revised.

Regarding multimodal datasets with videos and inertial

sensors, most of them were recorded with depth cameras,
as discussed on the survey provided by Chen et al. [6].
Datasets such as the UTD-MHAD [7], adopted in the ex-
periments, and the 50 Salads [23] provide not only video
and inertial measurements, but also positioning of skeleton
joints, which are often used as an important input for the
proposed methods [24]. In Chen et al. [7], Depth Motion
Maps (DMM) were obtained from depth images, statistical
descriptors were adopted for the inertial data and the RGB
videos were not considered. Classification was performed
with Collaborative Representation Classifiers (CRC). Song et
al. [3], another object of our analysis, brought a different
approach, in which scripted actions were performed by 10
participants and recorded with a Google Glass. In a following
paper [1], the authors applied the two-stream ConvNet to
classify the videos from their dataset and a DeepConvLSTM
to classify the sensor data, performing fusion by averaging or
max-pooling their outputs.

III. PROPOSED MODEL

In this article, we propose to build on the Two-Stream
ConvNet [14] and extend it to the case in which another
modality composed by IMU sensor data is present. This
modality, comprised by multivariate 1D temporal series, has
been considered as an additional stream, called inertial, as
illustrated in Fig. 1. An Inception-V3 network [25], adapted
to take pairs of optical flow matrices (U, V') as inputs, has been
previously trained on the UCF-101 dataset. Therefore, instead
of taking three input color channels of the RGB images, the
network would take the two optical flow channels: vertical
and horizontal. Further, its last layer was removed, in order
to provide a feature vector for each timestep of the video. In
other words, the penultimate layer of the Inception-V3 would
generate a feature vector of length 2048 of a given timestep,
and this network would be applied independently for each
timestep considered. A much simpler CNN was implemented
to extract features from the inertial stream, which could be
used as inputs to a LSTM or a TCN block. Those outputs
could be concatenated to the features obtained from other time-
dependent streams, particularly the video temporal stream.
In the later case, we are assuming that both of them are
related to the same amount of time on the sample, so that
¢ = ts X ws, where t¢ is the number of timesteps of stream
s € {video, inertial}, wy is its frequency and c is the time
amount, in seconds, shared between the streams. Given such
assumption, discrepancies on the number of timesteps at the
time of the concatenation could be resolved by sampling from
the stream with more timesteps.

More precisely, the LSTM and TCN models for temporal
modelling were applied to the features extracted by CNNs,
and its outputs were fed to a softmax layer for classification.
Although LSTM was already applied for video classification
on previous literature [26], the suitability of TCN, which has
shown to lead to equivalent or even better results in sequence
modelling [8], has not been extensively applied to this context.
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Fig. 1: Proposed framework for multimodal activity recogni-
tion, where d refers to the number of features and ¢, to the
number of timesteps considered for a given stream. Fusion
may be performed at feature-level, by combining the features
from different modalities obtained from the CNNs. Both
LSTM and TCN layers were considered for modelling long-
term dependencies.

A. Temporal Convolutional Networks

The LSTM architecture is a classical approach for dealing
with long-term temporal dependencies in sequences [27].
Recently, it has led to several advances on deep learning,
especially regarding language and speech recognition [28].
The success of the LSTM and of its most famous variation,
the Gated Recurrent Unit (GRU) [29] turned recurrent neural
networks the standard starting point when dealing with deep
learning for sequence modelling. However, as Bai et al. [8]
argued, approaches based solely on convolutional networks
could provide results as good as recurrent approaches, and
therefore it may be worth to consider them as well. In this
context, the temporal convolutional network (TCN) comprises
of a neural architecture capable of dealing with long-term
dependencies.

The temporal information would be dealt in such networks
by stacks of dilated causal convolutions, which are illustrated
in Fig. 2a. The causal denomination is derived from the
connections between the layers. A filter of size k processes
a timestep t plus the k — 1 preceding timesteps, in order to
capture the idea of causality. The dilated denomination refers
to the inclusion of a dilation factor d, responsible for ampli-
fying exponentially the receptive field of the convolutions, as
more levels are added to the network. A regular convolution
is the particular case in which d = 1. Considering a 1D input
sequence x € R™ and a filter f : {0,...,k — 1} — R, the
dilated convolution operator may be defined as in equation 1,
where s — d - ¢ refers to the direction of the receptive field to
the past.
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Each convolutional stack would be followed by weight
normalisation, an activation function (e.g., ReLU) and spatial
dropout, composing residual blocks as shown in Fig. 2b. The
advantage of such blocks is the so-called skip connections,
which allow the input data to be fed directly not only to the
next block, but also to each of the following blocks. To fix the
differences of dimensions, 1 x 1 convolutions may be applied

to adjust the previous inputs before they are combined to the
output of a block .
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Fig. 2: Elements of a TCN. (a) Stack of dilated causal
convolutions, with & = 3 and dilation factors d = {1,2}.
The convolutional layers within each stack are comprised by
dilated causal convolutions. (b) Generic residual stack, with n
dilations, where the dilation factor is increased each layer as
a power of 2. Multiple stacks may be concatenated one after
another, as in a residual neural network.

B. Video Classification

The architecture for activity recognition on videos was
based on the Two-Stream ConvNet, in which the spatial
features are extracted by a CNN with RGB frames as input,
and temporal dependencies, by a CNN which takes optical
flow matrices. Before being fed to the correspondent neural
network, RGB frames or optical flow matrices were supposed
to be cropped to d x d. For both streams, the InceptionV3
network [25] was adopted as a base model. For the spatial
model, we applied a straightforward transfer learning from
a model previously trained on the ImageNet dataset [30], in
which only the softmax layer was replaced and further trained
with the weights of all other layers being fixed.

For the temporal stream, illustrated in Fig. 3, ¢, successive
pairs of optical flow with shape d,, xd,, X2, each corresponding
to a single timestep of a sequence, were fed independently to
the CNN. This approach is different from Simonyan et al. [14],
in which a CNN took as input a stack of optical flow matrices
related to successive timesteps, i.e., the architecture was com-
posed by a single CNN with input shape d,, x d,, x 2t,,. Here, a
determined CNN, trained from scratch to classify the UCF-101
dataset and deprived from its last softmax layer, would process
the pairs of optical flow matrices. The result would consist of
a feature vector with shape (a,, t, ), where a is the number of
features generated by the output of the CNN - in the case of the
network InceptionV3, a,, = 2048. In other words, this feature
vector would be a multivariate time series with a, variables



and t, timesteps. LSTM networks are commonly seen as a
good choice for modelling such one-dimensional signals, so as
TCNs, as discussed in subsection III-A. Therefore, LSTM and
TCN were both considered as candidate layers for this part of
the proposed architecture. Finally, the last output of whichever
network was used would be fed to the softmax layer for the
classification.

Flow 1
[ dxdxz H CNN 2D
[ dF'°:V 22 H CNN 2D
O : LSTM/TCN
Flow t,

Fig. 3: Network architecture for the temporal stream. The
inputs are the pairs of dense optical flows from a frame
sequence. Each pair with shape d, x d,, x 2, is processed by a
shared CNN, and the a, features obtained from the last layer
of the CNN (prior to the softmax layer previously withdrawn)
are taken as timesteps for a LSTM or TCN.

Features
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vo v

C. Inertial Data Classification

In order to classify the inertial data, it has been adopted a
one-dimensional version of the same principle as that one for
video temporal stream: a CNN to extract features, followed by
a LSTM or TCN to model long-term temporal dependencies.
This approach has similarities to the work of Rueda and Fink
[20]. However, a network architecture was deployed having in
mind the particular issues that would arise when performing
a fusion with the video temporal stream. Particularly, since
the convolutions on the inertial data would be performed on
the time domain, and each pooling layer would reduce the
resolution at this given domain to the ratio of its kernel, we
had to be cautious with the increasing of the depth of this
CNN. With this aim, we have considered only two ConvlD
layers: the first one with kernel size 1, to increase the number
of feature maps, and the second, with size 3, to perform
feature extraction. Those layers were followed by a maximum
pooling of kernel size 2, which would reduce the number of
timesteps t,, to its half, ¢,,, while still representing the same
amount of time (i.e., the time resolution has dropped). The
CNN architecture is shown in Fig. 4a.

The a,, features extracted from this CNN were, then, applied
as input to a LSTM or TCN block, whose last output was
connected to a softmax layer for classification (see Fig. 4b).
An important difference between this neural network and that
of the video temporal stream is that all the free parameters
of both CNN and LSTM/TCN were set to be trainable, i.e.,
training would be performed end-to-end.

D. Temporal Fusion

In most research on activity recognition based on multiple-
stream deep neural networks, fusion was performed at a
later stage. For instance, by averaging the outputs of the
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Fig. 4: Neural network applied for the classification of the
inertial stream. (a) CNN applied prior to the LSTM or TCN
module. Since the convolutions are performed in the time
domain, the maximum pooling with kernel size 2 reduces the
initial temporal resolution ¢,, to t, = %” The number of
output features a,, was determined by the number of filters of
the second Conv1D layer. (b) For the inertial stream, the inputs
are one-dimensional sample sequences. The whole sequence
is processed by a CNN in the time domain, which reduces the
number of timesteps from d; to d;.

last layer. Song et al. [1] adapted this approach to fuse
the video features to those extracted from the inertial data
of their egocentric multimodal dataset. Regarding video-only
classification, Feichtenhofer, Pinz and Zisserman [31] analysed
different methods for feature-level fusion in two-stream Con-
vNets. Most of the techniques they proposed rely on the spatial
dependencies shared by the video temporal and spatial streams.
Therefore, they are not suitable for fusion with the inertial
stream. However, we could adapt the concatenation of features
presented by them to build our feature-fusion approach, since
it does not make assumptions on the spatial dependencies
between features.

The proposed method here, shown in Fig 5, builds on two
assumptions: the numbers of timesteps ¢, on the videos and
t,, on the inertial data are synchronised, referring to the same
period of the sample on both streams despite each modality
having a different temporal resolution; and that ¢, < ¢,,. Thus,
after applying each of the ¢,, (d, xd, x2) optical flow matrices
to CNN 2D and stacking the outputs, and applying the d,,, xt,,
inertial data sample to CNN 1D, two feature vectors would
be obtained, with shapes a, X t, and a,, X t,. If t, # t,,
the inertial feature vector should be adjusted, what would be
done by sampling points that were equidistant in the time
domain. After such adjustment, both feature vectors would
have the same number of timesteps t,. Therefore, they may
be concatenated in this dimension, resulting in a feature vector
of shape (a, + a,) X t,. This feature vector would be fed to
a LSTM or TCN block, whose output would be connected to
a softmax layer. It is worth to remind that CNN 2D has fixed



weights, already optimised in an ad-hoc manner.
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Fig. 5: Framework for feature-level temporal fusion. Features
extracted by the video CNN are concatenated to the features
extracted by the inertial CNN, composing a feature vector re-
lated to a single timestep. The frequencies at each modality are
different, thus adjustment by down-sampling is applied to the
inertial stream before concatenating, so that the timesteps at all
streams are synchronised. After concatenation, the multimodal
feature vectors at each timestep are fed to a temporal neural
network, be it a LSTM or a TCN module.)

IV. EXPERIMENTAL SETUP

All implementations were developed in Python language,
using the Keras framework with TensorFlow backend. Before
any preprocessing, all videos were proportionally resized so
that the smallest side would have size 256. Optical flow was
calculated with the TVL1 algorithm [32]. This algorithm has
shown, in exploratory experiments, to provide significantly
the best classification results among others, although being
significantly slower than the Farnebick algorithm [33], which
may be relevant to real-time applications. The networks for
the video streams were set to get input frames with shape
224 x 224, which would be achieved by cropping. Split
1 of UCFI101 dataset, suggested by the authors [11], was
used to train the CNN for feature extraction in the video
temporal stream. The following subsections will present the
datasets and the settings for each condition, allowing the
results to be reproduced. The code was made available at
https://github.com/cmranieri/Deep-Activity-Recognition.

A. Datasets

The experiments were performed on two multimodal
datasets: egocentric multimodal [1] and the UTD-MHAD [7].
Those datasets were chosen for their suitability to activities
of daily living. Both of them provide the same amount of
data from each subject and with respect to each activity.
Besides, as they are significantly different in nature, interesting
conclusions could be drawn from comparative results.

1) Egocentric Multimodal Dataset: This dataset was gen-
erated by a group of 10 participants. They performed a set of
20 activities wearing a Google Glass. Each session length was
about 10 seconds. These activities were recorded in different
and heterogeneous environments, which provides a lot of
visual information, in addition to the movement. Activities
were divided into four categories: ambulation, office work,
daily activities and exercises. The videos (RGB only) were
sampled at 30 Hz, while the sensor data was sampled at 15

Hz. The sensors provided 19 features: the 3D acceleration,
magnetic field, linear acceleration, gravity, rotation vector and
gyroscope. The data was preprocessed using the L2-norm.

2) UTD-MHAD: This dataset was recorded in a more
controlled condition, with 8 participants performing a set of
27 activities, 4 repetitions each. Recordings were performed
by a depth and RGB camera (only RGB video was considered
in this work) and by two 3D accelerometers. One placed at
a band on the user’s fist, and the other was placed at the
user’s waist. Each session lasted about 3 seconds, and the
recordings were performed in a controlled room, with the
subjects posed facing the camera, at a constant distance and
with constant background. The videos were sampled at 15 Hz,
and the sensor data, with 6 dimensions corresponding to the
two 3D accelerometers, were sampled at 50 Hz.

B. Network Setting

All conditions described in this subsection were experi-
mented on both datasets described in the previous section.
The datasets were split following the k-fold cross-validation
procedure, with k = 10 for the egocentric multimodal dataset
and k£ = 8 for the UTD-MHAD, so that data provided by
one subject was used for testing, and the remaining data,
for training. For the data stream, only one condition was
considered, in order to allow for late fusion: an InceptionV3
CNN. As previously stated, transfer learning was applied to a
model trained on Imagenet dataset, keeping all weights fixed
except for the softmax layer, replaced to match the number of
classes of the datasets considered.

The temporal and inertial streams were considered sepa-
rately and followed the fusion approach of Fig. 5. The CNN
applied to extract features of the inertial stream was composed
by 256 filters in the first convolutional layer and 512 in the
second. As the InceptionV3 ouputs 2048 features, the feature-
based fusion provides a vector with video and inertial features
in a ratio of 4:1. Both LSTM and TCN were experimented
as blocks for temporal modelling, with 128 units and output
dropout of 0.3. Regarding the TCN, the kernel size was set
to 3, dilations were set do d = {1,2,4}, and the number of
residual blocks (i.e., stacks) to 3.

1) Training: The training procedure was adapted from
Simonyan et al. [14] and Song et al. [3]. All models were
optimised using the softmax cross-entropy as loss function.
The pre-training of CNN for optical flow pairs performed on
the split 1 of UCF-101 dataset was ran with the Stochastic
Gradient Descent (SGD) optimiser, for 200, 000 steps. In the
videos of the goal datasets, data augmentation was performed
by random cropping and in the egocentric multimodal dataset,
random flipping. We decided not to flip the videos from
UTD-MHAD, since some of the activities on that dataset
were somewhat symmetric (e.g., wave left and wave right).
For the spatial stream, we used SGD with learning rate
1072, momentum 0.9 and weight decay 10~%, and training
was also performed for 30,000 steps, with batches of size
32. Optimisation on the temporal and inertial streams was



performed in batches of size 16, for 30,000 training steps,
using the RMSProp optimiser [34] with learning rate 10~3.

The number of timesteps was selected so that each snippet
would represent 2 seconds of a trial. To reduce the number
of video frames, we sampled them so that ¢, = 15. With the
egocentric multimodal dataset, the model was sampled once
every 4 frames at the video stream, and the timesteps were set
to t,, = 30 and ¢,, = 15 for the inertial stream. We sampled
once every 2 frames with UTD-MHAD, the timesteps of the
inertial stream being set to ¢,,, = 100 and ¢,, = 50. Therefore,
we had to apply the adjustment depicted in Fig. 5. The same
settings were kept when training the inertial stream alone,
except the adjustment by sampling in UTD-MHAD.

2) Evaluation: For testing we used the same procedure
adopted in the reference papers: a number snippets was con-
sidered, with equal time between them, and all of them were
submitted to cropping on their four corners and centre. For the
egocentric mutimodal dataset, 5 snippets were used to test each
video, and the videos from the resulting sequences were also
horizontally flipped. For the UTD-MHAD, we considered 2
snippets and no flipping. To make a prediction, output vectors
from all snippets of a given sample were averaged.

This procedure was adopted for all models that ran end-to-
end, i.e., the models for single-stream and feature-level fusion.
For late fusion, one model for each stream was run separately
and the output vectors were combined by weighted averaging.
The same was done when combining to the spatial stream.

V. RESULTS AND DISCUSSION

Fig. 6 shows the number of parameters of each model
built for each stream on the egocentric multimodal dataset
(UTD-MHAD was fairly alike), including the hybrid model for
feature-level fusion. Late fusion was not considered a model on
itself, since it consists on combining the spatial models outputs
with one of the temporal models. Therefore, at inference time,
its number of parameters equals the sum of those present on
the models adopted. The temporal or feature fusion models
embed a CNN similar to that of stream model. Therefore, their
complexity is dependent on the base CNN model adopted.

Since InceptionV3 (adopted on all of our models except
for the inertial ones) is expressively more complex than the
remaining parts of the architecture, variations on the number
of parameters are proportionally small. But yet relevant, since
the weights relative to this block are fixed during training. It is
noteworthy that TCN model was more complex than LSTM for
inertial stream, while the opposite happened for the temporal
and feature fusion models. Due to the fact that the temporal
block on the inertial stream has shape 512 x ¢,,, against 2048 x
t, on the video stream, thus 2560 x ¢, in the feature-fusion
models, it may be inferred that the number of input features
of the temporal block impacts less the number of parameters
in TCN-based than in LSTM-based models. This is expected
due to the sparser connectivity of convolutional layers.

The InceptionV3 CNN, which was embedded on the fem-
poral and feature fusion models to extract features based on
single optical flow pairs, was trained separately, prior to the
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Fig. 6: Number of free parameters of each model analysed,
without the softmax layer. The substantially higher number
of parameters at the models that involve video processing is
given to the InceptionV3 neural network contained on it, which
consists of more than 21 million trainable parameters, as made
explicit by the number of parameters of the spatial stream.

TABLE I: Mean accuracy of each model for the temporal and
inertial streams, using 10 folds for the egocentric dataset and
eight for the UTD-MHAD, providing splits such that the test
set was composed by all recordings of one subject.

Model

Dataset Stream LSTM (%) TCN (%)
Inertial 45.50 + 7.39 45.50 £ 8.50

Egocentric Tempora! 69.00 + 10.68  72.50 + 11.01
Feat. fusion  55.50 £ 9.60 53.00 & 10.77
Late fusion 74.50 + 8.20 72.50 +9.35
Inertial 63.28 +5.71 65.36 +9.24
Temporal 80.02 + 6.00 81.77 +6.49

UTD-MHAD — fusion  82.58 £5.56 8547 £ 5.56
Late fusion 84.90 + 4.78 83.51 £ 6.25

experiments presented in this paper. It achieved accuracy of
75.15% on the split 1 of UCF-101, using the same training
and evaluation protocol as Simonyan et al. [14]. The resulting
layers were added as blocks of our architecture, as discussed in
section III, and its weights were kept fixed. This was different
for the inertial stream, whose features were extracted by a
simpler network randomly initialised to be optimised together
with following layers for temporal modelling. For all models
on both datasets, LSTM and TCN blocks were investigated.
The mean accuracy of each model for the temporal and inertial
streams is shown in Table I.

As some of the results in Table I are close to each other,
it may be convenient to compare the performances of each
model with respect to some additional aspects. In Fig. 7, we
also present the macro Fl-score of the models, that is, the
average harmonic mean of precision and recall. By penalizing
both incompleteness and inconsistency, this measure is a trade-
off between type-I and type-II errors per class. The means
between the evaluations on each fold were presented in the
bars, with standard deviations proportional to the length of
the vertical traces on the top of it.

The spatial model was obtained by a procedure similar to
that of the base CNN block of the temporal models. However,
it took RGB frames as inputs, instead of pairs of optical flow
matrices; and was initialised with ImageNet weights, instead
of being trained from scratch. This model was used to build
classifications using the three mentioned streams, by fusing
it to the models presented in Table I by weighted averaging.
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Fig. 7: Macro Fl-scores for each model.

TABLE 1II: Accuracy, for the egocentric multimodal dataset,
of the spatial stream models and late fusion by weighted aver-
aging with each of the fused temporal and inertial models. If
w, and wy are the weights for the spatial and temporal/hybrid
streams, the weights are shown using notation w; : w;.

Temporal model Weights ~ Accuracy (%)

Spatial only  1:0 60.50 + 8.50
Video 1:1 72.50 + 6.42
LSTM  Feat. fus. 3:1 69.00 £ 9.69
Late fus. 1:6 78.50 + 9.23

Video 1:2 78.00 4+ 10.54
TCN Feat. fus. 2:1 70.25 + 9.16
Late fus. 1:6 80.62 £+ 8.81

The fusion weights were selected so that the accuracy was
the largest obtained in our experiments. As UTD-MHAD
dataset was built on a controlled environment with constant
background and without significant differences on objects able
to distinguish between activities, the spatial stream was not
significantly informative, with accuracy of (6.74 + 3.23)%,
only slightly above random choice (i.e., 3.70%, given that
there were 27 classes). For this reason, fusion between the
three streams were made only for the egocentric multimodal
dataset. Results are reported in Table II.

A. Discussion

Results from LSTM and TCN-based models were generally
quite close to each other, with a slight tendency in favor
of TCN models for most single-stream approaches and all
models combined with the spatial stream (Tables I and II).
The feature-level fusion approach was successful in the UDT-
MHAD, surpassing the accuracy of the late fusion when
coupled with a TCN block and achieving the best accuracy
for this dataset, of 85.47%. Since this dataset is endowed
with other modalities, skeleton joints and depth frames, it was
expected that the proposed model would perform below the
most accurate models on the literature. Still, our proposal may
be seen as competitive, since most of our results outperformed
those reported on the reference paper [7], which achieved, at
most, overall accuracy of 79.10%. It might be noticed that
our approach relies only on RGB and inertial data, which are

more widely available and may be included in different sorts
of systems. With a more complex model, in which LSTM
networks also modelled depth information, Li et al. [35]
achieved an accuracy as high as 95.31%.

On the egocentric multimodal dataset, feature-fusion ap-
proaches had suffered from overfitting, with fast optimisation
and very high training accuracy. However, average test accu-
racy is below the temporal stream alone, which has shown
lower accuracy during all the training procedure, and actually
was harder to optimise than the other models. Considering
inertial and temporal streams, the best accuracy was achieved
by the late fusion of LSTM-based models (74.50%). This
result was curiously different when the models were further
combined with the spatial stream, with the late fusion of TCN
models achieving the best overall accuracy for this dataset
among our models, e.g., 80.62%. Although this was only
compatible to the best multiple stream CNN model presented
by Song et al. [1] which reported 80.50%, it might be noticed
that our approach presents some advantages. As we relied on
a previously trained CNN to extract features from the optical
flow matrices, with a very reduced set of parameters left to be
optimised in a LSTM or TCN block, it provides the flexibility
to work with different and arbitrarily complex CNNs for this
aim. Moreover, since the number of parameters left to be
optimised is relatively low, with our approach one can work
with larger sequences of data even with a modest hardware.

The F1-scores shown in Fig. 7 were consistent with the ac-
curacy results, thus there were no issues regarding classes with
very high precision and low recall or the opposite. Besides,
models with higher accuracy have also shown higher F1-score,
i.e., both measures were suitable to make comparisons.

The proposed framework may contribute to further appli-
cations on human-robot interaction [36] [37], especially on
scenarios which demand social interaction between user and
robot [38] [39].

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, a new model for human activity recogni-
tion on videos and data from inertial sensors was proposed.
First, different neural networks were analysed as building
blocks for the temporal processing, particularly Long Short-
Term Memory (LSTM) and Temporal Convolutional Networks
(TCN). Second, fusion between the inertial and video temporal
streams were not only performed through late fusion of the
output layers, but also at feature-level. All those approaches
were analysed separately, for different sets of modalities, and
thorough comparisons were done.

Focus was given to modelling the temporal dependencies
in sequences of tuples of inertial data, features extracted
from optical flow and fusion between those approaches. For
the temporal feature extraction, we adopted Long Sort-Term
Memory (LSTM) units and Temporal Convolutional Networks
(TCN). A feature-fusion approach was also proposed and com-
pared to the more traditional late fusion approach, commonly
adopted on multiple stream CNNs. The RGB frames were
also contemplated, with output features from a spatial CNN



further combined to the other models through weighted aver-
aging, achieving accuracies up to 80.62% for the egocentric
multimodal dataset, and 85.47% for the UTD-MHAD without
considering depth data.

Experiments were performed on the egocentric multimodal
dataset and UTD-MHAD. Models obtained with LSTM and
TCN blocks both led to excellent accuracies, with TCN,
which we have brought as a novelty to this application,
performing slightly better in many circumstances. The feature-
fusion approach led to good results in UTD-MHAD dataset.
However, it was unable to generalize well on the egocentric
multimodal. Overall, the proposed model presented promising
results on both datasets compatible with the state-of-the-art,
which provided further insights on the use of deep learning
for human-robot-interaction applications.

Future work will contemplate depth images as an additional
stream, since this may be introduced to social robots in several
circumstances. We have already built a multimodal dataset for
activities in domestic environments, with videos and inertial
data from smartwatches and smartphones, to be used on deep
learning models in human-robot interaction applications. This
dataset will be made publicly available once we finish the
anonymisation procedures.
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